Skip to main content

Abstract

An overview of dipolar-chemical shift spectroscopy is presented with emphasis on recent developments to improve sensitivity, enhance information content, and simplify the spectra. Three new experiments are examined. First, a simplified experiment which is not synchronized with the sample rotation is shown to yield the same 2D spectra as previous methods, but with higher signal intensities. Second, an experiment is demonstrated to enhance dipolar sideband intensities, allowing the measurement of weaker couplings at spinning speeds which would otherwise yield vanishingly small sidebands in the dipolar dimension. Lastly, a mechanical technique involving the changing of the spinning speed between the evolution and detection periods of the dipolar chemical shift experiment is shown to yield a dramatic compression of the information in the two-dimensional landscape. The signals obtained are calculated using a versatile formalism which comprises a basis for comparison of the results of different experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Mehring, A. Pines, W.-K. Rhim and J.S. Waugh, J. Chem. Phys., 54, 3239 (1971).

    Article  CAS  Google Scholar 

  2. M.E. Stoll, A.J. Vega and R.W. Vaughan, J. Chem. Phys., 65, 4093 (1976).

    Article  CAS  Google Scholar 

  3. R.K. Hester, J.L. Ackerman, B.L. Neff and J.S. Waugh, Phys. Rev. Lett., 36, 1081 (1976).

    Article  CAS  Google Scholar 

  4. E.F. Rybaczewski, B.L. Neff, J.S. Waugh and J.S. Sherbinski, J. Chem. Phys., 67, 1231 (1977).

    Article  CAS  Google Scholar 

  5. E.R. Andrew, A. Bradbury and R.G. Eades, Nature (London), 182, 1659 (1958).

    Article  CAS  Google Scholar 

  6. I.J. Lowe, Phys. Rev. Lett., 2, 285 (1959).

    Article  CAS  Google Scholar 

  7. M.G. Munowitz, R.G. Griffin, G. Bodenhausen and T.H. Huang, J. Am. Chem. Soc., 103, 2529 (1981).

    Article  CAS  Google Scholar 

  8. M.G. Munowitz and R.G. Griffin, J. Chem. Phys., 76, 2848 (1982); 77, 2217 (1982).

    Article  CAS  Google Scholar 

  9. M.M. Maricq and J.S. Waugh, J. Chem. Phys., 70, 3300 (1979).

    Article  CAS  Google Scholar 

  10. J. Herzfeld and A.E. Berger, J. Chem. Phys., 73, 6021 (1980).

    Article  CAS  Google Scholar 

  11. M.G. Munowitz and R.G. Griffin, J. Chem. Phys., 78, 613 (1983).

    Article  CAS  Google Scholar 

  12. A.C. Kolbert, M.H. Levitt and R.G. Griffin, J. Magn. Reson.., 85, 42 (1989).

    Google Scholar 

  13. A.C. Kolbert, M.H. Levitt and R.G. Griffin, J. Chem. Phys., 90, 679 (1989).

    Article  CAS  Google Scholar 

  14. A.C. Kolbert, M.H. Levitt and R.G. Griffin, manuscript in preparation.

    Google Scholar 

  15. A.C. Kolbert, H.J.M. de Groot and R.G. Griffin, J. Magn. Reson.., 85, 60 (1989).

    CAS  Google Scholar 

  16. E.T. Olejniczak, S. Vega and R.G. Griffin, J. Chem. Phys., 81, 4804 (1984).

    Article  CAS  Google Scholar 

  17. A.C. Kolbert, D.P. Raleigh, T.G. Oas, M.H. Levitt and R.G. Griffin, Faraday Trans 1, 84, 3691 (1988).

    Article  Google Scholar 

  18. M.H. Levitt, J. Magn. Reson., 82, 427 (1989)..

    Google Scholar 

  19. J.E. Roberts, G.S. Harbison, M.G. Munowitz, J. Herzfeld and R.G. Griffin, J. Am. Chem. Soc., 109, 4163 (1987).

    Article  CAS  Google Scholar 

  20. K.W. Zilm and G.G. Webb, Experimental NMR Conference, Baltimore, MD (1986).

    Google Scholar 

  21. R.R. Ernst, G. Bodenhausen and A. Wokaun, Principles of Nuclear Magnetic Resonance in One or Two Dimensions, Oxford University Press, Oxford, U.K. (1987).

    Google Scholar 

  22. H.J.M. de Groot, V. Copié, S.D. Smith, P.J. Allen, C. Winkel, J. Lugtenburg, J. Herzfeld, R.G. Griffin, J. Magn. Reson., 77, 251 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Kolbert, A.C. et al. (1990). Two-Dimensional Dipolar-Chemical Shift NMR in Rotating Solids. In: Granger, P., Harris, R.K. (eds) Multinuclear Magnetic Resonance in Liquids and Solids — Chemical Applications. NATO ASI Series, vol 322. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2149-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2149-8_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7467-4

  • Online ISBN: 978-94-009-2149-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics