Skip to main content

Abstract

The primary task of theoretical physics is to understand why the world is arranged the way we find it, and not otherwise. As such, we invent theories in which we take some aspects of the world and some principles to be fundamental, and try to understand how everything else can be understood in terms of them. As Einstein emphasized, we have a free choice of which elements of reality and which principles we choose to be fundamental, and which secondary (Einstein 1934). Because of this it can and does happen that at certain steps in the development of science we find it convenient or useful to choose very different starting points, from which very different things can be thought of as fundamental.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agishtein, and A. A. Migdal. 1992a. Phys. Lett. B 278:42–50.

    Article  MathSciNet  ADS  Google Scholar 

  • —. 1992b. “Simulations of 4-Dimensional Simplical Quantum-Gravity as Dynamic Triangulation.” Modern Physics Letters A 7:1039–1061.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Arnowitt, R., S. Deser, and C. W. Misner. 1960. “The Dynamics of General Relativity.” Phys. Rev. 117:1595. [Reprinted 1962 in Gravitation, An Introduction to Current Research, ed. L. Witten. New York: Wiley].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Ashtekar, A. V. 1986. “New Variables for Classical and Quantum Gravity.” Physical Review Letters 57(18):224 2247.

    Article  MathSciNet  ADS  Google Scholar 

  • —. 1987. Physical Review D 36:1587.

    Article  MathSciNet  ADS  Google Scholar 

  • —. 1991. Non-Perturbative Canonical Gravity. Lecture notes prepared in collaboration with Ranjeet S. Tate. Singapore: World Scientific Books.

    Google Scholar 

  • Ashtekar, A. V., V. Husain, C. Rovelli, J. Samuel, and L. Smolin. 1989. “2+1 quantum gravity as a toy model for the 3+1 theory.” Class, and Quantum Grav., pp. L185–L193.

    Google Scholar 

  • Ashtekar, A. V., C. Rovelli, and L. Smolin. 1992. “Weaving a Classical Metric with Quantum Threads.” Physical Review Letters 69(2):237–240.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Barbour, J. B. “Historical background to the problem of inertia.” Unpublished manuscript.

    Google Scholar 

  • —. 1974. “Relative-distance Machina Theories.” Nature 249:328. [Erratum: Nature 250(5467):606].

    Google Scholar 

  • —. 1975. Nuovo Centimo 26B:16.

    Google Scholar 

  • —. 1982. Brit. J. Phil. Sci. 33:251.

    Google Scholar 

  • —. 1987. “Leibnizian Time, Machian Dynamics and Quantum Gravity.” In Quantum Concepts of Space and Time, eds. C. J. Isham and R. Penrose. Oxford: Oxford University Press.

    Google Scholar 

  • —. 1989a. Found. Physics 19:1051–1073.

    Google Scholar 

  • —. 1989b. Absolute or Relative Motion, Vol. 1: The Disco very of Dynamics. Cambridge: Cambridge University Press.

    Google Scholar 

  • —. 1992a. In Proceedings of the NATO Meeting on the Physical Origins of Time Asymmetry, eds. J. J. Halliwell, J. Perez-Mercader, and W. H. Zurek. Cambridge: Cambridge University Press.

    Google Scholar 

  • —. 1992b. “Time and the interpretation of quantum gravity.” Syracuse University Preprint.

    Google Scholar 

  • Barbour, J. B., and B. Bertotti. 1977. Nuovo Centimo 38B:1.

    Article  ADS  Google Scholar 

  • —. 1982. Proc. Roy Soc. Lond. A 382:295.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • —. 1989. Proc. Roy Soc. Lond. A 382:295.

    MathSciNet  ADS  Google Scholar 

  • Barbour, J. B., and L. Smolin. 1992. “Extremal variety as the foundation of a cosmological quantum theory.” Syracuse University Preprint.

    Google Scholar 

  • Barrow, J., and F. Tipler. 1989. The Anthropic Principle. Oxford: Oxford University Press.

    Google Scholar 

  • Benton, Nick, personal communication.

    Google Scholar 

  • Bergmann, P. G. 1956a. Helv. Acta. Suppl. 4:79.

    Google Scholar 

  • —. 1956b. Nuovo Cimento 3:1177–1185.

    Article  MathSciNet  Google Scholar 

  • Bombelli, L., J. Lee, D. Meyer, and R. D. Sorkin. 1988. Physics Letters 60:655.

    Article  MathSciNet  Google Scholar 

  • Broadhurst, R., R. S. Ellis, D. C. Koo, and A. S. Szalay. 1990. “Large-Scale distributions of Galaxies at the Galactic Poles.” Nature 343(6260):726–728.

    Article  ADS  Google Scholar 

  • Capovilla, R., J. Dell, and T. Jacoboson. 1989. Phys. Rev. Lett. 63:2325.

    Article  MathSciNet  ADS  Google Scholar 

  • —. 1991. Class, and Quant. Grav. 8:59.

    Article  ADS  MATH  Google Scholar 

  • Capovilla, R., J. Dell, T. Jacoboson, and L. Mason. 1991. Class, and Quant. Grav. 8:41.

    Article  ADS  MATH  Google Scholar 

  • Carlip, S. 1990. Phys. Rev. D 42:2647.

    Article  MathSciNet  ADS  Google Scholar 

  • —. 1992. Phys. Rev. D 45:3584. [UC Davis preprint UCD-92-23].

    Article  MathSciNet  ADS  Google Scholar 

  • Carr, B. J. 1977. M.N. R. A. S. 181:293.

    ADS  Google Scholar 

  • —. 1981. M.N.R.A.S. 195:669.

    ADS  Google Scholar 

  • Carr, B. J., J. R. Bond, and W. D. Arnett. 1984. Ap. J. 227:445.

    Article  ADS  Google Scholar 

  • Coleman, P., and L. Pietronero. 1992. “The fractal structure of the universe.” Physics Reports 213:311–389.

    Article  ADS  Google Scholar 

  • Davis, M., and G. Efstathiou. 1988. In Large-Scale Motions in the Universe: A Vatican Study Week, eds. V. C. Rubin and G. V. Coyne. Princeton: Princeton University Press.

    Google Scholar 

  • Dawkins, R. 1986. The Blind Watchmaker. New York: W. W. Norton.

    Google Scholar 

  • DeWitt, B. S. 1967. Phys. Rev. 160:1113.

    Article  ADS  MATH  Google Scholar 

  • DeWitt, B. S., E. Myers, R. Harrington, and A. Kapulkin. 1991. Nucl. Phys. B (Proc Supp.) 20:744.

    Article  ADS  Google Scholar 

  • Dirac, P. A. M. 1959. Phys. Review 114:924–930.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • —. 1964. Lectures on Quantum Mechanics. Belfer Graduate School of Science, Yeshiva University, New York.

    Google Scholar 

  • Dopita, M. A. 1985. “A law of star formation in disk galaxies: Evidence for self-regulating feedback.” Astrophys. J. 296:L1–L5.

    Article  Google Scholar 

  • Einstein, A. 1934. “On the method of theoretical physics.” In A. Einstein: Essays in Science. New York: Philosophical Library.

    Google Scholar 

  • Elmegreen, B. G. 1992. “Large Scale Dynamics of the Interstellar Medium.” In Interstellar Medium, processes in the galactic diffuse matter, eds. D. Pfenniger and P. Bartholdi. Springer Verlag.

    Google Scholar 

  • Everett III, H. 1957. Rev. Mod. Phys. 29:454.

    Article  MathSciNet  ADS  Google Scholar 

  • —. 1973. In The Many Worlds Interpretation of Quantum Mechanics, eds. B. S. DeWitt and N. Graham. Princeton: Princeton University Press.

    Google Scholar 

  • Finkelstein, D. 1989. “Quantum Net Dynamics.” International Journal of Theoretical Physics 28:441–467.

    Article  MathSciNet  ADS  Google Scholar 

  • —. 1992. “Higher-Order Quantum Logics.” International journal of Theoretical Physics 31:1627–1630.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Franco, J., and D. P. Cox. 1983. “Self-regulated star formation in the galaxy.” Astrophys. J. 273:243–248.

    Article  ADS  Google Scholar 

  • Franco, J., and S. N. Shore. 1984. “The galaxy as a self-regulated star forming system: The case of the OB associations.” Astrophys. J. 285:813–817.

    Article  ADS  Google Scholar 

  • Geroch, R. 1984. “The Everett Interpretation + Quantum Mechanics.” Nous 18:617.

    Article  MathSciNet  Google Scholar 

  • Goldberg, J., J. Lewendowski, and C. Stomaiolo. 1992. “Degeneracy in the loop variables.” Commun. Math. Physics 148:337.

    Article  ADS  Google Scholar 

  • Hasse, M., M. Kriele, and V. Perlick. 1996. “Caustics of Wavefronts in General Relativity.” Class. Quatum Grav. 13:1161.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Hensler, G., and A. Burkert. 1990. “Self-regulated star formation and evolution of the interstellar medium.” Astrophys. and Space Sciences 171:149–156.

    Article  ADS  Google Scholar 

  • Hoyle, F. Unpublished.

    Google Scholar 

  • Ikeuchi, A. Habe, and Y. D. Tanaka. 1984. “The interstellar medium regulated by supernova remnants and bursts of star formation.” MNRAS 207:909–927.

    ADS  Google Scholar 

  • Jacobson, T., and J. Romano. 1992. Maryland preprint.

    Google Scholar 

  • Jacobson, T., and L. Smolin. 1988. Nucl. Phys. B, vol. 299.

    Google Scholar 

  • Kauffman, L. 1991. Knots and Physics. Singapore: World Scientific.

    MATH  Google Scholar 

  • Koestler, A. 1959. The Sleepwalkers. London: Penguin.

    Google Scholar 

  • Kuchar, K. V. 1992. “Time and interpretations of quantum gravity.” In Proceedings of the 4th Canadian Conference on General Relativity and Relativistic Astrophysics, eds. G. Kunstatter, D. Vincent, and J. Williams. Singapore: World Scientific.

    Google Scholar 

  • Layzer, D., and R. M. Hively. 1973. Ap. J. 179:361.

    Article  ADS  Google Scholar 

  • Leibniz, G. W. 1973. “”The Monadology” and “On the principle of indieernibles,” from the Clark-Leibniz Correspondence.” In Leibniz, Philosophical Writings, ed. G. H. R. Parkinson. Translated by M. Morris and G. H. R. Parkinson. London: Dent.

    Google Scholar 

  • Lovelock, J. 1988. Gala: A New Look at Life on Earth, The Ages of Gaia. New York: W. W. Norton and Co.

    Google Scholar 

  • Lyndon Bell, D., and R. M. Lyndon Bell. 1977. Mon. Not. R. Astron. Soc. 181:405.

    ADS  Google Scholar 

  • Mach, E. 1866. Fichtes Zeitschrift für Philosophie 49:227.

    Google Scholar 

  • —. 1893. The Science of Mechanics. London: Open Court.

    MATH  Google Scholar 

  • Misner, C. W. 1970. “Classical and quantum dynamics of a closed universe.” In Relativity, eds. M. Carmelli, S. I. Fickler, and L. Witten. New York: Plenum.

    Google Scholar 

  • —. 1972. “Minisuperspace.” In Magic withoiut Magic: John Archibald Wheeler, ed. J. Klauder. San Fransisco: Freeman.

    Google Scholar 

  • Morowitz, H. 1968. Energy Flow in Biology. Academic Press.

    Google Scholar 

  • Newman, E. T, and C. Rovelli. 1992. “Generalized Lines of Force as the Gauge-Invariant Degrees of Freedom for General Relativity and Yang-Mills Theory.” Physical Review Letters 69(9): 1300–1303.

    Article  ADS  Google Scholar 

  • Newton, I. 1962. Mathematical Principles of Natural Philosophy and the System of the World. University of California Press.

    Google Scholar 

  • Parravano, A. 1988. “Self-regulating star formation in isolated galaxies: thermal instabilities in the interstellar medium.” Astron. Astrophys. 205:71–76.

    ADS  Google Scholar 

  • Parravano, A., P. Rosenzweig, and M. Teran. 1990. “Galactic evolution with self-regulated star formation: stability of a simple one-zone model.” Astrophys. J. 356:100–109.

    Article  ADS  Google Scholar 

  • Peebles, P. J. E. 1911. Physical Cosmology. Princeton: Princeton University Press.

    Google Scholar 

  • Penrose, R. 1971. In Quantum Theory and Beyond, ed. T. Bastin. Cambridge: Cambridge University Press.

    Google Scholar 

  • —. 1979a. In Advances in Twistor Theory, eds. L. P. Hughston and R. S. Ward. San Francisco: Pitman.

    Google Scholar 

  • —. 1979b. “Singularities and Time Asymmetry.” In General Relativity, An Einstein Centanary Survey, eds. S. W. Hawking and W. Israel. Cambridge: Cambridge University Press.

    Google Scholar 

  • Prigogine, I. 1967. Introduction to the Thermodynamics of Irreversible Processes. New York: Interscience.

    Google Scholar 

  • —. 1980. From Being to Becoming: time and complexity in the physical sciences. San Fransisco: Freeman.

    Google Scholar 

  • Rees, M. J. 1972. “Origin of Cosmic Microwave Background Radiation in a Chaotic Universe.” Phys. Rev. Lett. 28:1669.

    Article  ADS  Google Scholar 

  • —. 1978. Nature 275:35.

    Article  ADS  Google Scholar 

  • Rovelli, C. 1990. “Quantum Mechanics without Time — A Model.” Phys. Rev. D 42:2638.

    Article  ADS  Google Scholar 

  • —. 1991a. In Conceptual Problems of Quantum Gravity, eds. A. Ashtekar and J. Stachel. Boston: Birkhauser.

    Google Scholar 

  • —. 1991b. “Ashtekar Formulation of General Relativity and Loop-Space Nonperturbative Quantum-Gravity — A Report.” Classical and Quantum Gravity 8:1613–1676.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • —. 1991c. “Quantum Reference Systems.” Class. Quantum Grav. 8:317–331.

    Article  MathSciNet  ADS  Google Scholar 

  • —. 1991d. “Time in Quantum Gravity.” Phys. Rev. D 43:442.

    Article  MathSciNet  ADS  Google Scholar 

  • —. 1993. “Statistical mechanics of the gravitational field and the thermodynamic origin or time.” Class. Quantum Grav. 10(8): 1549–1566.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Rovelli, C, and L. Smolin. 1988. “Knots and quantum gravity.” Phys. Rev. Lett. 61:1155.

    Article  MathSciNet  ADS  Google Scholar 

  • —. 1990. “Loop representation for quantum General Relativity.” Nucl. Phys. B 133:80.

    Article  MathSciNet  ADS  Google Scholar 

  • Rubin, V. C, and G. V. Coyne, eds. 1988. Large-Scale Motions in the Universe: A Vatican Study Week. Princeton: Princeton University Press.

    Google Scholar 

  • Seiden, P. E., and L. S. Schulman. 1986. “Percolation and galaxies.” Science 233:425–431.

    Article  ADS  Google Scholar 

  • —. 1990. “Percolation model of galactic structure.” Advances in Physics 39:1–54.

    Article  MathSciNet  ADS  Google Scholar 

  • Smolin, L. 1984a. “On quantum gravity and the many worlds interpretation of quantum mechanics.” In Quantum theory of gravity (the DeWitt Feschrift), ed. Steven Christensen. Bristol: Adam Hilger.

    Google Scholar 

  • —. 1984b. “The thermodynamics of gravitational radiation.” Gen. Rel. and Grav. 16:205.

    Article  MathSciNet  ADS  Google Scholar 

  • —. 1985. “On the intrinsic entropy of the gravitational field.” Gen. Rel. and Grav. 17:417.

    Article  MathSciNet  ADS  Google Scholar 

  • —. 1989. “Loop representation for quantum gravity in 2+1 dimensions.” In Proceedings of the John’s Hopkins Conference on Knots, Tolopoly and Quantum Field Theory, ed. L. Lusanna. Singapore: World Scientific.

    Google Scholar 

  • —. 1991. “Space and time in the quantum universe.” In Proceedings of the Osgood Hill conference on Conceptual Problems in Quantum Gravity, eds. A. Ashtekar and J. Stachel. Boston: Birkhauser.

    Google Scholar 

  • —. 1992a. “Did the Universe evolve?” Classical and Quantum Gravity 9:173–191.

    Article  MathSciNet  ADS  Google Scholar 

  • —. 1992b. “Recent developments in nonperturbative quantum gravity.” In The Proceedings of the 1991 GIFT International Seminar on Theoretical Physics: “Quantum Gravity and Cosmology”. held in Saint Feliu de Guixols, Catalonia, Spain: Singapore: World Scientific.

    Google Scholar 

  • —. 1997. The Life of the Cosmos. Oxford University Press and Weidenfeld and Nicolson.

    Google Scholar 

  • Spivak, M. 1970. A Comprehensive Introduction to Differential Geometry, Vol. 1. Publish or Perish Press.

    Google Scholar 

  • Stachel, J. 1989. “Einstein’s search for general covariance 1912–1915.” In Einstein and the History of General Relavity, vol. 1 of Einstein Studies, eds. D. Howard and J. Stachel. Boston: Birkhauser.

    Google Scholar 

  • Teresawa, N., and K. Sato. 1985. Ap. J. 294:9.

    Article  ADS  Google Scholar 

  • Wald, R. S. 1984. General Relativity. University of Chicago Press.

    Google Scholar 

  • Wheeler, J. A. personal communication.

    Google Scholar 

  • —. 1957. “Assessment of Everett’s Relative State Formulation of Quantum Theory.” Rev. Mod. Phys. 29:463.

    Google Scholar 

  • Witten, E. 1988. Nucl. Phys. B 311:46.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Wyse, R. F. G., and J. Silk. 1985. “Evidence for supernova regulation of metal inrichment in disk galaxies.” Astrophys. J. 296:11–15.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jürgen Renn Lindy Divarci Petra Schröter Abhay Ashtekar Robert S. Cohen Don Howard Sahotra Sarkar Abner Shimony

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Smolin, L. (2003). Time, Structure and Evolution in Cosmology. In: Renn, J., et al. Revisiting the Foundations of Relativistic Physics. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0111-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0111-3_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1285-3

  • Online ISBN: 978-94-010-0111-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics