Skip to main content

Oblique Detonations: Theory and Propulsion Applications

  • Chapter
Combustion in High-Speed Flows

Part of the book series: ICASE/LaRC Interdisciplinary Series in Science and Engineering ((ICAS,volume 1))

Abstract

The oblique detonation, a combustion process initiated by an oblique shock, arises in most supersonic combustion applications including, most notably, the ram accelerator and the oblique detonation wave engine. Additionally, it is the generic two-dimensional compressible shocked reacting flow; consequently, its basic research value is inherent. The outstanding theoretical questions are also the fundamental practical questions: e.g. what conditions are necessary for steady solutions, what is the dependency of the steady propagation speed on the ambient condition, what is the susceptibility of the system to instability, and what is the behavior of the system in unsteady operation. A related topic which transcends all questions is the ability to describe these phenomena computationally. At this early stage, these issues are most clearly addressed with simple models. This paper will review the application of such models to oblique detonations and discuss their future relevance.

This research has received support from the ASEE/NASA Summer Faculty Fellowship Program at the NASA Lewis Research Center, the Jesse H. Jones Faculty Research Fund, and the University of Notre Dame’s Center for Applied Mathematics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bdzil, J. B. and Stewart, D. S., 1986. “Time-dependent two-dimensional detonation: The interaction of edge rarefactions with finite-length reaction zones,” J. Fluid Mech. 171, p. 1.

    Article  MathSciNet  MATH  Google Scholar 

  • Bdzil, J. B. and Kapila, A. K., 1992. “Shock-to-detonation transition: A model problem,” Phys. Fluids A 4, p. 409.

    Article  MathSciNet  MATH  Google Scholar 

  • Behrens, H., Struth, W., and Wecken, F., 1965. “Studies of hypervelocity firings into mixtures of hydrogen with air or with oxygen,” Proceedings of the Tenth Symposium (International) on Combustion ,The Combustion Institute: Pittsburgh, p. 245.

    Google Scholar 

  • Bogdanoff, D.W., 1992. “Ram accelerator direct space launch system: new concepts,” J. Propulsion Power 8, p. 481.

    Article  Google Scholar 

  • Bourlioux, A., Majda, A. J., and Roytburd, V., 1991. “Theoretical and numerical structure for unstable one-dimensional detonations,” SIAM J. Appl. Math. 51, p. 303.

    Article  MathSciNet  MATH  Google Scholar 

  • Bourlioux, A. and Majda, A. J., 1992. “Theoretical and numerical structure for unstable two-dimensional detonations,” Combust. Flame 90 ,p. 211.

    Google Scholar 

  • Brackett, D. C. and Bogdanoff, D. W., 1989. “Computational investigation of oblique detonation ramjet-in-tube concepts,” J. Propulsion Power 5, p. 276.

    Article  Google Scholar 

  • Bruckner, A. P., Knowlen, C., Hertzberg, A., and Bogdanoff, D.W.,1991. “Operational characteristics of the thermally choked ram accelerator,” J. Propulsion Power 7, p. 828.

    Article  Google Scholar 

  • Buckmaster, J. and Lee, C. J., 1990. “Flow refraction by an uncoupled shock and reaction front,” AIAA J. 28 p. 1310.

    Article  Google Scholar 

  • Buckmaster, J., 1990. “The structural stability of oblique detonation waves,” Combust. Sci. Tech. ,72, p. 283.

    Article  Google Scholar 

  • Gambier, J.-L., Adelman, H. G., and Menees, G. P., 1989. “Numerical simulations of oblique detonations in supersonic combustion chambers,” J. Propulsion Power 5, p. 482.

    Article  Google Scholar 

  • Gambier, J.-L., Adelman, H. G., and Menees, G. P., 1990. “Numerical simulations of an oblique detonation wave engine,” J. Propulsion Power 6, p. 315.

    Article  Google Scholar 

  • Gapiaux, R. and Washington, M., 1963. “Nonequilibrium flow past a wedge,” AIAA J. 1, p. 650.

    Article  Google Scholar 

  • Carrier, G., Fendell, F., McGregor, R., Cook, S., and Vazirani, M.,1992. “Laser-initiated conical detonation wave for supersonic combustion,” J. Propulsion Power 8, p. 472.

    Article  Google Scholar 

  • Chernyi, G. G., 1969. “Supersonic flow past bodies with formation of detonation and combustion fronts,” in Problems of Hydrodynamics and Continuum Mechanics ,English Edition, SIAM: Philadelphia, p. 145.

    Google Scholar 

  • Clarke, J. F., 1960. “The linearized flow of a dissociating gas,” J. Fluid Mech. 7, p. 577.

    Article  MathSciNet  MATH  Google Scholar 

  • Clarke, J. F., Kassoy, D. R., Meharzi, N. E., Riley, N., and Vasantha, R., 1990. “On the evolution of plane detonations,” Proc. R. Soc. Lond. A 429, p. 259.

    Article  Google Scholar 

  • Dunlap, R., Brehm, R. L., and Nicholls, J. A., 1958. “A preliminary study of the application of steady-state detonative combustion to a reaction engine,” Jet Propulsion 28, p. 451.

    Google Scholar 

  • Fickett, W., 1984. “Shock initiation of detonation in a dilute explosive,” Phys. Fluids 27, p. 94.

    Article  MATH  Google Scholar 

  • Fickett, W. and Davis, W. C., 1979. Detonation ,Univ. California Press: Berkeley.

    Book  Google Scholar 

  • Grismer, M. J. and Powers, J. M., 1992. “Comparison of numerical oblique detonation solutions with an asymptotic benchmark,” AIAA J. 30, p. 2985.

    Article  Google Scholar 

  • Gross, R. A. and Chinitz, W., 1960. “A study of supersonic combustion,” J. Aero/Space Sci. 27 p. 517.

    MathSciNet  MATH  Google Scholar 

  • Gross, R. A., 1963. “Oblique detonation waves,” AIAA J. 1, p. 1225.

    Article  Google Scholar 

  • Hertzberg, A., Bruckner, A. P., and Bogdanoff, D. W., 1988. “Ram accelerator: a new chemical method for accelerating projectiles to ultrahigh velocities,” AIAA J. 26, p. 195.

    Article  Google Scholar 

  • Hertzberg, A., Bruckner, A. P., and Knowlen, C., 1991. “Experimental investigation of ram accelerator propulsion modes,” Shock Waves 1, p. 17.

    Article  Google Scholar 

  • Jackson, T. L., Kapila, A. K., and Hussaini, M. Y., 1990. “Convection of a pattern of vorticity through a reacting shock wave,” Phys. Fluids A 2, p. 1260.

    Article  MathSciNet  Google Scholar 

  • Lafon, A. and Yee, H. C., 1992. “On the numerical treatment of nonlinear source terms in reaction-convection equations,” AIAA-92–0419, AIAA 30th Aerospace Sciences Meeting and Exhibit, Reno.

    Google Scholar 

  • Larisch, E., 1959. “Interactions of detonation waves,” J. Fluid Mech. 6, p. 392.

    Article  MathSciNet  MATH  Google Scholar 

  • Lasseigne, D. G., Jackson, T. L., and Hussaini, M. Y., 1991. “Nonlinear interaction of a detonation/vorticity wave,” Phys. Fluids A 3, p. 1972.

    Article  MATH  Google Scholar 

  • Lee, H. I. and Stewart, D. S., 1990. “Calculation of linear detonation instability: one-dimensional instability of plane detonation,” J. Fluid Mech. 216, p. 103.

    Article  MATH  Google Scholar 

  • Lee, R. S., 1964. “A unified analysis of supersonic nonequilibrium flow over a wedge: I. vibrational nonequilibrium,” AIAA J. 2, p. 637.

    Article  MATH  Google Scholar 

  • Lehr, H. F., 1972. “Experiments on shock-induced combustion,” Astro. Acta 17, p. 589.

    Google Scholar 

  • Liu, J. C., Liou, J. J., Sichel, M., KaufFman, C. W., and Nicholls, J. A., 1986. “Diffraction and transmission of a detonation into a bounding explosive layer,” Proceedings of the Twenty-first Symposium (International) on Combustion ,The Combustion Institute: Pittsburgh, p. 1639.

    Google Scholar 

  • Maas, U. and Pope, S. B., 1992. “Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space,” Combust. Flame 88, p. 239.

    Article  Google Scholar 

  • Moore, F. K. and Gibson, W. E., 1960. “Propagation of weak disturbances in a gas subject to relaxation effects,” J. Aero/Space Sci. 27, p. 117.

    MATH  Google Scholar 

  • Nicholls, J. A., 1963. “Standing detonation waves,” Proceedings of the Ninth Symposium (International) on Combustion ,Academic Press: New York, p. 488.

    Google Scholar 

  • Oppenheim, A. K., Smolen, J. J., and Zajac, L. J., 1968. “Vector polar method for the analysis of wave intersections,” Combust. Flame 12, p. 63.

    Article  Google Scholar 

  • Pepper, D. W. and Brueckner, F. P., 1993. “Simulation of an oblique detonation wave scramaccelerator for hypervelocity launchers,” in Computers and Computing in Heat Transfer Science and Engineering ,W. Nakayama and K. T. Yang, eds., CRC Press: Boca Raton, Florida, p. 119.

    Google Scholar 

  • Powers, J. M., Fulton, D. R., Gonthier, K. A., and Grismer, M. J., 1993. “Analysis for steady propagation of a generic ram accelerator/oblique detonation wave engine configuration,” AIAA 93–0243, AIAA 31st Aerospace Sciences Meeting and Exhibit.

    Google Scholar 

  • Powers, J. M. and Gonthier, K. A., 1992a. “Reaction zone structure for strong, weak overdriven, and weak underdriven oblique detonations,” Phys. Fluids A 4, p. 2082.

    Article  MathSciNet  MATH  Google Scholar 

  • Powers, J. M. and Gonthier, K. A., 1992b. “Methodology and analysis for determination of propagation speed of high speed propulsion devices,” Proceedings of the Central States Section Spring 1992 Technical Meeting of the Combustion Institute, Columbus, Ohio, p. 1.

    Google Scholar 

  • Powers, J. M. and Stewart, D.S., 1992. “Approximate solutions for oblique detonations in the hypersonic limit,” AIAA J. 30, p. 726.

    Article  MATH  Google Scholar 

  • Pratt, D. T., Humphrey, J. W., and Glenn, D. E., 1991. “Morphology of a Standing Oblique Detonation Wave,” J. Propulsion Power 7, p. 837.

    Article  Google Scholar 

  • Rubins, P. M. and Rhodes, R. P., 1963. “Shock-induced combustion with oblique shocks: comparison of experiment and kinetic calculations,” AIAA J. 1, p. 2278.

    Google Scholar 

  • Sedney, R., 1961. “Some aspects of nonequilibrium flows,” J. Aero/Space Sci. 28, p. 189.

    MathSciNet  MATH  Google Scholar 

  • Shuen, J.-S. and Yoon, S., 1989. “Numerical study of chemically reacting flows using a lower-upper symmetric successive overrelaxation scheme,” AIAA J. 27, p. 1752.

    Article  Google Scholar 

  • Siestrunck, R., Fabri, J., and Le Grivès, E., 1953. “Some properties of stationary detonation waves,” Proceedings of the Fourth Symposium (International) on Combustion ,Williams and Wilkins: Baltimore, p. 498.

    Google Scholar 

  • Spence, D. A., 1961. “Unsteady shock propagation in a relaxing gas,” Proc. R. Soc. Lond. A 264, p. 221.

    Article  MATH  Google Scholar 

  • Spurk, J. H., Gerber, N., and Sedney, R., 1966. “Characteristic calculation of flowfields with chemical reactions,” AIAA J. 4, p. 30.

    Article  Google Scholar 

  • Stewart, D. S. and Bdzil, J. B., 1988. “The shock dynamics of stable multidimensional detonation,” Combust. Flame 72, p. 311.

    Article  Google Scholar 

  • Strehlow, R. S., 1968. “Gas phase detonations: recent developments,” Combust. Flame 12, p. 81.

    Article  Google Scholar 

  • Strehlow, R. S. and Crooker, A. J., 1974. “The structure of marginal detonation waves,” Acta Astronaut. 1, p. 303.

    Article  Google Scholar 

  • Vincenti, W. G., 1962. “Linearized flow over a wedge in a nonequilibrium oncoming stream,” J. Méchanique 1, p. 193.

    MathSciNet  Google Scholar 

  • Yee, H. C., Sweby, P. K., and Griffiths, D. F., 1991. “Dynamical approach study of spurious steady-state numerical solutions of nonlinear differential equations. I. The dynamics of time discretization and its implications for algorithm development in computational fluid dynamics,” J. Comp. Phys. 97, p. 249.

    Article  MathSciNet  MATH  Google Scholar 

  • Yungster, S., Eberhardt, S., and Bruckner, A. P., 1991. “Numerical simulation of hypervelocity projectiles in detonable gases,” AIAA J. 29, p. 187.

    Article  Google Scholar 

  • Yungster, S., 1992. “Numerical study of shock-wave/boundarylayer interactions in premixed combustible gases,” AIAA J. 30, p. 2379.

    Article  MATH  Google Scholar 

  • Yungster, S. and Bruckner, A. P., 1992. “Computational studies of a superdetonative ram accelerator mode,” J. Propulsion Power 8, p. 457.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Powers, J.M. (1994). Oblique Detonations: Theory and Propulsion Applications. In: Buckmaster, J., Jackson, T.L., Kumar, A. (eds) Combustion in High-Speed Flows. ICASE/LaRC Interdisciplinary Series in Science and Engineering, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1050-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1050-1_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4456-1

  • Online ISBN: 978-94-011-1050-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics