Skip to main content

Abstract

Atmospheric chemical models are used to estimate the deposition rate of various inorganic oxides of nitrogen (NOy), reduced nitrogen species (NHx) and mineral dust to the North Atlantic Ocean (NAO). The estimated deposition of NOy to the NAO (excluding the coastal ocean) and the Caribbean is 360 × 109 Moles-N m-2 yr-1 (5.0 Tg N); this is equivalent to about 13% of the estimated global emission rate (natural and anthropogenic) and a quarter of the emission rate from sources in North America and Europe. In the case of NHx, 258 Moles-N m-2 yr-1 (3.6 Tg N) are deposited to the NAO and the Caribbean; this is about 6% of the global continental emissions. There is relatively little data on the deposition rate of organic nitrogen species; nonetheless, this evidence suggests that concentrations and deposition rates are comparable to those for inorganic nitrogen.

Because of anthropogenic emissions, the present-day deposition rate of NOy to the NAO is about five times greater than pre-industrial times largely due to emissions from energy production and biomass burning. The present-day emissions of NHx from continental anthropogenic sources are about four-to-five times greater than natural sources, mostly due to the impact of emissions from animal wastes associated with food production. Indeed, present-day emissions of NHx from animal waste are estimated to be about 10 times greater than the pre-human era. The deposition rate of mineral dust to the NAO is about 170 Tg yr-1; deposited with the dust (assuming average crustal abundances) is about 6 Tg yr-1 of Fe and 0.2 Tg yr-1 of P. Dust deposition in the NAO is almost completely attributable to transport from North African sources; a substantial fraction of the dust over the NAO is probably mobilized as a consequence of land use practices in arid regions and, consequently, it should be regarded as a pollutant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AEROCE:

Atmosphere/Ocean Chemistry Experiment

AOT:

aerosol optical thickness

EMEP:

Cooperative Program for Monitoring and Evaluation of Long Range; — Transmission of Air Pollution in Europe

GESAMP:

A model used by the Group of Experts on the Scientific Aspects of Marine Pollution

GCM:

General Circulation Model

GCTM:

Global Chemical Transport Model

GFDL:

Geophysical Fluid Dynamic Laboratory

MOGUNTIA:

Model of the Global Universal Tracer Transport in the Atmosphere

MSC:

Meteorological Synthesizing Centre

NAB:

North Atlantic Basin

NAO:

North Atlantic Ocean

NAS:

National Academy of Sciences

References

  • Andreae MO (1995) Climatic effects of changing atmospheric aerosol levels. In: Henderson-Sellers A (Ed) World Survey of Climatology, Vol. 16, Future Climates of the World (pp 341–392). Elsevier, Amsterdam

    Google Scholar 

  • Arimoto R, Duce RA & Ray BJ (1989) Concentrations, sources, and air/sea exchange of trace elements in the atmosphere over the Pacific Ocean. In: Riley JP, Cheste TR & Duce RA (Eds) Chemical Oceanography, Vol. 10, SEAREX. (pp. 107–149). Academic Press, London

    Google Scholar 

  • Arimoto R, Ray BJ, Duce RA, Hewitt AD, Boldi R & Hudson A (1990) Concentrations, sources, and fluxes of trace elements in the remote marine atmosphere of New Zealand. J. Geophys.Res. 95: 22,389–22,405

    Google Scholar 

  • Arimoto R, Duce RA, Savoie DL & Prospero JM (1992) Trace elements in aerosol particles from Bermuda and Barbados: Concentrations, sources, and relationships to aerosol sulfate. J. Atmos. Chem. 14: 439–457

    Google Scholar 

  • Barrie LA & Bottenheim JW (1991) Sulphur and nitrogen pollution in the Arctic atmosphere. In: WT Sturges (Ed) Pollution of the Arctic Atmosphere (pp 2505–2512). Elsevier, London and New York

    Google Scholar 

  • Benkovitz CM, Dignon J, Scholtz T, Pacyna J, Tarrason L, Dignon J, Voldner EC, Spiro PA, Logan JA & Graedel TE (1995) Global gridded inventories of anthropogenic emissions of sulfur and nitrogen. J. Geophys. Res. (submitted)

    Google Scholar 

  • Bergametti G, Dutot A-L, Buat-Menard P, Losno R & Remoudaki E (1989a) Seasonal variability of the elemental composition of atmospheric aerosol particles over the northwestern Mediterranean. Tellus 41(B): 353–361

    Google Scholar 

  • Bergametti G, Gomes L, Coude-Gaussen G, Rognon P & Le Coustumer M (1989b) African dust observed over Canary Islands: Source-regions identification and transport pattern for some summer situations. J. Geophys. Res. 94: 14,855–14,864

    Google Scholar 

  • Bergametti G, Remoudaki E, Losno R, Steiner E & Chatenet B (1992) Source, transport and deposition of atmospheric phosphorus over the northwestern Mediterranean. J. Atmos. Chem. 14: 501–513

    Google Scholar 

  • Betzer PR, Carder KL, Duce RA, Merrill JT, Tindale NW, Uematsu M, Castello DK, Young RW, Feeley RA, Breland JA, Bernstein RE & Greco AM (1988) A pulse of Asian dust to the central North Pacific: Long range transport of giant mineral aerosol particles. Nature 336: 568–570

    Google Scholar 

  • Buijsman E, Jonker PJ, Asman WAH & Ridder TB (1991) Chemical composition of precipitation collected on a weathership in the North Atlantic. Atmos. Environ. 25 A(5/6): 873–883

    Google Scholar 

  • Cornell S, Rendell A & Jickells T (1995) Atmospheric inputs of organic nitrogen to the oceans. Nature 376: 243–246

    Google Scholar 

  • d’Almeida GA (1986) A model for Saharan dust transport. J. Climate Appl. Meteorol. 25: 903–916

    Google Scholar 

  • d’Almeida GA & Schütz L (1983) Number, mass and volume distributions of mineral aerosols and soils of the Sahara. J. Clim. Appl. Meteorol. 22: 233–243

    Google Scholar 

  • Delaney AC & Zenchelsky ST (1976) The organic component of wind-erosion-generated soil-derived aerosol. Soil Sci. 121: 146–155

    Google Scholar 

  • DeMore WB, Sander SP, Golden DM, Hampson RF, Kurylo MJ, Howard CJ, Ravishankara AR, Kolb CE & Molina MJ (1994) Chemical kinetics and photochemical data for use in stratospheric modeling, JPL/NASA: Evaluation number 11

    Google Scholar 

  • Dentener FJ & Crutzen PJ (1994) A three dimensional model of the global ammonia cycle. J. Atmos. Chem. 19: 331–369

    Google Scholar 

  • DiTullio GR, Hutchins DA & Bruland KW (1993) Interaction of iron and major nutrients controls phytoplankton growth and species composition in the tropical North Pacific Ocean. Limnol. Oceanogr. 38: 495–508

    Google Scholar 

  • Donaghay PL, Liss PS, Duce RA, Rester DR, Hanson AK, Villareal T, Tindale NW & Gifford DJ (1991) The role of episodic atmospheric nutrient inputs in the chemical and biological dynamics of oceanic ecosystems. Oceanography 4: 62–70

    Google Scholar 

  • Duce RA, Mohnen VA, Zimmerman PR, Grosjean D, Cautreels W, Chatfield R, Jaenicke R, Ogren JA, Pellizzari ED & Wallace GT (1983) Organic material in the global troposphere. Rev. Geophys. & Space Phys. 21: 921–952

    Google Scholar 

  • Duce RA (1986) The impact of atmospheric nitrogen, phosphorus, and iron species on marine biological productivity. In: Buat-Menard P (Ed) The Role of Air-Sea Exchange in Geochemical Cycling (pp 497–528). Reidel, Dordrecht

    Google Scholar 

  • Duce RA & Tindale NW (1991) Atmospheric transport of iron and its deposition in the ocean. Limnol. Oceanogr. 36: 1715–1726

    Google Scholar 

  • Duce RA Liss PS Merrill JT Atlas EL Buat-Menard P Hicks BB Miller JM Prospero, JM Arimoto R, Church T, Ellis M, Galloway JN, Hanson L, Jickells TD, Knap AH, Reinhardt KH, Schneider B, Soudine A, Tokos JJ, Tsunogai S, Wollast R & Zhou M (1991) The atmospheric input of trace species to the world ocean. Global Biogeochem. Cycles 5: 193–259

    Google Scholar 

  • Duce RA (1995) Sources, distributions, and fluxes of mineral aerosols and their relationship to climate. In: Charlson RJ & Heintzenberg J (Eds) Dahlem Workshop on Aerosol Forcing of Climate (pp 43–72). Berlin

    Google Scholar 

  • Eppley RW (1980) Estimating phytoplankton growth rates in the central oligotrophic oceans. In: Falkowski PG (Ed) Primary Productivity in the Sea (pp 231–242). Plenum, New York

    Google Scholar 

  • Fanning KA (1989) Influence of atmospheric pollution on nutrient limitation in the ocean. Nature 339: 460–463

    Google Scholar 

  • Galloway JN, Knap AH & Church TM (1983) The composition of western Atlantic precipitation using shipboard collectors. J. Geophys. Res. 88: 10,589–10,865

    Google Scholar 

  • Galloway JN (1985) The deposition of sulfur and nitrogen from the remote atmosphere, background paper. In: Reidel D (Ed) The Biogeochemical Cycling of Sulfur and Nitrogen in the Remote Atmosphere (pp 141–175). Norwell, Mass.

    Google Scholar 

  • Galloway JN & Whelpdale DM (1987) WATOX-86 overview and western North Atlantic Ocean S and N atmospheric budgets. Global Biogeochem. Cycles 1: 261–281

    Google Scholar 

  • Galloway JN, Keene WC, Artz RS, Miller JM, Church TM & Knap AH (1989) Processes controlling the concentrations of SO4=, NO- 3, NH+ 4, H+, HCOOT, and CH3COOT in precipitation on Bermuda. Tellus 41B: 427–433

    Google Scholar 

  • Galloway JN, Savoie DL, Keene WC & Prospero JM (1993) The temporal and spatial variability of scavenging ratios for nss sulfate, nitrate, methane sulfonate and sodium in the atmosphere over the North Atlantic Ocean. Atmos. Environ. 27A: 235–250

    Google Scholar 

  • Galloway JN, Levy H & Kasibhatia PS (1994) Year 2020: Consequences of population growth and development on deposition of oxidized nitrogen. Ambio 23: 120–123

    Google Scholar 

  • Galloway JN, Schlesinger WH, Levy II H, Michaels A & Schnoor JL (1995) Nitrogen fixation: Anthropogenic enhancement-environmental response. Global Biogeochem. Cycles 9(2): 235–252

    Google Scholar 

  • Galloway JN (1996). Acid deposition in marine regions. In: DM Whelpdale & Kaiser MS (Eds) Acid Deposition Assessment Report, WMO/UNEP, Geneva (in press)

    Google Scholar 

  • Galloway JN, Zhao D, Thomson VE & Chang LH (1996) Nitrogen mobilization in the United States of America and the Peoples Republic of China. Atmos. Environ, (in press)

    Google Scholar 

  • Glantz MH (1994) The West African Sahel. In: Glantz MH (Ed) Drought Follows the Plow (pp 33–43). Cambridge Univ. Press, Cambridge

    Google Scholar 

  • Golitsyn G & Gillette DA (1993) Introduction: a joint Soviet-American experiment for the study of Asian desert dust and its impact on local meteorological conditions and climate. Atmos. Environ. 27A: 2467–2470

    Google Scholar 

  • Gorzelska K & Galloway JN (1990) Amine nitrogen in the atmospheric environment over the North Atlantic Ocean. Global Biogeochem. Cycles 4: 309–333

    Google Scholar 

  • Gorzelska K, Scudlark J & Keene W (1996) Dissolved organic nitrogen in the atmospheric environment. In: Ecological Risk: Science, Policy, Law, and Perception, Society of Environmental Toxicology and Chemistry. Denver (in press)

    Google Scholar 

  • Goudie AS & Middleton NJ (1992) The changing frequency of dust storms through time. Climatic Change 20: 197–225

    Google Scholar 

  • Graham WF & Duce RA (1979) Atmospheric pathways of the phosphorus cycle. Geochim. et Cosmochim. Acta 43: 1195–1208

    Google Scholar 

  • Graham WF & Duce RA (1982) The atmospheric transport of phosphorus to the western North Atlantic. Atmos. Environ. 16: 1089–1097

    Google Scholar 

  • Hameed S & Dignon J (1988) Changes in the geographical distributions of global emissions of NOx and SOx from fossil fuel combustion between 1966 and 1980. Atmos. Environ. 22: 441–449

    Google Scholar 

  • Hameed S & Dignon J (1992) Global emissions of nitrogen and sulfur oxides in fossil fuel combustion 1970–1986. J. Air Waste Management Assoc. 42: 159–163

    Google Scholar 

  • Hanseen JE, Pederson U, Schaug J, Dovland H, Pacnya JM, Semb A & Skjalmsen JE (1990) Summary report Chemical Coordinating Centre for the Fourth Phase of European Monitoring and Evaluation Program (EMEP), EMEP Cooperative programme for monitoring and evaluation of the long range transmission of air pollutants in Europe. Meteorol. Syn. Cent.-West. Norw. Meteorol. Inst., Oslo

    Google Scholar 

  • Hansson ME (1994) The Renland ice core. A northern hemisphere record of aerosol composition over 120,000 years. Tellus 46B: 390–418

    Google Scholar 

  • Hardy JT & Crecilius EA (1981) Is atmospheric particulate matter inhibiting marine primary productivity? Environ. Sci. Technol. 15: 1103–1105

    Google Scholar 

  • Hasse L (1983) Introductory meteorology and fluid dynamics. In: Liss PS & Slinn WGN (Eds) Air-Sea Exchange of Gases and Particles (pp 1–52). Reidel, Dordrecht

    Google Scholar 

  • Howarth RW, Billen G, Swaney D, Townsend A, Jaworski N, Lajtha K, Downing JA, Elmgren R, Caraco N, Jordan T, Berendse F, Freney J, Kudeyarov V, Murdoch P & Zhu Z-L (1996) Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Altantic Ocean: natural and human influences (this volume)

    Google Scholar 

  • Ignatov AM, Stowe LL, Sakerin SM & Korotaev GK (1995) Validation of the NOAA/NESDIS satellite aerosol product over the North Atlantic in 1989. J. Geophys.Res. 100: 5123–5132

    Google Scholar 

  • Jahnke RA (1992) The Phosphorous Cycle. In: Global Biogeochemical Cycles (pp 301–315). Academic Press

    Google Scholar 

  • Jickells TD, Knap AH, Sheriff-Dow R & Galloway J (1990) No ecosystem shift. Nature 347: 25–26

    Google Scholar 

  • Jickells T (1995) Atmospheric inputs of metals and nutrients to the oceans: their magnitude and effects. Mar. Chem. 48: 199–214

    Google Scholar 

  • Jordan TE, Correll DL, Weller DE & Goff NM (1995) Temporal variation in precipitation chemistry on the shore of Chesapeake Bay. Water, Air, Soil Poll. 83: 263–284

    Google Scholar 

  • Joussaume S (1990) Three-dimensional simulations of the atmospheric cycle of desert dust particles using a general circulation model. J. Geophys. Res. 95: 1909–1941

    Google Scholar 

  • Knap A, Jickells T, Pszenny A & Galloway J (1986) Significance of atmospheric-derived fixed nitrogen on productivity of the Sargasso Sea. Nature 320: 158–159

    Google Scholar 

  • Knap AH (1990) The Long-Range Atmospheric Transport of Natural and Contaminant Substances, Kluwer, Dordrecht

    Google Scholar 

  • Kasibhatla PS, Levy II H & Moxim WJ (1993) Global NOx, HNO3, PAN, and NOy distributions from fossil fuel combustion emissions: A model study. J. Geophys. Res. 98: 7165–7180

    Google Scholar 

  • Lacaux JP, Delmas R, Kouadio G, Cros B & Andreae MO (1992) Precipitation chemistry in the Mayombe Forest of Equatorial Africa. J. Geophys. Res. 97: 6195–6206

    Google Scholar 

  • Laj P, Palais J & Sigurdsson H (1992) Changing sources of impurities to the Greenland ice sheet over the last 250 years. Atmos. Environ. 26A: 2627–2640

    Google Scholar 

  • Lawrence MG, Chameides WL, Kasibhatla PS, Levy II H & Moxim WJ (1995) Lightning and atmospheric chemistry: The rate of atmospheric NO production In: Volland H (Ed) Handbook of Atmospheric Electrodynamics, Vol 1 (pp 189–202). CRC Press, Boca Raton, Fl

    Google Scholar 

  • Legrand M, De Angelis M, Staffelback T, Neftel A & Stauffer B (1992) Large perturbations of ammonium and organic acids content in the Summit-Greenland ice core: Fingerprint form forest fires?. Geophys. Res. Lett. 19: 473–475

    Google Scholar 

  • Legrand M (1995) Atmospheric chemistry changes versus past climate inferred from polar ice cores. In: Charlson RJ & Heintzenberg J (Eds) Dahlem Workshop on Aerosol Forcing of Climate (pp 123–152). Berlin

    Google Scholar 

  • Lepple FK (1975) Eolian dust over the North Atlantic Ocean. Ph.D. thesis, University of Delaware

    Google Scholar 

  • Lepple FK & Brine CJ (1976) Organic constitutents in eolian dust and surface sediments from Northwest Africa. J. Geophys. Res. 81: 1141–1147

    Google Scholar 

  • Levitus S, Conkright ME, Reid JL, Najjar RG & Mantyla A (1993) Distribution of nitrate, phosphate and silicate in the world oceans. Prog. Oceanogr. 31: 245–273

    Google Scholar 

  • Levy II H, Mahlman JD & Moxim WJ (1982) Tropospheric N2O variability. J. Geophys. Res. 87: 3061–3080

    Google Scholar 

  • Levy II H (1989) Simulated Global Deposition of Reactive Nitrogen Emitted by Fossil Fuel Combustion, In: Proceedings of IAHS Third Scientific Assembly, Symposium I, Atmospheric Deposition (pp 3–9). Baltimore, MD

    Google Scholar 

  • Levy H & Moxim WJ (1989) Simulated global distribution and deposition of reactive nitrogen emitted by fossil fuel consumption. Tellus 41B: 256–271

    Google Scholar 

  • Levy II H, Moxim WJ, Kasibhatla PS & Logan JA (1991) The global impact of biomass burning on tropospheric reactive nitrogen. In: Levine JS (Ed) Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications (pp 363–359). MIT Press, Cambridge, MA

    Google Scholar 

  • Levy II H, Moxim WJ & Kasibhatla PS (1995) A global 3-dimensional time-dependent lightning source of tropospheric NOx. J. Geophys. Res. (submitted)

    Google Scholar 

  • Littmann T (1991) Dust storm frequency in Asia: climatic control and variability. Int. J. of Climatology 11: 393–412

    Google Scholar 

  • Logan JA (1983) Nitrogen oxides in the troposphere: global and regional budgets. J. Geophys. Res. 88: 10,785–10,807

    Google Scholar 

  • Mahlman JD & Moxim WJ (1978) Tracer simulation using a global general circulation model: Results from a midlatitude instantaneous source experiment. J. Atmos. Sci. 35: 1340–1374

    Google Scholar 

  • Martin JH & Fitzwater SE (1988) Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature 331: 341–343

    Google Scholar 

  • Mayewski PA, Lyons WB, Spencer MJ, Twickler MS, Buck CF & Whitlow S (1990) An ice-core record of atmospheric response to anthropogenic sulphate and nitrate. Nature 346: 554–556

    Google Scholar 

  • McCarthy JJ & Carpenter EJ (1983) Nitrogen cycling in near-surface waters of the open ocean. In: Carpenter EJ & Capone DG (Eds) Nitrogen in the Marine Environment (pp 487–512). Academic Press, New York

    Google Scholar 

  • Merrill JT (1986) Atmospheric pathways to the oceans. In: Buat-Menard P (Ed) The Role of Air-Sea Exchange in Geochemical Cycling (pp 35–63). Reidel D, Norwood, MA

    Google Scholar 

  • Merrill JT (1989) Atmospheric long-range transport to the Pacific Ocean. In: Riley JP Chester R & Duce RA (Eds) Chemical Oceanography, Vol. 10, SEAREX (pp 15–50). Academic Press, London

    Google Scholar 

  • Michaels AF, Siegel DA, Johnson RJ, Knap AH & Galloway JN (1993) Episodic inputs of atmospheric nitrogen to the Sargasso Sea: Contributions to new production and phytoplankton blooms. Global Biogeochem. Cycles 7: 339–351

    Google Scholar 

  • Middleton NJ (1990) Wind erosion and dust-storm con tro. In: Goudie AS (Ed) Techniques for Desert Reclamation (pp 87–108). John Wiley & Sons, New York

    Google Scholar 

  • Miller CB, Frost BW, Booth B, Wheeler PA, Landry MR & Welschmeyer N (1991) Ecological processes in the subarctic Pacific: Iron limitation cannot be the whole story. Oceanography 4: 71–78

    Google Scholar 

  • Moody JL & Galloway JN (1988) Quantifying the influence of atmospheric transport on the composition of precipitation on Bermuda. Tellus 40: 463–479

    Google Scholar 

  • Moore RM, Milley JE & Chatt A (1984) The potential for biological mobilization of trace elements from aeolian dust in the ocean and its importance in the case of iron. Oceanol. Acta. 7: 221–228

    Google Scholar 

  • Mopper K & Zika RG (1987) Free amino acids in marine rain: Evidence for oxidation and potential role in nitrogen cycling. Nature 325: 246–249

    Google Scholar 

  • Morel FMM, Reuter JG & Price NM (1991) Iron nutrition of phytoplankton and its possible importance in the ecology of ocean regions with high nutrient and low biomass. Oceanography 4: 56–61

    Google Scholar 

  • Mosher BW, Winkler P & Jaffrezo J-L (1993) Seadonal aerosol chemistry at Dye 3, Greenland. Atmos. Environ. 27A: 2761–2772

    Google Scholar 

  • NAS (1978) The Tropospheric Transport of Pollutants and Other Substances to the Oceans (p 243). National Academy of Sciences Press, Washington, DC

    Google Scholar 

  • Nixon SW, Ammerman J, Atkinson L, Berounsky V, Billen G, Boicourt W, Boynton W, Church T, DiToro D, Elmgren R, Garber J, Giblin A, Jahnke R, Owens N, Pilson MEQ & Seitzinger S (1996) The fate of nitrogen and phosphorus at the land-sea margin of the North Atlantic Ocean, (this volume)

    Google Scholar 

  • OECD (1977) The OECD Programme on Long Range Transport of Air Pollutants: Measurements and Findings, Paris

    Google Scholar 

  • Oort AH (1983) Global atmospheric circulation statistics, 1958–1973, NOAA professional paper, 14, US Government printing office, Washington DC

    Google Scholar 

  • Owens NJP, Galloway JN & Duce RA (1992) Episodic atmospheric nitrogen deposition to the oligotrophic oceans. Nature 357: 397–399

    Google Scholar 

  • Pacyna JM, Larssen S & Semb A (1989) European Survey for NOx Emissions, 1985. Norsk Institutt for Luftforskning NILU OR 26/89 0–8668. Lillestrom, Norway.

    Google Scholar 

  • Paerl HW (1985) Enhancement of marine primary productivity by nitrogen enriched acid rain. Nature 315: 747–749

    Google Scholar 

  • Pfirman S, Wollenburg, I Theide J & Lange MA (1989) Lithogenic sediment on Arctic pack ice: potential aeolian flux and contribution to deep sea sediment. In: Leinen M & Sarnthein M (Eds) Paleoclimatology and Paleometeorology: Modern and Past Patterns of Global Atmospheric Transport (pp 463–493). Kluwer Academic Publ., Boston

    Google Scholar 

  • Prospero JM (1981) Aeolian transport to the world ocean. In: Emiliani C (Ed) The Sea, Vol. 7 The Oceanic Lithosphere (pp 801–874). Wiley Interscience, New York

    Google Scholar 

  • Prospero JM & Nees RT (1986) Impact of the North African drought and El Niño on mineral dust in the Barbados trade wind. Nature 320: 735–738

    Google Scholar 

  • Prospero JM, Glaccum RA & Nees RT (1986) Atmospheric transport of soil dust from Africa to South America. Nature 289: 570–572

    Google Scholar 

  • Prospero JM, Nees RT & Uematsu M (1987) Deposition rate of particulate and dissolved aluminum derived from Saharan dust in precipitation at Miami, Florida. J. Geophys. Res. 92: 14,723–14,731

    Google Scholar 

  • Prospero JM, Uematsu M & Savoie DL (1989) Mineral aerosol transport to the Pacific Ocean. In: Riley JP, Chester R & Duce RA (Eds) Chemical Oceanography, 10 (pp 187–218). Academic Press, London

    Google Scholar 

  • Prospero JM (1990) Mineral aerosol transport to the North Atlantic and North Pacific: the impact of African and Asian sources. In: Knap AH (Ed) The Long-Range Atmospheric Transport of Natural and Contaminant Substances (pp 59–86). Kluwer, Dordrecht

    Google Scholar 

  • Prospero JM (1996) The atmospheric transport of particles to the Ocean. In: Ittekkott V, Honjo S, Schäfer P & Depetris PJ (Eds) Particle Flux in the Ocean (pp 19–52). 1996 SCOPE Report 57. John Wiley & Sons Ltd

    Google Scholar 

  • Prospero JM, Barrett K, Dentener F, Galloway JN, Levy II H & Moody J (1995) Models Used to Estimate Atmospheric Transport and Deposition to the North Atlantic Basin. Unpublished workshop manuscript

    Google Scholar 

  • Pye K (1987) Aeolian Dust and Dust Deposits (p 334). Academic Press, London

    Google Scholar 

  • Quinn PK, Charlson RJ & Bates TS (1988) Simultaneous observations of ammonia in the atmosphere and ocean. Nature 335: 336–338

    Google Scholar 

  • Quinn PK, Bates TS, Johnson JE, Covert DS & Charlson RJ (1990) Interactions between the sulfur and reduced nitrogen cycles over the central Pacific Ocean. J. Geophys. Res. 95: 16,405–16,416

    Google Scholar 

  • Quinn PK, Asher WE & Charlson RJ (1992) Equilibria of the marine multiphase ammonia system. J. Atm. Chem. 14: 11–30

    Google Scholar 

  • Quinn PK, Barrett KJ, Dentener FJ, Lipschultz F & Kurtz KD (1996) Estimation of the air/sea exchange of ammonia for the North Atlantic Basin, (this volume)

    Google Scholar 

  • Rao CRN, Stowe LL & McClain EP (1989) Remote-Sensing of Aerosols over the Oceans Using AVHRR Data: Theory, Practice, and Applications. Int. J. Remote Sens. 10: 743–749

    Google Scholar 

  • Rendell AR, Ottley CJ, Jickells TD & Harrison RM (1993) The atmospheric input of nitrogen species to the North Sea. Tellus 45B: 53–63

    Google Scholar 

  • Riley JP, Chester R & Duce RA (1989) Chemical Oceanography, SEAREX, 10: 404. Academic Press, London

    Google Scholar 

  • Risbo T, Claussen HB & Rasmussen KL (1981) Supernovae and nitrate in the Greenland ice sheet. Nature 294: 637–639

    Google Scholar 

  • Rodhe H (1985) The transport of sulfur and nitrogen through the remote atmosphere. In: Galloway JN, Charlson RJ, Andreae MO & Rodhe H (Eds) The Biogeochemical Cycling of Sulfur and Nitrogen in the Remote Atmosphere (pp 105–124). Reidel, Dordrecht

    Google Scholar 

  • Sandnes H (1993) Calculated budgets for airborne acidifying components in Europe, 1985, 1987, 1988, 1989, 1990, 1991 and 1992. EMEP/MSC-W Report 1/93. Det Norske Meteorologiske Institutt Technical Report 109

    Google Scholar 

  • Savoie DL, Prospero JM, Oltmans SJ, Graustein WC, Turekian KK Merrill JT & Levy II H. (1992) Sources of nitrate and ozone in the marine boundary layer of the tropical North Atlantic. J. Geophys. Res. 97: 11,575–11,589

    Google Scholar 

  • Schlesinger WH & Hartley AE (1992) A global budget for atmospheric NH3. Biogeochem. 15: 191–211

    Google Scholar 

  • Schütz L, Jaenicke R & Pietrek H (1981) Sanaran dust transport over the North Atlantic Ocean. Geol. Soc. Am. Special Paper 186: 87–100

    Google Scholar 

  • Schütz LW, Prospero JM, Buat-Menard P, Carvalho RAC, Cruzado A, Harriss R, Heidam NZ & Jaenicke R (1990) The long-range transport of mineral aerosols: Group report In: Knap AH (Ed) The Large-Scale Atmospheric Transport of Natural and Contaminant Substances, Chapter 10 (pp 197–229). Kluwer Academic, Dordrecht, Holland

    Google Scholar 

  • Spokes LJ, Jickells TD & Lim B (1994) Solubilisation of aerosol metals by cloud processing: A laboratory study. Geochim. et Cosmochim. Acta 58(15): 3281–3287

    Google Scholar 

  • Stedman DH & Shetter R (1983) The global budget of atmopsheric nitrogen species. In: Schwartz SS (Ed) Trace Atmospheric Constituents: Properties, Transformations and Fates. John Wiley & Sons, New York

    Google Scholar 

  • Swap R, Garstang M, Graco S, Talbot R & Kallberg P (1992) Sahara dust in the Amazon basin. Tellus 44B: 133–149

    Google Scholar 

  • Talbot RW, Harriss RC, Browell V, Gregory GL, Sebacher DI & Beck SM (1986) Distribution and geochemistry of aerosols in the tropical North Atlantic troposphere: Relationship to Sanaran dust. J. Geophys. Res. 91: 5173–5182

    Google Scholar 

  • Taylor SR & McLennan SM (1985) The Continental Crust: Its Composition and Evolution (pp 312). Blackwells, Oxford, England

    Google Scholar 

  • Tegen I & Fung I (1994) Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness. J. Geophys. Res. 99: 22,897–22,914

    Google Scholar 

  • Tegen I & Fung I (1995) Contribution to the atmospheric mineral aerosol load from land surface modification. J. Geophys. Res. 100: 18,707–18,726

    Google Scholar 

  • Tuovinen J-P, Barrett K & Styve H (1994) Transboundary Acid Pollution in Europe: calculated fields and budgets 1985–1993. EMEP/MSC-W Report 1/94. Det Norske Meteorologiske Institutt Technical Report. Oslo

    Google Scholar 

  • Uematsu M, Duce RA & Prospero JM (1985) Deposition of atmospheric mineral particles to the North Pacific. J. Atmos. Chem. 3: 123–138

    Google Scholar 

  • Wagenbach D, Munnich KO, Schotterer U & Oeschger H (1988) The anthropogenic impact on snow chemistry at Colle Gnifetti, Swiss Alps. Annal. Glaciol. 10: 183–187

    Google Scholar 

  • Warneck P (1988) Chemistry of the Natural Atmosphere (pp 757). Academic Press, San Diego

    Google Scholar 

  • Whelpdale DM & Moody JL (1990) Large-scale meteorological regimes and transport process In: Knap AH & Marston MS (Eds) The Large-Scale Atmospheric Transport of Natural and Contaminant Substances (pp 3–36).

    Google Scholar 

  • D. Reidel, Dordrecht, Holland Whelpdale DM & Galloway JN (1994) Sulfur and reactive nitrogen oxide fluxes in the North Atlantic atmosphere. Global Biogeochem. Cycles 8: 481–493

    Google Scholar 

  • Whelpdale DM & Kaiser MS (1996) Acid Deposition Assessment Report. WMO/UNEP, Geneva

    Google Scholar 

  • Whitlow S, Mayewski PA & Dibb JE (1992) A comparison of major chemical species input timing and accumulation at South Pole and Summit, Greenland. Atmos. Environ. 26: 2045–2054

    Google Scholar 

  • Willey JD & Paerl HW (1993) Enhancement of chlorophyll a production in Gulf Stream surface seawaterby synthetic versus natural rain. Marine Biology 116: 329–334

    Google Scholar 

  • Williams PM (1967) Sea surface chemistry: Organic carbon and organic and inorganic nitrogen and phosphorus in surface films and subsurface waters. Deep Sea Res. 14: 791–800

    Google Scholar 

  • Yienger JJ & Levy II H (1995) Global inventory of soil-biogenic NOx emissions, J. Geophys. Res. 100: 11,447–11,464

    Google Scholar 

  • Young RW, Carder KL, Betzer PR, Costello DK, Duce RA, DiTullio GR, Tindale NW, Laws EA, Uematsu M, Merrill JT & Feely RA (1991) Atmospheric iron inputs and primary productivity: Phytoplankton responses in the North Pacific. Global Biogeochem. Cycles 5: 119–134

    Google Scholar 

  • Zhu XR, Prospero JM, Millero FJ, Savoie DL & Brass GW (1992) The solubility of ferric ion in marine mineral aerosol solutions at ambient relative humidities. Mar. Chem., 38: 91–107

    Google Scholar 

  • Zhu X, Prospero JM, Savoie DL, Millero FJ, Zika RG & Saltzman ES (1993) Photoreduction of Fe(III) in marine mineral aerosol solutions. J. Geophys. Res. 98: 9039–9046

    Google Scholar 

  • Zhuang GS, Duce RA & Kester DR (1990) The solubility of atmospheric iron in surface seawater of the open ocean. J. Geophys. Res. 95: 16,207–16,216

    Google Scholar 

  • Zhuang G, Yi Z, Duce RA & Brown PR (1992) Chemistry of iron in marine aerosols. Global Biogeochem. Cycles 6: 161–173

    Google Scholar 

  • Zimmermann PH (1988) Moguntia: A handy global tracer model. In: van Dop H (Ed) Air Pollution Modeling and its Applications VI. Plenum, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Robert W. Howarth

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Prospero, J.M. et al. (1996). Atmospheric deposition of nutrients to the North Atlantic Basin. In: Howarth, R.W. (eds) Nitrogen Cycling in the North Atlantic Ocean and its Watersheds. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1776-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1776-7_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7293-9

  • Online ISBN: 978-94-009-1776-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics