Skip to main content

Simultaneous Dissolved Oxygen and Redox Measurements: Use of Polarographic, Bioluminescence and Mass Spectrometric Monitoring Combined with Dual-Wavelength Spectrophotometry

  • Conference paper
Gas Enzymology

Abstract

Comparison of available methods for O2 determinations reveals that of the few ways of measuring dissolved O2, the polarographic approach as employed in a continuously-stirred reactor open to gases is extremely useful. However it is complemented and extended in terms of versatility and stability by membrane inlet mass spectrometry, and for sensitivity by the bioluminescence method. Combined with dual wavelength spectrophotometry, fluorimetry or chemiluminescence, these experimental systems provide a powerful approach to problems of microbial and cell biochemistry, as they provide continuous readout of direct non-invasive measurements of functions in intact organisms. Applications are presented: studies of O2 effects on microorganisms with an obligate requirement for oxygen (amoeba), a facultative anaerobe (yeast) and aerotolerant and strict anaerobes (rumen and anaerobic digester populations respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Degn, H., Lundsgaard, J.S., Petersen, L.C. & Ormicki, A. (1980). Methods Biochem. Anal. 26, 47–77.

    Article  CAS  Google Scholar 

  2. Lloyd, D., & Scott, R.I. (1983). J. Microbiol. Meth. 1, 313–328.

    Article  CAS  Google Scholar 

  3. Lloyd, D., Scott, R.I. & Williams, T.N. (1983). Trends Biotechnol. 1, 60–63.

    Article  CAS  Google Scholar 

  4. Lloyd, D. & Scott, R.I. (1984). In: ‘Gas Metabolism’ (eds. R.K. Poole & C.S. Dow), Academic Press, London (In Press).

    Google Scholar 

  5. (5) Degn, H., Cox, R.P.&Lloyd, D. (1985). Methods Biochem. Anal. (In Press).

    Google Scholar 

  6. Lundsgaard, J.S. & Degn, H. (1973). IEEE Trans. Biomed. Engineer. BME 20, 384–387.

    Article  CAS  Google Scholar 

  7. Finn, R.K. (1954). Bacteriol. Rev. 18, 254–274.

    CAS  Google Scholar 

  8. Lloyd, D. James, K., Williams, J. & Williams, N. (1981). Analyt. Biochem. 116, 17–21.

    Article  CAS  Google Scholar 

  9. Bixler, H.J. & Sweeting, O.J. (1973). In: ‘Science & Technology of Polymer Films’ (ed. O.J. Sweeting), pp. 1–130.

    Google Scholar 

  10. Lloyd, D., Mellor, H. & Williams, J.L. (1983). Biochem. J. 214, 47–51.

    CAS  Google Scholar 

  11. Lloyd, D. & Scott, R.I. (1983). Analyt. Biochem. 128, 21–25.

    Article  CAS  Google Scholar 

  12. Scott, R.I. & Lloyd, D. (1985). Unpublished data.

    Google Scholar 

  13. Edwards, S.W. & Lloyd, D. (1977). J. Gen. Microbiol. 103, 207–213.

    CAS  Google Scholar 

  14. Lloyd, D., Kristensen, B. & Degn, H. (1983). Biochem. J. 212, 749–754.

    CAS  Google Scholar 

  15. Scott, R.I., Yarlett, N., Hillman, K., Williams, T.N., Williams, A.G. & Lloyd, D. (1983). J, Appl. Bact. 55, 149.

    Google Scholar 

  16. Scott, R.I., Williams, T.N.&Lloyd, D. Biotechnol.Lett. 5, 375–380.

    Google Scholar 

  17. Lloyd, D., Edwards, S.W., Kristensen, B. & Degn, H. (1979). Biochem. J. 182, 11–15.

    CAS  Google Scholar 

  18. Lloyd, D., Kristensen, B. & Degn, H. (1982). J. Gen. Microbiol. 128, 185–188.

    CAS  Google Scholar 

  19. Scott, R.I. & Lloyd, D. (1983). Biochem. J. 210, 721–725.

    CAS  Google Scholar 

  20. Lloyd, D., Protheroe, R., Williams, T.N. & Williams, J.L. (1983) FEMS Microbiol. Lett. 17, 143–146.

    Article  Google Scholar 

  21. Lloyd, D., Mellor, H. & Williams, J.L. (1983). Biochem. J. 214 47–51.

    CAS  Google Scholar 

  22. Vaughan, W. & Weber, G. (1970). Biochem. 9, 464–473.

    Article  CAS  Google Scholar 

  23. Benson, D.M., Knopp, J.A.G. & Longmuir, I.S. (1980). Biochim. Biophys. Acta. 591, 187–197.

    Article  CAS  Google Scholar 

  24. Podgorski, G.T., Longmuir, I.S., Knopp, J.A. & Benson, D.M. (1981). J. Cell Physiol. 107, 329–334.

    Article  CAS  Google Scholar 

  25. Pasteur, L. (1861). C.R. Acad. Sci., Paris. 52, 1260–1265.

    Google Scholar 

  26. Krebs, H.A. (1972). Essays in Biochemistry 8, 1–27.

    CAS  Google Scholar 

  27. Lloyd, D., Kristensen, B. Degn, H. (1982). J. Gen. Microbiol. 126, 167–170.

    Google Scholar 

  28. Davies, K.J.P. & Lloyd, D. (1984). Unpublished data.

    Google Scholar 

  29. Jones, S. & Lloyd, D. (1984). Unpublished data.

    Google Scholar 

  30. Hoch, G. & Kok, B. (1963). Arch. Biochem. Biophys. 101, 160–170

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 D. Reidel Publishing Company

About this paper

Cite this paper

Lloyd, D. (1985). Simultaneous Dissolved Oxygen and Redox Measurements: Use of Polarographic, Bioluminescence and Mass Spectrometric Monitoring Combined with Dual-Wavelength Spectrophotometry. In: Degn, H., Cox, R.P., Toftlund, H. (eds) Gas Enzymology. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5279-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5279-9_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8831-2

  • Online ISBN: 978-94-009-5279-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics