Skip to main content

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 96))

Abstract

Root development is remarkably sensitive to variations in the supply and distribution of inorganic nutrients in the soil. Here we review examples of the ways in which nutrients such as N, P, K and Fe can affect developmental processes such as root branching, root hair production, root diameter, root growth angle, nodulation and proteoid root formation. The nutrient supply can affect root development either directly, as a result of changes in the external concentration of the nutrient, or indirectly through changes in the internal nutrient status of the plant. The direct pathway results in developmental responses that are localized to the part of the root exposed to the nutrient supply; the indirect pathway produces systemic responses and seems to depend on long-distance signals arising in the shoot. We propose the term ‘trophomorphogenesis’ to describe the changes in plant morphology that arise from variations in the availability or distribution of nutrients in the environment. We discuss what is currently known about the mechanisms of external and internal nutrient sensing, the possible nature of the long-distance signals and the role of hormones in the trophomorphogenic response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ballaré C L 1999 Keeping up with the neighbours: phytochrome sensing and other signalling mechanisms. Trends Plant Sci. 4, 97–102.

    PubMed  Google Scholar 

  • Bariola P A, Howard C J, Taylor C B, Verburg M T, Jaglan V D and Green P J 1994 The Arabidopsis ribonuclease gene RNS1 is tightly controlled in response to phosphate limitation. Plant J. 6, 673–685.

    CAS  PubMed  Google Scholar 

  • Bates T R and Lynch J P 1996 Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability. Plant Cell Environ. 19, 529–538.

    CAS  Google Scholar 

  • Bazzaz F A, Garbutt K, Reekie E G and Williams W E 1989 Using growth analysis to interpret competition between a C3 and a C4 annual under ambient and elevated CO2. Oecologia 79, 223–225.

    Google Scholar 

  • Bhat K K S, Nye P H and Bereton A J 1979 The possibility of predicting solute uptake and plant growth responses from independently measured soil and plant characteristics. VI. The growth and uptake of rape in solutions of constant nitrate concentration. Plant Soil 53, 137–167.

    CAS  Google Scholar 

  • Bienfait H F 1988 Proteins under the control of the gene for Fe efficiency in tomato. Plant Physiol. 88, 785–787.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bilbrough C J and Caldwell M M 1995 The effects of shading and N status on root proliferation in nutrient patches by the perennial grass Agropyron desertorum in the field. Oecologia 103, 10–16.

    Google Scholar 

  • Bonser A M, Lynch J and Snapp S 1996 Effect of phosphorus deficiency on growth angle of basal roots in Phaseolus vulgaris. New Phytol. 132, 281–288.

    CAS  PubMed  Google Scholar 

  • Boot R G A and Mensink M 1990 Size and morphology of root systems of perennial grasses from contrasting habitats as affected by nitrogen supply. Plant Soil 129, 291–299.

    CAS  Google Scholar 

  • Burleigh S H and Harrison M J 1999 The down-regulation of Mt4-like genes by phosphate fertilization occurs systemically and involves phosphate translocation to the shoots. Plant Physiol. 119, 241–248.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cahn M D, Zobel R W and Bouldin D R 1989 Relationship between root elongation rate and diameter and duration of growth of lateral roots of maize. Plant Soil 119, 271–279.

    Google Scholar 

  • Carroll B J and Gresshoff P M 1983 Nitrate inhibition of nodulation and nitrogen-fixation in white clover. Z. Pflanzenphysiol. 110, 77–88.

    CAS  Google Scholar 

  • Carroll J and Gresshoff P M 1986 Isolation and initial characterization of constitutive nitrate reductase-deficient mutants nr328 and nr345 of soybean (Glycine max). Plant Physiol. 81, 572–576.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carroll B J and Mathews A 1990 Nitrate inhibition of nodulation in legumes. In Molecular Biology of Symbiotic Nitrogen Fixation. Ed. P M Gresshoff. pp 159–180. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Carroll B J, McNeil D L and Gresshoff P M 1985 Isolation and properties of soybean [Glycine max (L.) Merr] mutants that nodulate in the presence of high nitrate concentrations. Proc. Natl. Acad. Sci. USA. 82, 4162–4166.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carswell M C, Grant B R and Plaxton W C 1997 Disruption of the phosphate-starvation response of oilseed rape suspension cells by the fungicide phosphonate. Planta 203, 67–74.

    CAS  PubMed  Google Scholar 

  • Chapin F S I 1980 The mineral nutrition of wild plants. Annu. Rev. Ecol. Syst. 11, 233–260.

    CAS  Google Scholar 

  • Citovsky V and Zambryski P 2000 Systemic transport of RNA in plants. Trends Plant Sci. 5, 52–54.

    CAS  PubMed  Google Scholar 

  • Coleman J S, McConnaughay K D M and Ackerly D D 1994 Interpreting developmental variation in plants. Trends Ecol. Evol. 9, 187–191.

    CAS  PubMed  Google Scholar 

  • Cooper H D and Clarkson D T 1989 Cycling of amino nitrogen and other nutrients between shoots and roots in cereals: a possible mechanism integrating shoot and root in the regulation of nutrient uptake. J. Exp. Bot. 40, 753–762.

    CAS  Google Scholar 

  • Couot-Gastelier J and Vartanian N 1995 Drought-induced short roots in Arabidopsis thaliana: structural characteristics. Bot. Acta 108, 407–413.

    Google Scholar 

  • Day D A, Lambers H, Bateman J, Carroll B J and Gresshoff P M 1986 Growth comparisons of a supernodulating soybean (Glycine max) mutant and its wild-type parent. Physiol. Plant. 68, 375–382.

    Google Scholar 

  • Day D A, Carroll B J, Delves A C and Gresshoff P M 1989 Relationship between auto-regulation and nitrate inhibition of nodulation in soybeans. Physiol. Plant. 75, 37–42.

    CAS  Google Scholar 

  • Delves A C, Higgins A V and Gresshoff P M 1987 Shoot control of supernodulation in a number of mutant soybeans, Glycine max (L.) Merr. Aust. J. Plant Physiol. 14, 689–694.

    Google Scholar 

  • Deng M D, Moureaux T and Caboche M 1989 Tungstate, a molybdate analog inactivating nitrate reductase, deregulates the expression of the nitrate reductase structural gene. Plant Physiol. 91, 304–309.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dinkelaker B, Hengeler C and Marschner H 1995 Distribution and function of proteoid roots and other root clusters. Bot. Acta 108, 183–200.

    Google Scholar 

  • Drew M C 1975 Comparison of the effects of a localized supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot, in barley. New Phytol. 75, 479–490.

    CAS  Google Scholar 

  • Drew M C and Saker L R 1975 Nutrient supply and the growth of the seminal root system of barley. II. Localized, compensatory increases in lateral root growth and rates of nitrate uptake when nitrate supply is restricted to only part of the root system. J. Exp. Bot. 26, 79–90.

    CAS  Google Scholar 

  • Drew M C and Saker L R 1978 Nutrient supply and the growth of the seminal root system in barley. III. Compensatory increases in growth of lateral roots, and in rates of phosphate uptake in response to a localized supply of phosphate. J. Exp. Bot. 29, 435–451.

    CAS  Google Scholar 

  • Drew M C, Saker L R and Ashley T W 1973 Nutrient supply and the growth of the seminal root system in barley. I. The effect of nitrate concentration on the growth of axes and laterals. J. Exp. Bot. 24, 1189–1202.

    CAS  Google Scholar 

  • Ericsson T 1995 Growth and shoot:root ratio of seedlings in relation to nutrient availability. Plant Soil 168-169, 205–214.

    CAS  Google Scholar 

  • Evans G C 1972 The Quantitative Analysis of Plant Growth. University of California Press.

    Google Scholar 

  • Ferris P J and Goodenough U W 1997 Mating type in Chlamydomonas is specified by Mid, the minus dominance gene. Genetics 146, 859–869.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fitter A H 1976 Effects of nutrient supply and competition from other species on root growth of Lolium perenne in soil. Plant Soil 45, 177–189.

    CAS  Google Scholar 

  • Fitter A H 1985 Functional significance of root morphology and root system architecture. In Ecological Interactions in Soil, Special Publication of the British Ecological Society, No. 4. Ed. A H Fitter, D Atkinson, D J Read, and M B Usher, pp 87–106. Blackwell Scientific, Oxford.

    Google Scholar 

  • Fitter A H 1987 An architectural approach to the comparative ecology of plant-root systems. New Phytol. 106 (Suppl), 61–77.

    Google Scholar 

  • Foehse D and Jungk A 1983 Influence of phosphate and nitrate supply on root hair formation of rape, spinach and tomato plants. Plant Soil 74, 359–368.

    CAS  Google Scholar 

  • Forde B G and Clarkson D T 1999 Nitrate and ammonium nutrition of plants: physiological and molecular perspectives. Adv. Bot. Res. 30, 1–90.

    CAS  Google Scholar 

  • Francisco P B and Akao S 1993 Autoregulation and nitrate inhibition of nodule formation in soybean cv Enrei and its nodulation mutants. J. Exp. Bot. 44, 547–553.

    CAS  Google Scholar 

  • Friend A L, Eide M R and Hinckley T M 1990 Nitrogen stress alters root proliferation in Douglas fir seedlings. Can. J. For. Res. 20, 1524–1529.

    CAS  Google Scholar 

  • Furuya M and Kim B C 2000 Do phytochromes interact with diverse partners? Trends Plant Sci. 5, 87–89.

    CAS  PubMed  Google Scholar 

  • Gahoonia T S and Nielsen N E 1997 Variation in root hairs of barley cultivars doubled soil phosphorus uptake. Euphytica 98, 177–182.

    Google Scholar 

  • Ge Z Y, Rubio G and Lynch J P 2000 The importance of root gravitropism for inter-root competition and phosphorus acquisition efficiency: results from a geometric simulation model. Plant Soil 218, 159–171.

    CAS  PubMed  Google Scholar 

  • Genoud T and Métraux J-P 1999 Crosstalk in plant cell signaling: structure and function of the genetic network. Trends Plant Sci. 4, 503–507.

    PubMed  Google Scholar 

  • Gilbert G A, Knight J D, Vance C P and Allan D L 2000 Proteoid root development of phosphorous deficient lupin is mimicked by auxin and phosphonate. Ann. Bot. 85, 921–928.

    CAS  Google Scholar 

  • Gilroy S and Jones D L 2000 Through form to function: root hair development and nutrient uptake. Trends Plant Sci. 5, 56–60.

    CAS  PubMed  Google Scholar 

  • Gresshoff P M, Krotzky A, Mathews A, Day D A, Schuller K A, Olsson J, Delves A C and Carroll B J 1988 Suppression of the symbiotic supernodulation symptoms of soybean. J. Plant Physiol. 132, 417–423.

    Google Scholar 

  • Grime J P, Crick J C and Rincon J E 1986 The ecological significance of plasticity. In Plasticity in Plants. Ed. D H Jennings and A J Trewavas. pp 5–29. Biologists Limited, Cambridge.

    Google Scholar 

  • Grusak M A and Pezeshgi S 1996 Shoot-to-root signal transmission regulates root Fe(III) reductase activity in the dgl mutant of pea. Plant Physiol. 110, 329–334.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hackett C 1967 A study of the root system of barley. I. Effects of nutrition on two varieties. New Phytol. 67, 287–289.

    Google Scholar 

  • Hackett C 1972 A method of applying nutrients locally to roots under controlled conditions, and some morphological effects of locally applied nitrate on the branching of wheat roots. Aust. J. Biol. Sci. 25, 1169–1180.

    CAS  Google Scholar 

  • Heard J, Caspi M and Dunn K 1997 Evolutionary diversity of symbiotically induced nodule MADS box genes: characterization of nmhC5, a member of a novel subfamily. Mol. Plant-Microbe Interact. 10, 665–676.

    CAS  PubMed  Google Scholar 

  • Heidstra R, Geurts R, Franssen H, Spaink H P, van Kammen A and Bisseling T 1994 Root hair deformation activity of nodulation factors and their fate on Vicia sativa. Plant Physiol. 105, 787–797.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heidstra R, Nilsen G, Martinez Abarca F, van Kammen A and Bisseling T 1997 Nod factor-induced expression of leghemo-globin to study the mechanism of NH4NO3 inhibition on root hair deformation. Mol. Plant-Microbe Interact. 10, 215–220.

    CAS  PubMed  Google Scholar 

  • Hinson K 1975 Nodulation responses from nitrogen applied to soybean half-root systems. Agron. J. 67, 799–804.

    Google Scholar 

  • Hobbie L and Estelle M 1995 The axr4 auxin-resistant mutants of Arabidopsis thaliana define a gene important for root gravitropism and lateral root initiation. Plant J. 7, 211–220.

    CAS  PubMed  Google Scholar 

  • Hodge A, Robinson D, Griffiths B S and Fitter A H 1999 Why plants bother: root proliferation results in increased nitrogen capture from an organic patch when two grasses compete Plant Cell Environ. 22, 811–820.

    Google Scholar 

  • Hsieh M-H, Lam H-M, Van De Loo F J and Coruzzi G 1998 A PH-like protein in Arabidopsis: putative role in nitrogen sensing. Proc. Natl Acad Sci USA 95, 13965–13970.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hunter W J 1993 Ethylene production by root nodules and effect of ethylene on nodulation in Glycine max. Appl. Environ. Microbiol. 59, 1947–1950.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hutchings M J and de Rroon H 1994 Foraging in plants: the role of morphological plasticity in resource acquisition. Adv. Ecol. Res. 25, 159–238.

    Google Scholar 

  • Imsande J and Touraine B 1994 N demand and the regulation of nitrate uptake. Plant Physiol. 105, 3–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jacobsen E 1984 Modification of symbiotic interaction of pea (Pisum sativum L.) and Rhizobium leguminosarum by induced mutations. Plant Soil 82, 427–438.

    CAS  Google Scholar 

  • Johnson J F, Allan D L and Vance C P 1994 Phosphorus stress-induced proteoid roots show altered metabolism in Lupinus albus. Plant Physiol. 104, 657–665.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Keerthisinghe G, Hocking P J, Ryan P R and Delhaize E 1998 Effect of phosphorus supply on the formation and function of proteoid roots of white lupin (Lupinus albus L.). Plant Cell Environ. 21, 467–478.

    CAS  Google Scholar 

  • Klasson H, Fink G R and Ljungdahl P O 1999 Ssylp and Ptr3p are plasma membrane components of a yeast system that senses extracellular amino acids. Mol. Cell. Biol. 19, 5405–5416.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kohls S J and Baker D D 1989 Effects of substrate nitrate concentration on symbiotic nodule formation in actinorhizal plants. Plant Soil 118, 171–179.

    CAS  Google Scholar 

  • Kosslak R M and Bohlool B B 1984 Suppression of nodule development of one side of a split-root system of soybeans caused by prior inoculation of the other side. Plant Physiol. 75, 125–130.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lainé P, Ourry A and Boucaud J 1995 Shoot control of nitrate uptake rates by roots of Brassica napus L. Effects of localized nitrate supply. Planta 196, 77–83.

    Google Scholar 

  • Lee K H and La Rue T A 1992 Ethylene as a possible mediator of light-induced and nitrate-induced inhibition of nodulation of Pisum sativum L. cv Sparkle. Plant Physiol. 100, 1334–1338.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liao H and Yan X L 2000 Adaptive changes and genotypic variation for root architecture of common bean in response to phosphorus deficiency. Acta Bot. Sin. 42, 158–163.

    CAS  Google Scholar 

  • Ligero F, Caba J M, Lluch C and Olivares J 1991 Nitrate inhibition of nodulation can be overcome by the ethylene inhibitor aminoethoxyvinylglycine. Plant Physiol. 97, 1221–1225.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ligero F, Poveda J L, Gresshoff P M and Caba J M 1999 Nitrate-and inoculation-enhanced ethylene biosynthesis in soybean roots as a possible mediator of nodulation control. J. Plant Physiol. 154, 482–488.

    CAS  Google Scholar 

  • Ling H Q, Pich A, Scholz G and Ganal M W 1996 Genetic analysis of two tomato mutants affected in the regulation of iron metabolism. Mol. Gen. Genet. 252, 87–92.

    CAS  PubMed  Google Scholar 

  • Lorenz M C and Heitman J 1998 The MEP2 ammonium permease regulatea pseudohyphal differentiaition in Saccharomyces cerevisiae. EMBO J. 17, 1236–1247.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lucas W J 1997 Application of microinjection techniques to plant nutrition. Plant Soil 196, 175–189.

    CAS  Google Scholar 

  • Lynch J and Brown K M 1997 Ethylene and plant responses to nutritional stress. Physiol. Plant. 100, 613–619.

    CAS  Google Scholar 

  • Malik N S A, Calvert H E and Bauer W D 1987 Nitrate-induced regulation of nodule formation in soybean. Plant Physiol. 84, 266–271.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marschner H 1995 Mineral Nutrition of Higher Plants. Academic Press, London. Melcior W and Steudle E 1993 Water transport in onion (Allium cepa L.) roots: changes of axial and radial hydraulic conductivities during root development. Plant Physiol. 101, 1305-1315.

    Google Scholar 

  • Merrick M J and Edwards R A 1995 Nitrogen control in bacteria. Microbiol. Rev. 59, 604–622.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mollier A and Pellerin S 1999 Maize root system growth and development as influenced by phosphorus deficiency. J. Exp. Bot. 50, 487–497.

    CAS  Google Scholar 

  • Moog P R, Vanderkooij T A W, Bruggemann W, Schiefelbein J W and Kuiper P J C 1995 Responses to iron deficiency in Arabidopsis thaliana: the turbo iron reductase does not depend on the formation of root hairs and transfer cells. Planta 195, 505–513.

    CAS  PubMed  Google Scholar 

  • Nobbe F 1862 Uber die feinere Verästelung der Pflanzenwurzeln. Landwirtschaft. VersStat. 4, 212–224.

    Google Scholar 

  • Ozean S, Dover J, Rosenwald A G, Wolfl S and Johnston M 1996 Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression. Proc. Natl. Acad. Sci. USA 93, 12428–12432.

    Google Scholar 

  • Peuke A D, Hartung W and Jeschke W D 1994 The uptake and flow of C, N and ions between roots and shoots in Ricinus communis L. II. Grown with low or high nitrate supply. J. Exp. Bot. 45, 733–740.

    CAS  Google Scholar 

  • Postma J G, Jacobsen E and Feenstra W J 1988 Three pea mutants with an altered nodulation studied by genetic analysis and grafting. J. Plant Physiol. 132, 424–430.

    Google Scholar 

  • Pouteau S, Cherel I, Vaucheret H and Caboche M 1989 Nitrate reductase mRNA regulation in Nicotiana plumbaginifolia nitrate reductase-deficient mutants. Plant Cell 1, 1111–1120.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pozuelo M, Merchan F, Macias M I, Beck C F, Galván A, Fernández E 2000 The negative effect of nitrate on gametogenesis is independent of nitrate assimilation in Chlamydomonas reinhardti Planta 211, 287–292.

    CAS  PubMed  Google Scholar 

  • Robinson D 1994 The responses of plants to non-uniform supplies of nutrients. New Phytol. 127, 635–674.

    CAS  Google Scholar 

  • Robinson D and Rorison I H 1983 A comparison of the responses of Loliumperenne L., Holcus lanatus L. and Deschampsia flexuosa (L.) Trin. to a localized supply of nitrogen. New Phytol. 94, 263–273.

    Google Scholar 

  • Robinson D and Rorison I H 1987 Root hairs and plant growth at low nitrogen availabilities. New Phytol. 107, 681–693.

    Google Scholar 

  • Robinson D, Hodge A, Griffiths B S and Fitter A H 1999 Plant root proliferation in nitrogen-rich patches confers competitive advantage. Proc. R. Soc. Londen Ser. B 26, 431–435.

    Google Scholar 

  • Ruiz-Medrano R, Xoconostle-Cazares B and Lucas W J 1999 Phloem long-distance transport of CmNACP mRNA: implications for supracellular regulation in plants. Development 126, 4405–4419.

    CAS  PubMed  Google Scholar 

  • Ryan C A 2000 The systemin signaling pathway: differential activation of plant defensive genes. Biochim. Biophys. Acta 1477, 112–121.

    CAS  PubMed  Google Scholar 

  • Ryser P, Verduyn B and Lambers H 1997 Phosphorus allocation and utilization in three grass species with contrasting response to N and P supply. New Phytol. 137, 293–302.

    Google Scholar 

  • Sattelmacher B and Thorns K 1995 Morphology and physiology of the seminal root system of young maize (Zea mays L.) plants as influenced by a locally restricted nitrate supply. Z. Pflanzen. Bodenk. 158, 493–497.

    CAS  Google Scholar 

  • Schauser L, Roussis A, Stiller J and Stougaard J 1999 A plant regulator controlling development of symbiotic root nodules. Nature 402, 191–195.

    CAS  PubMed  Google Scholar 

  • Scheible W R, Gonzalez-Fontes A, Lauerer M, Müller-Röber B, Caboche M and Stitt M 1997a Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. Plant Cell 9, 783–798.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scheible W R, Lauerer M, Schulze E D, Caboche M and Stitt M 1997b Accumulation of nitrate in the shoot acts as a signal to regulate shoot-root allocation in tobacco. Plant J. 11, 671–691.

    CAS  Google Scholar 

  • Schiefelbein J, Galway M, Masucci J and Ford S 1993 Pollen tube and root hair tip growth is disrupted in a mutant of Arabidopsis thaliana. Plant Physiol. 103, 979–985.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmidt J S, Harper J E, Hoffman T K and Bent A F 1999 Regulation of soybean nodulation independent of ethylene signaling. Plant Physiol. 119, 951–959.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmidt W 1999 Mechanisms and regulation of reduction-based iron uptake in plants. New Phytol. 141, 1–26.

    CAS  Google Scholar 

  • Schmidt W, Tittel J and Schikora A 2000 Role of hormones in the induction of iron deficiency responses in Arabidopsis roots. Plant Physiol. 122, 1109–1118.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scholz G, Becker R, Pich A and Stephan U W 1992 Nicotianamine: a common constituent of strategy I and strategy II of iron acquisition by plants — a review. J. Plant Nutr. 15, 1647–1665.

    CAS  Google Scholar 

  • Schultze M and Kondorosi A 1998 Regulation of symbiotic root nodule development. Ann. Rev. Genet. 32, 33–57.

    CAS  PubMed  Google Scholar 

  • Shore P and Sharrocks A D 1995 The MADS-box family of transcription factors. Eur. J. Biochem. 229, 1–13.

    CAS  PubMed  Google Scholar 

  • Skene K R 2000 Cluster roots: their physiology, ecology and developmental biology. Ann. Bot. 85, 899–899.

    Google Scholar 

  • Snapp S, Koide R and Lynch J 1995 Exploitation of localized phosphorus-patches by common bean roots. Plant Soil 177, 211–218.

    CAS  Google Scholar 

  • Stitt M and Feil R 1999 Lateral root frequency decreases when nitrate accumulates in tobacco transformants with low nitrate reductase activity: consequences for the regulation of biomass partitioning between shoots and root. Plant Soil 215, 143–153.

    CAS  Google Scholar 

  • Thaler P and Pages L 1996 Root apical diameter and root elongation rate of rubber seedlings (Hevea brasiliensis) show parallel responses to photoassimilate availability. Physiol. Plant. 97, 365–371.

    CAS  Google Scholar 

  • Thompson G A and Schulz A 1999 Macromolecular trafficking in the phloem. Trends Plant Sci. 4, 354–360.

    PubMed  Google Scholar 

  • Thornton H G 1936 The action of sodium nitrate upon the infection of lucerne root-hairs by nodule bacteria. Proc. R. Soc. London Ser. B 119, 474–491.

    CAS  Google Scholar 

  • Tillard P, Passama L and Gojon A 1998 Are phloem amino acids involved in the shoot to root control of NO3-uptake in Ricinus communis plants? J. Exp. Bot. 49, 1371–1379.

    CAS  Google Scholar 

  • Trull M C, Guiltinan M J, Lynch J P and Deikman J 1997 The responses of wild-type and ABA mutant Arabidopsis thaliana plants to phosphorus starvation. Plant Cell Environ. 20, 85–92.

    CAS  Google Scholar 

  • von Arnim A G 1999 Phytochrome in the limelight. Trends Plant Sci. 4, 465–466.

    Google Scholar 

  • Watt M and Evans J R 1999 Proteoid roots. Physiology and development. Plant Physiol. 121, 317–323.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Whiting S N, Leake J R, McGrath S P and Baker A J M 2000 Positive responses to Zn and Cd by roots of the Zn and Cd hyperaccumulator Thlaspi caerulescens. New Phytol. 145, 199–210.

    CAS  Google Scholar 

  • Wiersum L K 1958 Density of root branching as affected by substrate and separate ions. Acta Bot. Neerl. 7, 174–190.

    CAS  Google Scholar 

  • Wilson J K 1917 Physiological studies of Bacillus radicicola or soybean (Soja max Piper) and factors influencing nodule production. Cornell Univ. Agric. Exp. Stn. Bull. 386, 369.

    Google Scholar 

  • Zhang H and Forde B G 1998 An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279, 407–409.

    CAS  PubMed  Google Scholar 

  • Zhang H, Jennings A J, Barlow P W and Forde B G 1999 Dual pathways for regulation of root branching by nitrate. Proc. Natl Acad. Sci. USA 96, 6529–6534.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

David S. Powlson Geoff L. Bateman Keith G. Davies John L. Gaunt Penny R. Hirsch

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Forde, B., Lorenzo, H. (2002). The nutritional control of root development. In: Powlson, D.S., Bateman, G.L., Davies, K.G., Gaunt, J.L., Hirsch, P.R. (eds) Interactions in the Root Environment: An Integrated Approach. Developments in Plant and Soil Sciences, vol 96. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0566-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0566-1_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3925-3

  • Online ISBN: 978-94-010-0566-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics