Skip to main content

A Feynman Path Integral Formulation of Quantum Mechanical Transition State Theory

  • Chapter
New Trends in Kramers’ Reaction Rate Theory

Part of the book series: Understanding Chemical Reactivity ((UCRE,volume 11))

Abstract

Quantum mechanical transition state theory can be formulated with Feynman path integrals. This formulation retains many of the appealing aspects of classical transition state theory, including the most important feature of any quasiequilibrium theory that the thermal rate constant can be estimated without solving for the actual dynamics. The path integral theory also includes the influence of quantum mechanical tunneling and mode quantization on the rate constant. A theory is described for a Kramers-like dynamical correction factor to the quantum rate constant and an application is given for the problem of proton transfer reactions in polar solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. A. Voth, D. Chandler, and W. H. Miller, J. Chem. Phys. 91, 7749 (1989).

    Article  CAS  Google Scholar 

  2. M. J. Gillan, Phys. Rev. Lett. 58, 563 (1987)

    Article  CAS  Google Scholar 

  3. M. Gillan, J. Phys. C 20, 3621 (1987).

    Article  Google Scholar 

  4. G. A. Voth, Chem. Phys. Lett. 170, 289 (1990).

    Article  CAS  Google Scholar 

  5. J. S. Bader, R. A. Kuharski, and D. Chandler, J. Chem. Phys. 93, 230 (1990).

    Article  CAS  Google Scholar 

  6. G. A. Voth, Ber. Bunsenges. Phys. Chem. 95, 393 (1991).

    Article  CAS  Google Scholar 

  7. G. A. Voth and E. V. O’Gorman, J. Chem. Phys. 94, 7342 (1991).

    Article  CAS  Google Scholar 

  8. D. Li and G. A. Voth, J. Phys. Chem. 95, 10425 (1991).

    Article  CAS  Google Scholar 

  9. G. A. Voth, J. Chem. Phys. 94, 4095 (1991)

    Article  CAS  Google Scholar 

  10. G. R. Haynes and G. A. Voth, Phys. Rev. A 46, 2143 (1992).

    Article  Google Scholar 

  11. J. Lobaugh and G. A. Voth, Chem. Phys. Lett. 198, 311 (1992).

    Article  CAS  Google Scholar 

  12. J. N. Gehlen, D. Chandler, H. J. Kim, and J. T. Hynes, J. Phys. Chem. 96, 1748 (1992)

    Article  CAS  Google Scholar 

  13. J. N. Gehlen and D. Chandler, J. Chem. Phys. 97, 4958 (1992).

    Article  CAS  Google Scholar 

  14. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill, New York, NY (1965), Chapters 10–11.

    Google Scholar 

  15. R. P. Feynman, Statistical Mechanics, Addison-Wesley, Reading, MA (1972), Chapter 3.

    Google Scholar 

  16. H. Eyring, J. Chem. Phys. 3, 107 (1934)

    Article  Google Scholar 

  17. E. Wigner, ibid. 5, 720 (1937).

    CAS  Google Scholar 

  18. W. H. Miller, Acc. Chem. Res. 9, 306 (1976)

    Article  CAS  Google Scholar 

  19. P. Pechukas, Annu. Rev. Phys. Chem. 32, 159 (1981)

    Article  CAS  Google Scholar 

  20. D. G.Truhlar, W. L. Hase, and J. T. Hynes, J. Phys. Chem. 87, 2664 (1983).

    Article  CAS  Google Scholar 

  21. P. Hänggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys. 62, 250 (1990).

    Article  Google Scholar 

  22. J. T Hynes, Annu. Rev. Phys. Chem. 36, 573 (1985)

    Article  CAS  Google Scholar 

  23. J. T. Hynes, in The Theory of Chemical Reactions, M. Baer, (Ed.), CRC Press, Boca Raton, FL (1985), p. 171

    Google Scholar 

  24. B. J. Berne, M. Borkovec, and J. E. Straub, J. Phys. Chem. 92, 3711 (1988)

    Article  CAS  Google Scholar 

  25. A. Nitzan, Adv. Chem. Phys. 70, Part 2, 489 (1988)

    Article  Google Scholar 

  26. D. Chandler, J. Stat. Phys. 42, 49 (1986)

    Article  Google Scholar 

  27. J. N. Onuchic and P. G. Wolynes, J. Phys. Chem. 92, 6495 (1988).

    Article  CAS  Google Scholar 

  28. D. Chandler, J. Chem. Phys. 68, 2959 (1978)

    Article  CAS  Google Scholar 

  29. J. A. Montogomery, Jr., D. Chandler, and B. J. Berne, ibid. 70, 4056 (1979)

    Google Scholar 

  30. R. O. Rosenberg, B. J. Berne, and D. Chandler, Chem. Phys. Lett. 75, 162 (1980).

    Article  CAS  Google Scholar 

  31. J. Keck, J. Chem. Phys. 32, 1035 (1960)

    Article  CAS  Google Scholar 

  32. J. B. Anderson, ibid. 58, 4684 (1973)

    CAS  Google Scholar 

  33. C. H. Bennett, in Algorithms for Chemical Computation, ACS Symposium Series No. 46, R. E. Christofferson (Ed.), American Chemical Society, Washington, D.C. (1977)

    Google Scholar 

  34. J. T. Hynes, in The Theory of Chemical Reactions, M. Baer, (Ed.), CRC Press, Boca Raton, FL (1985)

    Google Scholar 

  35. B. J. Berne, in Multiple Timescales, J. V. Brackbill and B. I. Cohen (Eds.), Academic Press, New York (1985).

    Google Scholar 

  36. This formula is appropriate for a double well reaction coordinate potential. It can be readily generalized to other situations.

    Google Scholar 

  37. This expression is derived under the assumption that the dividing surface is planar and normal to the reaction coordinate q, and that the cordinate system is an orthogonal, rectilinear one.

    Google Scholar 

  38. T. Yamamoto, J. Chem. Phys. 33, 281 (1960).

    Article  CAS  Google Scholar 

  39. G. A. Voth, D. Chandler, and W H. Miller, J. Phys. Chem. 93, 7009 (1989).

    Article  CAS  Google Scholar 

  40. D. G. Truhlar and B. C. Garrett, Annu. Rev. Phys. Chem. 35, 159 (1984).

    Article  CAS  Google Scholar 

  41. W. H. Miller, J. Chem. Phys. 62, 1899 (1975).

    Article  CAS  Google Scholar 

  42. J. W. Tromp and W. H. Miller, J. Phys. Chem. 90, 3482 (1986)

    Article  CAS  Google Scholar 

  43. K. Haug, G. Wahnström, and H. Metiu, J. Chem. Phys. 92, 2083 (1990).

    Article  CAS  Google Scholar 

  44. C. H. Mak and J. N. Gehlen, Chem. Phys. Lett. 206, 103 (1993)

    Article  Google Scholar 

  45. R. Egger and C. H. Mak, J. Chem. Phys. 99, 2541 (1993).

    Article  CAS  Google Scholar 

  46. B. J. Berne and D. Thirumalai, Annu. Rev. Phys. Chem. 37, 401 (1987)

    Article  Google Scholar 

  47. D. L. Freeman and J. D. Doll, Adv. Chem. Phys. 70B, 139 (1988)

    Article  Google Scholar 

  48. J. D. Doll and D. L. Freeman, ibid. 73, 289 (1989);

    Google Scholar 

  49. J. D. Doll, D. L. Freeman, and T. L. Beck, ibid. 73, 61 (1990)

    Google Scholar 

  50. J. D. Doll and J. E. Gubernatis (Eds.), Quantum Simulations of Condensed Matter Phenomena, World Scientific, Singapore (1990);

    Google Scholar 

  51. D. Chandler, in Liquides, Cristallisation et Transition Vitreuse, Les Houches, Session LI, edited by D. Levesque, J. P. Hansen, and J. Zinn-Justin, Elsevier Science Publishers B.V., Amsterdam (1991).

    Google Scholar 

  52. R. Giachetti and V. Tognetti, Phys. Rev. Lett. 55, 912 (1985)

    Article  CAS  Google Scholar 

  53. R. Giachetti and V. Tognetti, Phys. Rev. B 33, 7647 (1986);

    Article  Google Scholar 

  54. R. P. Feynman and H. Kleinen, Phys. Rev. A 34, 5080 (1986);

    Article  Google Scholar 

  55. J. Cao and B. J. Berne, J. Chem. Phys. 92, 7531 (1990);

    Article  CAS  Google Scholar 

  56. J. Lobaugh and G. A. Voth, J. Chem. Phys. 97, 4205 (1992).

    Article  CAS  Google Scholar 

  57. S. M. Valone, A. F. Voter, and J. D. Doll, Surf. Sci. 155, 687 (1985)

    Article  CAS  Google Scholar 

  58. S. M. Valone, A. F. Voter, and J. D. Doll, J. Chem. Phys. 85, 7480 (1986).

    Article  CAS  Google Scholar 

  59. J. D. Doll, J. Chem. Phys. 81, 3536 (1984).

    Article  CAS  Google Scholar 

  60. M. Sprik, R. W. Impey, and M. L. Klein, Phys. Rev. Lett. 56, 2326 (1986).

    Article  CAS  Google Scholar 

  61. P. G. Wolynes, Phys. Rev. Lett. 47, 968 (1981).

    Article  CAS  Google Scholar 

  62. In the usual application of the parabolic model, the frequency ωb, is taken to be the magnitude of the imaginary frequency at the top of the potential of mean force barrier along q.

    Google Scholar 

  63. R. F. Grote and J. T. Hynes, J. Chem. Phys. 73, 2715 (1980);

    Article  CAS  Google Scholar 

  64. R. F. Grote and J. T. Hynes, J. Chem. Phys. ibid. 74, 4465 (1981).

    CAS  Google Scholar 

  65. S. Coleman, in The Whys of Subnuclear Physics, A. Zichichi (Ed.), Plenum, New York, NY (1979).

    Google Scholar 

  66. A ’well behaved’ reaction coordinate potential within the context of instanton theory is one in which the potential is parabolic enough so that the period Tpo(≡ ħß) of the instanton periodic orbit on the upside-down barrier satisfies the condition Tpo -ωb-1,eq. .

    Google Scholar 

  67. A. A. Stuchebrukhov, J. Chem. Phys. 95, 4258 (1991).

    Article  CAS  Google Scholar 

  68. A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and W. Zwerger, Rev. Mod. Phys. 59, 1 (1987).

    Article  CAS  Google Scholar 

  69. R. P. McRae, G. K. Schenter, B. C. Garrett, G. R. Haynes, G. A. Voth, and G. C. Schatz, J. Chem. Phys. 97, 7392 (1992).

    Article  CAS  Google Scholar 

  70. Y.-C. Sun and G. A. Voth, J. Chem. Phys. 98, 7451 (1993).

    Article  CAS  Google Scholar 

  71. R. Zwanzig, J. Stat. Phys. 9, 215 (1973);

    Article  Google Scholar 

  72. A. O. Caldeira and A. J. Leggett, Ann. Phys. (N.Y.) 149, 374 (1983)

    Article  Google Scholar 

  73. A. O. Caldeira and A. J. Leggett, ibid. 153, 445(E) (1984).

    Google Scholar 

  74. D. Chandler and L. R. Pratt, J. Chem. Phys. 65, 2925 (1976).

    Article  CAS  Google Scholar 

  75. E. Pollak, J. Chem. Phys. 85, 865 (1986);

    Article  CAS  Google Scholar 

  76. E. Pollak, J. Chem. Phys. 86, 3944 (1987);

    Article  CAS  Google Scholar 

  77. E. Pollak, S. C. Tucker, and B. J. Berne, Phys. Rev. Lett. 65, 1399 (1990);

    Article  CAS  Google Scholar 

  78. E. Pollak, J. Chem. Phys. 93, 1116 (1990);

    Article  CAS  Google Scholar 

  79. E. Pollak, J. Phys. Chem. 95, 10235 (1991);

    Article  CAS  Google Scholar 

  80. A. Frishman and E. Pollak, J. Chem. Phys. 96, 8877 (1992);

    Article  CAS  Google Scholar 

  81. A. M. Berezhkovskii, E. Pollak, and V. Y. Zitserman, J. Chem. Phys. 97, 2422 (1992).

    Article  CAS  Google Scholar 

  82. M. Messina, G. K. Schenter, and B. C. Garrett, J. Chem. Phys. 98, 8525 (1993).

    Article  CAS  Google Scholar 

  83. R. A. Marcus, J. Chem. Phys. 24, 966 (1956);

    Article  CAS  Google Scholar 

  84. R. A. Marcus and N. Sutin, Biochim. Biophys. Acta 811, 265 (1985);

    Article  CAS  Google Scholar 

  85. J. Ulstrup, Charge Transfer Processes in Condensed Media, Lecture Notes in Chemistry, Vol. 10, Springer, Berlin (1979)

    Book  Google Scholar 

  86. D. Borgis, S. Lee, and J. T. Hynes, Chem. Phys. Lett. 162, 12 (1989).

    Article  Google Scholar 

  87. J. Lobaugh and G. A. Voth, J. Chem. Phys. 100, 3039 (1994).

    Article  CAS  Google Scholar 

  88. D. Chandler and P. G. Wolynes, J. Chem. Phys. 74, 4078 (1981).

    Article  CAS  Google Scholar 

  89. V G. Levich, Adv. Electrochem. Eng. 4, 249 (1956);

    Google Scholar 

  90. T. Holstein, Ann. Phys. (N.Y.) 8, 325, 343 (1959).

    CAS  Google Scholar 

  91. G. A. Voth, Phys. Rev. A 44, 5302 (1991).

    Article  CAS  Google Scholar 

  92. J. P. Valleau and G. M. Torrie, in Statistical Mechanics, Part A, B. J. Berne (Ed.), Plenum Press, New York (1977).

    Google Scholar 

  93. M. J. Thompson, K. S. Schweizer, and D. Chandler, J. Chem. Phys. 76, 1128 (1982);

    Article  CAS  Google Scholar 

  94. Z. Chen and R. M. Stratt, J. Chem. Phys. 95, 2669 (1991);

    Article  CAS  Google Scholar 

  95. J. Cao and B. J. Berne, J. Chem. Phys. 97, 8628 (1992).

    Article  CAS  Google Scholar 

  96. J. B. Straus, A. Calhoun, and G. A. Voth, J. Chem. Phys. 102, xxxx (1995).

    Article  Google Scholar 

  97. A. Warshel and Z. T Chu, J. Chem. Phys. 93, 4003 (1990).

    Article  CAS  Google Scholar 

  98. J.-K. Hwang, Z. T. Chu, Y. Yadav, and A. Warshel, J. Phys. Chem. 95, 8445 (1991).

    Article  CAS  Google Scholar 

  99. H. Azzouz and D. Borgis, J. Chem. Phys. 98, 7361 (1993).

    Article  CAS  Google Scholar 

  100. A. Calhoun and D. Doren, J. Phys. Chem. 97, 2251 (1993).

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Voth, G.A. (1995). A Feynman Path Integral Formulation of Quantum Mechanical Transition State Theory. In: Talkner, P., Hänggi, P. (eds) New Trends in Kramers’ Reaction Rate Theory. Understanding Chemical Reactivity, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0465-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0465-4_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4208-6

  • Online ISBN: 978-94-011-0465-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics