Skip to main content

The Archaean Karelia and Belomorian Provinces, Fennoscandian Shield

  • Chapter
  • First Online:
Evolution of Archean Crust and Early Life

Abstract

The Archaean bedrock of the Karelia and Belomorian Provinces is mostly composed of granitoids and volcanic rocks of greenstone belts whose ages vary from c. 3.50 to 2.66 Ga. Neoarchaean rocks are dominant, since Paleoarchaean and Mesoarchaean granitoids (> 2.9 Ga) are only locally present. The granitoid rocks can be classified, based on their major and trace element compositions and age, into four main groups: TTG (tonalite-trondhjemite-granodiorite), sanukitoid, QQ (quartz diorite-quartz monzodiorite) and GGM (granodiorite-granite-monzogranite) groups. Most ages obtained from TTGs are between 2.83–2.72 Ga, and they seem to define two age groups separated by a c. 20 m.y. time gap. TTGs are 2.83–2.78 Ga in the older group and 2.76–2.72 Ga in the younger group. Sanukitoids have been dated at 2.74–2.72 Ga, QQs at c. 2.70 Ga and GGMs at 2.73–2.66 Ga. Based on REE, the TTGs fall into two major groups: low-HREE (heavy rare earth elements) and high-HREE TTGs, which originated at various crustal depths. Sanukitoids likely formed from partial melting of subcontinental metasomatized mantle, whereas the GGM group from partial melting of pre-existing TTG crust.

The Karelia and Belomorian Provinces include a large number of generally NNW-trending greenstone belts, whose tectonic settings of origin may include an oceanic plateau, island arc and/or continental rift. The ages of volcanic rocks in these greenstone belts vary from 3.05 to 2.70 Ga.

Migmatized amphibolites occur as layers and inclusions in TTGs and fall into two main groups on the basis of their trace element contents. Rocks of the first group have flat or LREE-depleted trace element patterns, resembling the modern mid-ocean ridge basalts. Rocks of the second group are enriched in LILE and LREE may in part represent metamorphosed dykes with assimilated and/or diffused crustal signatures from their TTG country rocks.

Metamorphism of the TTG complexes occurred under upper amphibolite and granulite facies conditions at c. 2.70–2.60 Ga. The pressures of the regional metamorphism were mostly c. 6.5–7.5 kbar as constrained by geobarometry, and the corresponding temperatures were c. 650–740 °C. The granulites near the western boundary of the Karelia Province were equilibrated at c. 9–11 kbar and 800–850 °C. Subduction-related eclogites in the Belomorian Province were metamorphosed at pressures up to 20 kbars in two stages around 2.88-2.81 Ga and c. 2.72 Ga. In other greenstone belts the observed metamorphic conditions show significant variations. In the central parts of the Ilomantsi greenstone belt the observed metamorphic P and T values are c. 3–4 kbars and 550–590oC, and in the Kuhmo greenstone belt 16–17 kbar and 650–690 °C, respectively.

Neoarchaean accretion of exotic terranes at c. 2.83–2.75 Ga and the subsequent collisional stacking at ~ 2.73–2.68 Ga were instrumental in the construction of the current crustal architecture of the Karelia Province. The Svecofennian orogeny strongly modified, however, this Neoarchaean crustal structure during the early Proterozoic

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott DH, Mooney WD (1995) Crustal structure and evolution: support for the oceanic plateau model of continental growth. Rev Geophys (Supplement, US National Report to the IUGG):231–242

    Google Scholar 

  • Agard P, Yamato P, Jolivet L, Burov E (2009) Exhumation of oceanic blueschists and eclogites in subduction zones: timing and mechanisms. Earth-Sci Rev 92:53–79

    Google Scholar 

  • Alekseev NL, Balagansky VV, Zinger TF et al (2004) Late Archean History of the Belomorian Mobile Belt and the Karelia Craton Junction Zone, Baltic Shield. Doklady Earth Sci 397A:743–746

    Google Scholar 

  • Arestova NA, Gooskova EG, Krasnova AF (2000) Palaeomagnetism of the Shilos Structure rocks in the Southern Vygozero greenstone belt, East Karelia. Fizika Zemli (Earth Physics—English translation) 5:70–75

    Google Scholar 

  • Arndt NT, Lesher CM, Houl MG, Lewin E, Lacaze Y (2004) Intrusion and crystallization of a Spinifex-textured komatiite sill in Dundonald Township, Ontario. J Petrol 45:2555–2571

    Google Scholar 

  • Barnes SJ, Roeder PL (2001) The range of spinel compositions in terrestrial mafic and ultramafic rocks. J Petrol 42:2279–2302

    Google Scholar 

  • Barr JA, Grove TL, Wilson AH (2009) Hydrous komatiites from commondale, South Africa: an experimental study. Earth Planetary Sci Lett 284:199–207

    Google Scholar 

  • Beaumont C, Ellis S, Hamilton J, Fullsack P (1996) Mechanical model for subduction-collision tectonics of Alpine-type compressional orogens. Geology 24:675–678

    Google Scholar 

  • Beaumont C, Ellis S, Pfiffner A (1999) Dynamics of sediment subduction-accretion at convergent margins: short-term modes, long-term deformation, and tectonic implications. J Geophys Res 104:17573–17602

    Google Scholar 

  • Benn K, Mareschal J-C, Condie KC (2006) Introduction: archean geodynamics and environments. In: Benn K, Mareschal J-C, Condie KC (eds) Archean geodynamics and environments. Geophysical monograph 164:1–5

    Google Scholar 

  • Berman RG (1988) Internally-consistent thermodynamic data for stoichiometric minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. J Petrol 29:445–522

    Google Scholar 

  • Berman RG (1991) Thermobarometry using multiequilibrium calculations: a new technique with petrologic applications. Can Mineral 29:833–855

    Google Scholar 

  • Bibikova EV, Slabunov AI, Bogdanova SV et al (1999) Early magmatism of the Belomorian mobile belt (Baltic Shield):lateral zonation and isotopic age. Petrology 7:123–146

    Google Scholar 

  • Bibikova EV, Glebovitskii VA, Claesson S et al (2001a) New isotopic data on the protolith age and evolutionary stages of the Chupa formation, Belomorian belt. Geochem Int 39(1):12–17

    Google Scholar 

  • Bibikova E, Skiöld T, Bogdanova S et al (2001b) Titanite-rutile thermochronometry across the boundary between the Archaean Craton in Karelia and the Belomorian Mobile Belt, eastern Baltic Shield. Precambrian Res 105:315–330

    Google Scholar 

  • Bibikova EV, Ihlen PM, Marker M (2001c) Age of hydrothermal alteration leading to garnetite and kyanite pseudo-quarzite formation in the Khizovaara segment of the archaean Keret greenstone belt, Russian Karelia In: SVEKALAPKO. 6th Workshop. Lammi. Finland. University of Oulu, Finland, Department of Geophysics report p 15.

    Google Scholar 

  • Bibikova EV, Samsonov AV, Shchipansky AA, Bogina MM, Gracheva TV, Makarov VA (2003) The Hisovaara Structure in the Northern Karelian Greenstone Belt as a Late Archean Accreted Island Arc:isotopic geochronological and petrological evidence. Petrology 11(3):261–290

    Google Scholar 

  • Bibikova EV, Bogdanova SV, Glebovitskii VA et al (2004) Evolution of the Belomorian Belt: NORDSIM U-Pb zircon dating of the Chupa Paragneisses, magmatism and metamorphic stages. Petrology 12(3):195–210

    Google Scholar 

  • Bibikova EV, Petrova A, Claesson S (2005) The temporal evolution of sanukitoids in the Karelian Craton, Baltic Shield:an ion microprobe U–Th–Pb isotopic study of zircons. Lithos 79:129–145

    Google Scholar 

  • Blake TS, Buick R, Brown SJA et al (2004) Geochronology of a Late Archaean flood basalt province in the Pilbara Craton, Australia: constraints on basin evolution, volcanic and sedimentary accumulation, and continental drift rates. Precambrian Res 133:143–173

    Google Scholar 

  • Bleeker W, Ernst R (2006) Short-lived mantle generated magmatic events and their dyke swarms:the key unlocking Earth’s palaeogeographic record back to 2.6 Ga. In: Hanski E, Mertanen S, Rämö OT and Vuollo J (eds) Dyke Swarms—time markers of crustal evolution: proceedings of the fifth international Dyke conference 2005 Rovaniemi, 31 July–3 Aug 2005, Fourth International Dyke Conference, Kwazulu-Natal, 26–29 June 2001. Taylor, Francis Group, London, pp 3–26

    Google Scholar 

  • Bleeker W, Hamilton MA, Ernst RE, Kulikov VS (2008) The search for Archean-Paleoproterozoic supercratons; new constraints on Superior-Karelia-Kola correlations within supercraton Superia including the first ca 2504 Ma (Mistassini) ages from Karelia. 33rd international geological congress abstracts

    Google Scholar 

  • Blichert-Toft J, Albarede F (1994) Short-lived chemical heterogeneities in the Archean mantle with implications for mantle convection. Science 263:1593–1596

    Google Scholar 

  • Borisova EYu, Bibikova EV et al (1997) U–Pb age and nature of magmatic complex of Seryak mafic zone (the Belomorian Mobile Belt) Baltic Shield. Terra Nova Abstracts 9, p 132

    Google Scholar 

  • Boynton WV (1984) Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam, pp 63–114

    Google Scholar 

  • Brown M (2007) Metamorphic conditions in orogenic belts: a record of secular change. International Geology Review 49:193–234

    Google Scholar 

  • Brown M (2009) Metamorphic patterns in orogenic systems and the geological record. In: Cawood PA, Kröner A (eds) Earth accretionary systems in space and time vol 318. The geological society London special publications, pp 37–74

    Google Scholar 

  • Card KD (1990) A review of the superior province of the Canadian shield, a product of Archean accretion. Precambrian Res 48:99–156

    Google Scholar 

  • Castillo PR (2006) An overview of adakite petrogenesis. Chinese Science Bulletin 51(3):257–268

    Google Scholar 

  • Castillo PR, Janney PE, Solidum RU (1999) Petrology and geochemistry of Camiguin Island southern Philippines:insights to the source of adakites and other lavas in a complex arc setting. Contrib Mineral Petrol 134:33–51

    Google Scholar 

  • Cawood P, Kröner A, Windley B (2003) Accretionary orogens:definition character significance. Geophys Res Abs 5:04856

    Google Scholar 

  • Champion DC, Smithies RH (2007) Geochemistry of Paleoarchean granites of the East Pilbara Terrane, Pilbara Craton, Western Australia: implications for early Archean crustal growth. Dev Precambrian Geol 15:369–409

    Google Scholar 

  • Condie KC (1998) Episodic continental growth and supercontinents: a mantle avalanche connection? Earth Planetary Sci Lett 163:97–108

    Google Scholar 

  • Condie KC (2000) Episodic continental growth models: afterthoughts and extensions. Tectonophysics 322:153–162

    Google Scholar 

  • Condie KC (2005) High field strength element ratios in Archean basalts:a window to evolving sources of mantle plumes? Lithos 79:491–504

    Google Scholar 

  • Condie KC, Benn K (2006) Archean geodynamics: similar to or different from modern geodynamics. In: Benn K, Mareschal J-C, Condie KC (eds) Archean Geodynamics and Environments Geophysical Monograph 164:47–60

    Google Scholar 

  • Connolly JAD (1990) Multivariable phase-diagrams—an algorithm based on generalized thermodynamics. Am J Sci 290:666–718

    Google Scholar 

  • Connolly JAD (2005) Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planetary Sci Lett 236:524–541

    Google Scholar 

  • Connolly JAD, Petrini K (2002) An automated strategy for calculation of phase diagram sections and retrieval of rock properties as a function of physical conditions. J Metamorphic Geology 20:697–708

    Google Scholar 

  • Corcoran PL, Mueller WU, Kusky TM (2004) Inferred ophiolites in the Archean Slave Craton. In: Kusky TM (ed) Precambrian ophiolites and related rocks. Dev in Precambrian Geology 13:363–404

    Google Scholar 

  • Daly JS, Balagansky VV, Timmerman MJ, Whitehouse MJ et al (2001) Ion microprobe U-Pb zircon geochronology and isotopic evidence supporting a trans-crustal suture in the Lapland Kola Orogen, northern Fennoscandian Shield. Precambrian Res 105:289–314

    Google Scholar 

  • Daly JS, Balagansky VV, Timmerman MJ et al (2006) The Lapland-Kola Orogen: Palaeoproterozoic collision and accretion of the northern Fennoscandian lithosphere. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics. Geological Society of London Memoir 32:579–598

    Google Scholar 

  • Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 367:662–665

    Google Scholar 

  • Defant MJ, Drummond MS (1993) Mount St Helens:potential example of the partial melting of the subducted lithosphere in a volcanic arc. Geology 21:547–550

    Google Scholar 

  • deWit MJ, Hart RA (1993) Earth’s earliest continental lithosphere hydrothermal flux and crustal recycling. Lithos 30:309–335

    Google Scholar 

  • deWit MJ (1998) On Archean granites greenstones cratons and tectonics: does the evidence demand a verdict? Precambrian Res 91:181–226

    Google Scholar 

  • Dilek Y, Polat A (2008) Suprasubduction zone ophiolites and Archean tectonics. Geology 36:431–432

    Google Scholar 

  • Dilek Y, Furnes H (2011) Ophiolite genesis and global tectonics: geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geol Soc Am Bull 123:387–411

    Google Scholar 

  • Elming S-Å, Pesonen LJ, Leino MAH et al (1993) The drift of the Fennoscandian and Ukrainian Shields during the Precambrian: a Palaeomagnetic analysis. Tectonophysics 223:177–198

    Google Scholar 

  • Foley S, Tiepolo M, Vannucci R (2002) Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature 417:837–840

    Google Scholar 

  • Frey FA, Coffin MF, Wallace PJ et al (2000) Origin and evolution of a submarine large igneous province: the Kerguelen Plateau and Broken Ridge, southern Indian Ocean. Earth and Planetary Sci Lett 176:73–89

    Google Scholar 

  • Goodwin AM (1968) Archean protocontinental growth and early crustal history of the Canadian shield. 23rd International Geological Gongress. Prague 1:69–89

    Google Scholar 

  • Gooskova EG, Krasnova AN (1985) Palaeomagnetism of the basic Archean and Proterozoic intrusions of the eastern part of the Baltic Shield. Izvestia Akademii Nauk SSSR ser Fizika Zemli (Earth Physics—English translation) 21:366–373

    Google Scholar 

  • Grove TL, Parman SW (2004) Thermal evolution of the Earth as recorded by komatiites. Earth and Planetary Sci Lett 219:173–187

    Google Scholar 

  • Gruau G, Tourpin S, Fourcade S et al (1992) Loss of isotopic (Nd, O) and chemical (REE) memory during metamorphism of komatiites: new evidence from eastern Finland. Contrib Mineral Petrol 112:66–82

    Google Scholar 

  • Gutscher M-A, Maury R, Eissen J-P et al (2000) Can slab melting be caused by flat subduction? Geology 28(6):535–538

    Google Scholar 

  • Halla J (2002) Origin and Paleoproterozoic reactivation of Neoarchean high-K granitoid rocks in eastern Finland. PhD thesis, University of Helsinki, Finland. Annales Academica Scientiarium Fennicae, Geologica-Geographica, vol 163

    Google Scholar 

  • Halla J (2005) Late Archean high-Mg granitoids (sanukitoids) in the southern Karelian domain eastern Finland: Pb and Nd isotopic constraints on crust-mantle interactions. Lithos 79:161–178

    Google Scholar 

  • Halla J, Heilimo E (2009) Deformation-induced Pb isotope exchange between Kfeldspar and whole rock in Neoarchean granitoids:implications for assessing Proterozoic imprints. Chem Geol 265:303–312

    Google Scholar 

  • Halla J, van Hunen J, Heilimo E et al (2009) Geochemical and numerical constraints on Neoarchean plate tectonics. Precambrian Res 174:155–162

    Google Scholar 

  • Hamilton WB (1998) Archean magmatism and tectonics were not products of plate tectonics. Precambrian Res 91:143–179

    Google Scholar 

  • Hamilton WB (2011) Plate tectonics began in Neoproterozoic time and plumes from deep mantle have never operated. Lithos 123:1–20

    Google Scholar 

  • Heilimo E, Halla J, Hölttä P (2010) Discrimination and origin of the sanukitoid series: geochemical constraints from the Neoarchean western Karelian Province (Finland). Lithos 115:27–39

    Google Scholar 

  • Heilimo E, Halla J, Huhma H (2011) Single-grain zircon U–Pb age constraints of the western and eastern sanukitoid zones in the Finnish part of the Karelian Province. Lithos 121:87–99

    Google Scholar 

  • Heilimo E, Halla J, Mikkola P (2012) Neoarchean sanukitoid series intrusions in the Karelian domain eastern Finland. Geological Survey of Finland Special Paper 54:213–224

    Google Scholar 

  • Heilimo E, Halla J, Andersen T et al (2013) Neoarchean crustal recycling and mantle metasomatism: Hf–Nd–Pb–O isotope evidence from sanukitoids of the Fennoscandian shield. Precambrian Res 228:250–266

    Google Scholar 

  • Hirose K (2010) The Earth’s missing ingredient. Scientific American 302(6):58–65

    Google Scholar 

  • Hölttä P (1997) Geochemical characteristics of granulite facies rocks in the Varpaisjärvi area central Fennoscandian Shield. Lithos 40:31–53

    Google Scholar 

  • Hölttä P, Paavola J (2000) P-T-t development of Archaean granulites in Varpaisjärvi Central Finland I: effects of multiple metamorphism on the reaction history of mafic rocks. Lithos 50:97–120

    Google Scholar 

  • Hölttä P, Huhma H, Mänttäri I et al (2000a) P-T-t development of Archaean granulites in Varpaisjärvi, Central Finland II: Dating of high-grade metamorphism with the U-Pb and Sm-Nd methods. Lithos 50:121–136

    Google Scholar 

  • Hölttä P, Huhma H, Mänttäri I et al (2000b) Petrology and geochemistry of mafic granulite xenoliths from the Lahtojoki kimberlite pipe, eastern Finland. Lithos 51:109–133

    Google Scholar 

  • Hölttä P, Balagansky V, Garde AA et al (2008) Archean of Greenland and Fennoscandia. Episodes 31(1):1–7

    Google Scholar 

  • Hölttä P, Heilimo E, Huhma H et al (2012) The Archaean of the Karelia Province in Finland. Geological Survey of Finland Special Paper 54:21–72

    Google Scholar 

  • Huhma H, Mänttäri I, Peltonen P et al (2012a) The age of the Archaean greenstone belts in Finland. Geological Survey of Finland Special Paper 54:73–174

    Google Scholar 

  • Huhma H, Kontinen A, Mikkola P et al (2012b) Nd isotopic evidence for Archaean crustal growth in Finland. Geological Survey of Finland Special Paper 54:175–212

    Google Scholar 

  • Jones DL (1990) Synopsis of late Palaeozoic and Mesozoic terrane accretion within the Cordillera of western North America. In: Dewey JF, Gass IG, Curry GB, Harris NBW, Sengör AMC (eds) Allochthonous Terranes. Cambridge University Press, Cambridge, pp 23–30

    Google Scholar 

  • Jones DL, Howell PG, Coney PJ et al (1983) Recognition character and analysis of tectonostratigraphic terranes in western North America. J of Geol Educ 31:295–303

    Google Scholar 

  • Kaulina TV (2010) Obrazovanie i preobrazovanie zirkona v polimetamorficheskizh kompleksazh (Formation and recrystallization of zircons in polymetamorphic complexes). KNC RAN, Apatity pp 1–114

    Google Scholar 

  • Kaulina T, Apanasevich E (2005) Late archaean eclogites of the Kola Peninsula (NE Baltic shield): U-Pb and Sm-Nd data. In: Proyer A, Ettinger K (eds) 7nd International Eclogite Conference. Mitteilungen der Österreichischen Mineralogischen Gesellschaft, vol 150, p 64

    Google Scholar 

  • Käpyaho A, Mänttäri I, Huhma H (2006) Growth of Archaean crust in the Kuhmo district, eastern Finland: U-Pb and Sm-Nd isotope constraints on plutonic rocks. Precambrian Res 146:95–119

    Google Scholar 

  • Käpyaho A, Hölttä P, Whitehouse M (2007) U-Pb zircon geochronology of selected Neoarchaean migmatites in eastern Finland. Bull of the Geol Soc of Finland 79(1):95–115

    Google Scholar 

  • Kohonen J, Luukkonen E, Sorjonen-Ward P (1991) Nunnanlahti and Holimäki shear zones in North Karelia: evidence for major early Proterozoic ductile deformation of Archean basement and further discussion of regional kinematic evolution. In: Geological Survey of Finland, Current Research 1989-1990. Geological Survey of Finland. Special Paper 12:11–16

    Google Scholar 

  • Konilov A, Shchipansky AA, Mints MV et al (2010) The Salma Eclogites of the Belomorian Province, Russia: HP/UHP Metamorphism through the subduction of Mesoarchean oceanic crust). In: Dobrzhinetskaya LF, Faryad SW, Wallis S, Cuthbert S (eds) Ultrahigh-pressure metamorphism 25 years after the discovery of Coesite and Diamond. Elsevier, London p 623

    Google Scholar 

  • Kontinen A, Paavola J (2006) A preliminary model of the crustal structure of the eastern Finland Archaean complex between Vartius and Vieremä based on constraints from surface geology and FIRE 1 seismic survey. Geological Survey Finland Special Paper 43:223–240

    Google Scholar 

  • Kontinen A, Paavola J, Lukkarinen H (1992) K-Ar ages of hornblende and biotite from Late Archaean rocks of eastern Finland—interpretation and discussion of tectonic implications. Geological Survey of Finland Bulletin 365:31

    Google Scholar 

  • Kontinen A, Käpyaho A, Huhma H et al (2007) Nurmes paragneisses in eastern Finland Karelian craton: provenance tectonic setting and implications for Neoarchaean craton correlation. Precambrian Res 152:119–148

    Google Scholar 

  • Korenaga J (2006) Archean geodynamics and the thermal evolution of Earth. In: Benn K, Mareschal J-C, Condie KC (eds) Archean Geodynamics and Environments. Geophysical Monograph 164:7–32

    Google Scholar 

  • Korja A, Lahtinen R, Heikkinen P et al (2006) A geological interpretation of the upper crust along FIRE 1. Geological Survey Finland Special Paper 43:45–76

    Google Scholar 

  • Kozhevnikov VN (2000) Arzheiskie zelenokamennie pojsa Karel’skogo kratona kak akkreshionnie orogeni (Archean greenstone belts of the Karelian Craton as accretionary orogens). KNC RAN, Petrozavodsk, pp 1–223

    Google Scholar 

  • Kozhevnikov VN, Samsonov AV, Shchipansky AA (2005) Arzheiskii Zhizovarskii zelenokamennii kompleks v raione ozera Verzhnee (Archean greenstone complex of the Hisovaara structure, Lake Verzhnee area). In: Volodichev OI, Slabunov AI (eds) Belomorian mobile belt and its analogues: geology, geochronology, geodynamics and metallogeny. Extended Abstracts and Field Trip Guide Book. KarRC RAS, Petrozavodsk, pp 31–52

    Google Scholar 

  • Kozhevnikov VN, Berezhnaya NG, Presnyakov SL et al (2006) Geochronology (SHRIMP-II) of zircon from archean lithotectonic associations in the greenstone belts of the Karelia craton: implications for stratigraphic and geodynamic reconstructions Stratigraphy and Geological Correlation 14:240–259

    Google Scholar 

  • Kozhevnikov VN, Shchipansky AA (2008) Neoarchean Khizovaara Greenstone complex in the lake Verkhneye area. In: Peltonen P, Hölttä P, Slabunov A (eds) Karelian Craton transect (Finland, Russia): Precambrian greenstone belts, ophiolites and eclogites. 33rd International Geological Congress, Excursion No 18. Oslo, p 33

    Google Scholar 

  • Krasnova AF, Gooskova EG (1990) Geodynamic evolution of the Vodlozero block of Karelia according to palaeomagnetic data. Izvestiya Earth Physics 26:80–85

    Google Scholar 

  • Kröner A, Layer PW (1994) Crust formation and plate motion in the early Archean. Science 256:1405–1411

    Google Scholar 

  • Kusky TM, Kidd WSF (1992) Remnants of an Archean oceanic plateau Belingwe greenstone belt, Zimbabwe. Geology 20:43–46

    Google Scholar 

  • Kusky TM, Polat A (1999) Growth of granite-greenstone terranes at convergent margins and stabilization of Archean cratons. Tectonophysics 305:43–73

    Google Scholar 

  • Kusky TM, Li JH, Raharimahefa T et al (2004) Origin and emplacement of Archean ophiolites of the Central Orogenic Belt, North China Craton. In: Kusky TM (ed) Precambrian ophiolites and related rocks. Dev in Precambrian Geol 13:223–282

    Google Scholar 

  • Langford FF, Morin JA (1976) The development of the Superior Province of northwestern Ontario by merging island arcs. Am J of Sci 276:1023–1034

    Google Scholar 

  • Lauri LS, Andersen T, Hölttä P et al (2011) Evolution of the Archaean Karelian Province in the Fennoscandian Shield in the light of U–Pb zircon ages and Sm–Nd and Lu–Hf isotope systematics. J of the Geol Soc London 167:1–18

    Google Scholar 

  • Levchenkov OA, Mil’kevich RI, Miller YuV et al (2003) U–Pb isotope age of metaandesites in the upper sequence of the Tikshozero Greenstone Belt (Lake Verkhnie Kichany, Northern Karelia). Doklady Earth Sciences 389A:384–387

    Google Scholar 

  • Lobach-Zhuchenko SB, Chekulaev VP, Stepanov VS et al (1998) The white sea foldbelt—late Archean accretion- and collision-related zone of the Baltic Shield. Doklady Earth Sciences 358:34–37

    Google Scholar 

  • Lobach-Zhuchenko SB, Arestova NA, Chekulaev VP et al (1999) Evolution of the Yuzhno-Vygozero greenstone belt, Karelia. Petrology 7(2):160–176

    Google Scholar 

  • Lobach-Zhuchenko SB, Arestova NA, Mil’kevich RI et al (2000a) Stratigraphy of the Kostomuksha Belt in Karelia (Upper Archean) as Inferred from Geochronological, Geochemical, and Isotopic Data. Stratigraphy and Geological Correlation 8(4):319–326

    Google Scholar 

  • Lobach-Zhuchenko SB, Chekulaev VP, Arestova NA et al (2000b) Archean terranes in Karelia: geological and isotopic–geochemical evidence. Geotectonics 34(6):452–466

    Google Scholar 

  • Lobach-Zhuchenko SB, Rollinson HR, Chekulaev VP et al (2005) The Archaean sanukitoid series of the Baltic Shield: geological setting, geochemical characteristics and implications for their origin. Lithos 79:107–128

    Google Scholar 

  • Lobach-Zhuchenko SB, Rollinson H, Chekulaev VP et al (2008) Petrology of a late Archaean highly potassic sanukitoid pluton from the Baltic Shield: insights into late Archaean mantle metasomatism. J of Petrol 49(3):393–420

    Google Scholar 

  • Lubnina NV, Slabunov AI (2009) Paleomagnetism in the Neoarchean Polyphase Panozero Intrusion in the Fennoscandian Shield. Moscow University Geology Bulletin 64(6):346–353

    Google Scholar 

  • Luukkonen EJ (1992) Late Archaean and early Proterozoic structural evolution in the Kuhmo-Suomussalmi terrain eastern Finland. Publications of the University of Turku, Series A II Biologica—Geographica—Geologica, University of Turku, vol. 78

    Google Scholar 

  • Männikkö KH (1988) Myöhäisarkeeisen Koveron liuskejakson länsiosan deformaatio ja metamorfoosi. Pohjois-Karjalan malmiprojekti, Raportti 15. Oulu: Oulun yliopisto (Metamorphism and deformation of the late Archaean Kovero schist belt. North Karelian Ore Project, Report 15, University of Oulu, in Finnish)

    Google Scholar 

  • Mänttäri I, Hölttä P (2002) U-Pb dating of zircons and monazites from Archean granulites in Varpaisjärvi central Finland: evidence for multiple metamorphism and Neoarchean terrane accretion. Precambrian Res 118:101–131

    Google Scholar 

  • Martin H (1995) The Archean grey gneisses and the genesis of the continental crust. In: Condie KC (ed) The Archean crustal evolution. Elsevier, Amsterdam, pp 205–259

    Google Scholar 

  • Martin H (1999) The adakitic magmas: modern analogues of Archaean granitoids. Lithos 46:411–429

    Google Scholar 

  • Martin H, Moyen J-F (2002) Secular changes in tonalite-trondhjemite-granodiorite composition as markers of the progressive cooling of Earth. Geology 30(4):319–322

    Google Scholar 

  • Martin H, Auvray B, Blais S et al (1984) Origin and geodynamic evolution of the Archean crust of eastern Finland. Bullet Geol Soc Finland 56:135–160

    Google Scholar 

  • Martin H, Smithies RH, Rapp R et al (2005) An overview of adakite tonalite–trondhjemite–granodiorite (TTG) and sanukitoid: relationships and some implications for crustal evolution. Lithos 79:1–24

    Google Scholar 

  • Mertanen S, Pesonen LJ, Hölttä P et al (2006a) Palaeomagnetism of Palaeo-proterozoic dolerite dykes in central Finland. In: Hanski E, Mertanen S, Rämö OT, Vuollo J (eds) Dyke Swarms—time markers of crustal evolution. Proceedings of the fifth international Dyke Conference IDC5 Rovaniemi Finland 31 July–3 August 2005. Taylor Francis Group/Balkema, pp 243–256

    Google Scholar 

  • Mertanen S, Vuollo JI, Huhma H et al (2006b) Early Paleoproterozoic-Archean dykes and gneisses in Russian Karelia of the Fennoscandian Shield—new paleomagnetic isotope age and geochemical investigations. Precambrian Res 144(3–4):239–260

    Google Scholar 

  • Mertanen S, Korhonen F (2008) Archean-Paleoproterozoic configuration of Laurentia and Baltica focusing on paleomagnetic data from Baltica. 33rd International Geological Congress 6–14 August 2008 Oslo, Abstracts

    Google Scholar 

  • Mertanen S, Korhonen F (2011) Paleomagnetic constraints on an Archean-Paleoproterozoic Superior-Karelia connection; new evidence from Archean Karelia. Precambrian Res 186:193–204

    Google Scholar 

  • Mikkola P, Huhma H, Heilimo E et al (2011a) Archean crustal evolution of the Suomussalmi district as part of the Kianta Complex, Karelia; constraints from geochemistry and isotopes of granitoids. Lithos 125:287–307

    Google Scholar 

  • Mikkola P, Salminen P, Torppa A et al (2011b) The 2.74 Ga Likamännikkö complex in Suomussalmi East Finland: lost between sanukitoids and truly alkaline rocks? Lithos 125:716–728

    Google Scholar 

  • Mikkola P, Lauri LS, Käpyaho A (2012) Neoarchean leucogranitoids of the Kianta Complex Karelian Province, Finland: source characteristics and processes responsible for the observed heterogeneity. Precambrian Res 206–207:72–86

    Google Scholar 

  • Mil’kevich RI, Myskova TA (1998) Pozdnefrzheiskii metaterrennie porodi Zapadnoi Karelii: litologia, geozhimia, proiszhozhdenie (Late Archean Metaterrigenous rocks of the Western Karelia: Lithology, Geochemistry and Provenances). Lithology and Mineral Res 33(2):155–171

    Google Scholar 

  • Mil’kevich RI, Myskova TA, Glebovitsky VA (2007) Kalikorva structure and its position in the system of the Northern Karelian Greenstone Belts: geochemical and geochronological data. Geochem Int 45:428–450

    Google Scholar 

  • Mints MV, Berzin RG, Suleǐmanov AK et al (2004) The deep structure of the early Precambrian crust of the Karelian craton, southeastern Fennoscandian shield: results of investigation along CMP profile 4B. Geotectonics 38(2):87–102

    Google Scholar 

  • Mints MV, Belousova EA, Konilov AN et al (2010a) Mesoarchean subduction processes: 2.87 Ga eclogites from the Kola Peninsula, Russia. Geol 38:739–742

    Google Scholar 

  • Mints MV, Blokh YuI, Gusev GS et al (eds) (2010b) Glubinnaj stroenie, evoluchij i poleznie iskopaemie rannedokembriiskogo fundamenta Vostochno-Evropeisoi platformi. Tom 1. (Deep structure, evolution and useful minerals of the Early Precambrian basement of the East European Platform. Interpretation of data from reference profile1-EB and profiles 4B and TATSEIM. Vol. 1). GEOMAP, GEOS, Moscow, pp 1–408

    Google Scholar 

  • Moyen J-F (2009) High Sr/Y and La/Yb ratios: the meaning of the “adakitic signature”. Lithos 112:556–574

    Google Scholar 

  • Moyen J-F (2011) The composite Archaean grey gneisses: petrological significance and evidence for a non-unique tectonic setting for Archaean crustal growth. Lithos 123:21–36

    Google Scholar 

  • Moyen J-F, Stevens G (2006) Experimental constraints on TTG petrogenesis:implications for Archean geodynamics. In: Benn K, Mareschal J-C, Condie KC (eds) Archean Geodynamics and Environments. Geophysical Monograph 164:149–176

    Google Scholar 

  • Mutanen T, Huhma H (2003) The 3 5 Ga Siurua trondhjemite gneiss in the Archaean Pudasjärvi Granulite Belt, northern Finland. Bulletin of the Geological Society of Finland 75:51–68

    Google Scholar 

  • Myskova TA, Glebovitskii VA, Miller YuV et al (2003) Supracrustal sequences of the Belomorian mobile belt: primary composition age and genesis. Lithol Mineral Resour 11:3–19

    Google Scholar 

  • Nair R, Chacko T (2008) Role of oceanic plateaus in the initiation of subduction and origin of continental crust. Geology 36(7):583–586

    Google Scholar 

  • Nehring F, Foley SF, Hölttä P et al (2009) Internal differentiation of the Archean continental crust: fluid-controlled partial melting of granulites and TTG-amphibolite associations in central Finland. J of Petrol 50(1):3–35

    Google Scholar 

  • Neuvonen KJ, Korsman K, Kouvo O et al (1981) Paleomagnetism and age relationship of the rocks in the Main Sulphide Ore Belt in central Finland. Bulletin of the Geological Society of Finland 53:109–133

    Google Scholar 

  • Neuvonen KJ, Pesonen LJ, Pietarinen H (1997) Remanent Magnetization in the Archaean Basement and Cutting Diabase Dykes in Finland, Fennoscandian Shield. Geophysica 33(1):111–146

    Google Scholar 

  • O’Brien H, Huhma H, Sorjonen-Ward P (1993) Petrogenesis of the late Archean Hattu schist belt Ilomantsi eastern Finland: geochemistry and Sr Nd isotopic composition. Geological Survey of Finland Special Paper 17:147–184

    Google Scholar 

  • O’Connor JT (1965) A classification for Quartz-rich igneous rocks based on feldspar ratios. U.S. Geological Survey Professional Paper 525-B: B79–B84

    Google Scholar 

  • Ovchinnikova GV, Matrenichev VA, Levchenkov OA et al (1994) U-Pb and Pb-Pb isotopic studies of felsic volcanics from the Hautavaara greenstone structure, Central Karelia. Petrology 2(3):266–281

    Google Scholar 

  • Paavola J (1986) A communication on the U-Pb and K-Ar age relations of the Archaean basement in the Lapinlahti-Varpaisjärvi area central Finland. Geological Survey of Finland Bulletin 339:7–15

    Google Scholar 

  • Pajunen M, Poutiainen M (1999) Palaeoproterozoic prograde metasomatic-metamorphic overprint zones in Archaean tonalitic gneisses eastern Finland. Bull of the Geol Soci of Finland 71(1):73–132

    Google Scholar 

  • Papunen H, Halkoaho T, Luukkonen E (2009) Archaean evolution of the Tipasjärvi-Kuhmo-Suomussalmi Greenstone Complex Finland. Geol Survey of Finland Bulletin 403:1–68

    Google Scholar 

  • Patiño Douce AE (2004) Vapor-absent melting of tonalite at 15–32 kbar. J of Petrol 46(2):275–290

    Google Scholar 

  • Peacock SM, Rushmer T, Thompson AB (1994) Partial melting of subducting oceanic crust. Earth and Planetary Sci Lett 121:227–244

    Google Scholar 

  • Peltonen P, Mänttäri I, Huhma H et al (2006) Multi-stage origin of the lower crust of the Karelian craton from 3.5 to 1.7 Ga based on isotopic ages of kimberlite-derived mafic granulite xenoliths. Precambr Res 147:107–123

    Google Scholar 

  • Perchuk AL, Morgunova AA (2011) Contrasting basic rock eclogitization regimes in the Gridino high-pressure complex, Karelia. In: Slabunov AI, Perchuk AL (eds) Granulite and eclogite complexes in the Earth’s history. Extended Abstracts and Field Guide. Institute of Geology, Karelian Research Centre (KRC), Russian Academy of Sciences (RAS), Petrozavodsk, pp 162–164

    Google Scholar 

  • Percival JA, McNicoll V, Brown JL et al (2004) Convergent margin tectonics, central Wabigoon subprovince, Superior Province, Canada. Precambrian Res 132:213–244

    Google Scholar 

  • Percival J, Sanborn-Barrie M, Skulski T et al (2006) Tectonic evolution of the western Superior Province from NATMAP and Lithoprobe studies. Can J of. Earth Sci 43:1085–1117

    Google Scholar 

  • Petrone CM, Ferrari L (2008) Quaternary adakite—Nb-enriched basalt association in the western Trans-Mexican Volcanic Belt: is there any slab melt evidence? Contrib Mineral Petrol 156:73–86

    Google Scholar 

  • Polat A, Kerrich R (2000) Archean greenstone belt magmatism and the continental growth-mantle evolution connection: constraints from Th-U-Nb-LREE systematics of the 2.7 Ga Wawa subprovince, Superior Province, Canada. Earth and Planetary Sci Lett 175:41–54

    Google Scholar 

  • Polat A, Kerrich R (2006) Reading the geochemical fingerprints of Archean hot subduction volcanic rocks. In: Benn K, Mareschal J-C, Condie KC (eds) Archean Geodynamics and Environments. Geophysical Monograph 164:198–213

    Google Scholar 

  • Powell R, Holland TJB, Worley B (1998) Calculating phase diagrams involving solid solutions via non-linear equations with examples using THERMOCALC. J of Metamorphic Geol 16:577–588

    Google Scholar 

  • Puchtel I (2004) 3.0 Ga Olondo Greenstone Belt in the Aldan Shield E Siberia. In: Kusky T (ed) Precambrian ophiolites and related rocks. Dev in Precambrian Geol, vol. 13. Elsevier, Amsterdam, pp 405–423

    Google Scholar 

  • Puchtel IS, Hofmann AW, Mezger K et al (1998) Oceanic plateau model for continental crustal growth in the Archaean: a case study from the Kostomuksha greenstone belt, NW Baltic shield. Earth and Planetary Sci Lett 155:57–74

    Google Scholar 

  • Puchtel IS, Hofmann AW. Amelin YuV et al (1999) Combined mantle plume–island arc model for the formation of the 2.9 Ga Sumozero-Kenozero greenstone belt, SE Baltic Shield: isotope and trace element constraints. Geochimica et Cosmochimica Acta 63:3579–3595

    Google Scholar 

  • Puchtel IS, Brügmann GE, Hofmann AW (2001) 187Os-enriched domain in an Archean mantle plume: evidence from 28 Ga komatiites of the Kostomuksha greenstone belt, NW Baltic Shield. Earth and Planetary Sci Lett 186:513–526

    Google Scholar 

  • Rapp RP, Watson EB, Miller CF (1991) Partial melting of amphibolite/eclogite and the origin of Archaean trondhjemites and tonalites. Precambrian Res 51:1–25

    Google Scholar 

  • Rapp RP, Shimizu N, Norman MD (2003) Growth of early continental crust by partial melting of eclogite. Nature 425(9):605–609

    Google Scholar 

  • Rasilainen K, Lahtinen R, Bornhorst T (2007) Rock geochemical database of Finland, Manual. Geological Survey of Finland, Report of Investigation 164

    Google Scholar 

  • Rayevskaya MB, Gor’kovets VY, Svetova AI, Volodichev OI (1992) Stratigrafij dokembria Karelii. Opornii razrezi verzhnearcheiskzh otlozhenii (Precambrian stratigraphy of Karelia. Reference sections of Upper Archean deposits). Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, pp 1–191

    Google Scholar 

  • Richards JP, Kerrich R (2007) Adakite-like rocks: their diverse origins and questionable role in metallogenesis. Economic Geol 102(4):537–576

    Google Scholar 

  • Rollinson H (1993) Using geochemical data: evaluation, presentation, interpretation. Pearson Education Limited, Essex

    Google Scholar 

  • Rybakov SI, Svetova AI, Kulikov VS et al (1981) Vulkanizm arzheiskizh zelenokamennizh pojsov Karelii (Volcanism in the Archean Greenstone Belts of Karelia). Nauka, Leningrad, pp 1–154

    Google Scholar 

  • Samsonov AV (2004) Evoluchij magmatizma granit-zelenokamennizh oblastei Vostochno-Evropeiskogo kratona (Evolution of magmatism in the granite–greenstone domains of the East European Craton), Doctoral Dissertation. Institute of Geology of Ore deposits (IGEM), Russian Academy of Sciences, Moscow, pp 1–48

    Google Scholar 

  • Samsonov AV, Bogina MM, Bibikova EV et al (2005) The relationship between adakitic calc-alkaline volcanic rocks and TTGs: implications for the tectonic setting of the Karelian greenstone belts, Baltic Shield. Lithos 79:83–106

    Google Scholar 

  • Şengör AMC, Natal’in BA (1996) Turkic-type orogeny and its role in the making of the continental crust. Ann Rev of Earth and Planetary Sci 24:263–337

    Google Scholar 

  • Şengör AMC, Natal’in BA (2004) Phanerozoic analogues of Archaean oceanic basement fragments:Altaid ophiolites and ophirags. In: Kusky T (ed) Precambrian Ophiolites and Related Rocks. Dev in Precambrian Geol, vol 13. Elsevier, Amsterdam, pp 675–726

    Google Scholar 

  • Sergeev SA (1982) Geologia i izotopnaj geologia granit-zelenokamennizh kompleksov arzhej Chentral’noi I Ugo-Vostochnoi Karelii (Geology and isotopic geochronology of Archean granite-greenstone complexes in Central and Southeast Karelia). Dissertation, University of St Petersburg, St Petersburg, pp 1–24

    Google Scholar 

  • Sharov NV, Slabunov AI, Isanina EV et al (2010) Sejsmogeologicheskij razrez zemnoj kory po profilju GSZ—OGT “Susha-More” Kalevala-Kem’-gorlo Belogo morja (Seismic simulation of the Earth’s crust on the profiles DSS–CDP Kalevala-Kem’-White Sea). Geophys J (Ukraina) 32:21–34

    Google Scholar 

  • Shchipansky AA, Konilov AN (2005) Archean eclogites, Shirokaya Salma area. In: Volodichev OI, Slabunov AI (eds) Belomorian mobile belt and its analogues: geology, geochronology, geodynamics and metallogeny. Extended Abstracts and field trip guide book. Karelian Research Centre (KRC), Russian Academy of Sciences (RAS), Petrozavodsk, pp 15–19

    Google Scholar 

  • Shchipansky AA, Samsonov AV, Bibikova EV et al (2004) 2.8 Ga boninite-hosting partial suprasubduction ophiolite sequences from the North Karelian greenstone belt, NE Baltic Shield, Russia. In: Kusky T (ed) Precambrian Ophiolites and related rocks. Dev in Precambrian Geol, Elsevier, Amsterdam, 13:425–487

    Google Scholar 

  • Shchipansky AA, Khodorevskaya LI, Konilov AN, Slabunov AI (2012a) Eclogites from the Belomorian Mobile Belt (Kola Peninsula): geology and petrology. Russian Geol and Geophys 53:1–21

    Google Scholar 

  • Shchipansky AA, Khodorevskaya LI, Slabunov AI (2012b) The geochemistry and isotopic age of eclogites from the Belomorian Belt (Kola Peninsula):evidence for subducted Archean oceanic crust. Russian Geol and Geophys 53:262–280

    Google Scholar 

  • Skjerlie KP, Patiño Douce AE, Johnston AD (1993) Fluid absent melting of a layered crustal protolith: implications for the generation of anatectic granites. Contrib Mineral Petrol 114:365–378

    Google Scholar 

  • Skublov SG, Herwartz D, Berezin AV (2011) Pervii dannii Lu-Hf datirovanij eklogitov v Belomorskom podvizhnom pojse (The first Lu-Hf age dates of eclogites from the Belomorian mobile belt). In: Kozakov IK (ed). Proceedings of the 3rd Russian conference on Precambrian geology and geodynamics. Problems in Precambrian plate- and plume tectonics. IGGD, Russian Academy of Sciences, St.Petersburg, pp 166–168

    Google Scholar 

  • Slabunov AI (1993) Verzhnearzheiskaj Keretskaj granit-zelenokamennaj sistema Karelii (Upper Archean Keret granite–greenstone system in Karelia). Geotectonics 28:61–74

    Google Scholar 

  • Slabunov AI (2008) Geologij I Geodinamika arzheiskizh podvizhnizh pojsov (na primere Belomorskoi provincii Fennoskandinavskogo schita) (Geology and geodynamics of Archean mobile belts (example from the Belomorian province of the Fennoscandian Shield)). Karelian Research Centre (KRC), Russian Academy of Sciences (RAS), Petrozavodsk, pp 1–296

    Google Scholar 

  • Slabunov AI (2010) Archean evolution of the Belomorian province: from an ocean to a collision orogen. In: Teyler IM and Knox-Robinson CM (eds) 5th International Archean Symposium. Abstracts. Perth: Geological Survey of Western Austalia. 2010/18:212–215

    Google Scholar 

  • Slabunov AI (2011) Archaean eclogite-bearing and granite-greenstone complexes of the Belomorian province: correlation and geodynamic interpretation. In: Slabunov AI, Perchuk AL (eds) Granulite and eclogite complexes in the Earth’s history. Extended Abstracts and Field Guide. Karelian Research Centre (KRC), Russian Academy of Sciences (RAS), Petrozavodsk, pp 210–214

    Google Scholar 

  • Slabunov A. (2013) Archaean associations of volcanics, granulites and eclogites of the Belomorian province, Fennoscandian Shield and its geodynamic interpretation. Geophysical Research Abstracts. Vena. 6782

    Google Scholar 

  • Slabunov AI, Lobach-Zhuchenko SB, Bibikova EV et al (2006a) The Archaean nucleus of the Baltic/Fennoscandian Shield. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics. Geological Society of London Memoir 32:627–644

    Google Scholar 

  • Slabunov AI, Lobach-Zhuchenko SB, Bibikova EV et al (2006b) The Archean of the Baltic Shield: geology, geochronology, and geodynamic settings. Geotectonics 40:409–433

    Google Scholar 

  • Slabunov AI, Stepanova AV, Bibikova EV (2009) Mezoarzheiskii fragment okeanicheskoi kori (Shentral’no-Belomorskii zelenokamennii pojs Belomorskoi provinchii) (Mesoarchean segment of ocean crust (Central-Belomorian Greenstone Belt of the Belomorian Province). In: Slabunov AI, Svetov SA (eds) Archean granite-greenstone systems and their younger analogues, Extended abstracts and Guidebook of field trips. Karelian Research Centre (KRC), Russian Academy of Sciences (RAS), Petrozavodsk, pp 154–156

    Google Scholar 

  • Slabunov AI, Hölttä P, Sharov NV, Nesterova NS (2011a) 4-D model’ formirovanija zemnoj kory Fennoskandinavskogo schita v arhee kak sintez sovremennyh geologicheskih dannyh (A 4-D framework of the Fennoscandian Shield earth Crust growth in Archean:synthesis of off-the-shelf geological data) In: Proceedings of the All-Russian Conference convened to celebrate the 50th anniversary of the founding of the Institute of Geology. 24–26 May. Geology of Karelia from the Archaean to the present. Karelian Research Centre (KRC), Russian Academy of Sciences (RAS), Petrozavodsk, pp 13–21

    Google Scholar 

  • Smithies RH (2000) The Archaean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth and Planetary Sci Lett 182:115–125

    Google Scholar 

  • Smithies RH, Champion DC, Cassidy KF (2003) Formation of Earth’s early Archaean continental crust. Precambrian Res 127:89–101

    Google Scholar 

  • Sochevanov NN, Arestova NA, Matrenichev VA et al (1991) Pervii dannie o Sm-Nd vozraste arzheiskizh bazal’tov v Karel’skoi granit-zelenokamennoi oblasti (First Data on the Sm–Nd Age of Archean Basalts in Karelia Granite–Greenstone Region) Doklladi Akademii Nauk SSSR 318(1):175–180

    Google Scholar 

  • Sorjonen-Ward P (1993) An overview of structural evolution and lithic units within and intruding the late Archean Hattu schist belt Ilomantsi eastern Finland. Geological Survey of Finland Special Paper 17:9–102

    Google Scholar 

  • Sorjonen-Ward P (2006) Geological and structural framework and preliminary interpretation of the FIRE 3 and FIRE 3A reflection seismic profiles central Finland. Geological Survey of Finland Special Paper 43:105–159

    Google Scholar 

  • Sorjonen-Ward P, Luukkonen E (2005) Archean rocks. In: Lehtinen M, Nurmi PA, Rämö OT (eds) The Precambrian Geology of Finland—key to the evolution of the Fennoscandian Shield. Elsevier, Amsterdam, pp 19–99

    Google Scholar 

  • Springer W, Seck HA (1997) Partial fusion of basic granulites at 5 to 15 kbar: implications for the origin of TTG magmas. Contrib Mineral Petrol 127:30–45

    Google Scholar 

  • Stern RA, Hanson GN, Shirey SB (1989) Petrogenesis of mantle-derived, LILE-enriched Archean monzodiorites and trachyandesites (sanukitoids) in southwestern Superior Province. Canadian J Earth Sci 26:1688–1712

    Google Scholar 

  • Stepanov VS, Slabunov AI (1989) Dokembriiskii amfiboliti i bazit-ul’trabaziti Severnoi Karelii (Precambrian Amphibolites and early mafic–ultramafic rocks in Northern Karelia). Nauka, Leningrad, pp. 11–175

    Google Scholar 

  • Stepanov VS, Slabunov AI, Stepanova AV (2003). Porodoobrazuuschii i acchessornii minerali pozdnearzheiskizh peridotitov raiona ozera Seriak (Belomorskii podvizhnii pojs Fennoskandinavskogo schita) (Rock-forming and accessory minerals of Late Archaean peridotites from the Lake Seryak area, Belomorian mobile belt, Fennoscandian Shield). In: Geology and Useful minerals of Karelia, vol 6. Petrozavodsk, p. 17–25

    Google Scholar 

  • Stiegler MS, Lowe DR, Byerly GR (2010) The petrogenesis of volcaniclastic komatiites in the Barberton Greenstone Belt, South Africa: a textural and geochemical study. J of Petrol 51:947–972

    Google Scholar 

  • Streckeisen A, Le Maitre RW (1979) A chemical approximation to the modal QAPF classification of the igneous rocks. Neues Jb Miner Abh 136:169–206

    Google Scholar 

  • Strik G, Blake TS, Zegers TE et al (2003) Palaeomagnetism of flood basalts in the Pilbara Craton Western Australia: Late Archaean continental drift and the oldest known reversal of the geomagnetic field. J of Geophys Res 108 (B12):21

    Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society of London Special Publication 42:313–345

    Google Scholar 

  • Svetova AI (1988) Arhejskij vulkanizm Vedlozersko-Segozerskogo zelenokamennogo pojasa Karelii (Archean Volcanism in the Vedlozero–Segozero Greenstone Belt of Karelia), Karelian Research Centre (KRC), Russian Academy of Sciences (RAS), Petrozavodsk, pp 1–148

    Google Scholar 

  • Svetov SA (2005) Magmaticheskie sistemy zony perehoda okean-kontinent v arhee vostochnoj chasti Fennoskandinavskogo wita (Magmatic systems in the ocean-continent transition zone in the Archean of the eastern Fennoscandian Shield). Karelian Research Centre (KRC), Russian Academy of Sciences (RAS), Petrozavodsk, pp 1–230

    Google Scholar 

  • Svetov SA (2009) Drevnejshie adakity Fennoskandinavskogo schita (The oldest adakites of the Fennoscandian Shield). Karelian Research Centre (KRC), Russian Academy of Sciences (RAS), Petrozavodsk, pp 1–115

    Google Scholar 

  • Svetov SA (2010) Arhitektura arhejskih konvergentnyh sistem v sravnenii s fanerozojskimi analogami (po dannym FME-sistematiki vulkanitov (Architecture of Archaean convergent systems in comparison with Phanerozoic analogues, as shown by data on the FME-systematics of volcanites). Lithospere 3:12–20

    Google Scholar 

  • Svetov SA, Svetova AI (2011) Archaean subduction:marker rock assemblages and architecture. In: Proceedings of the All-Russian Conference convened to celebrate the 50th anniversary of the founding of the Institute of Geology. 24–26 May. Geology of Karelia from the Archaean to the present. Karelian Research Centre (KRC), Russian Academy of Sciences (RAS), Petrozavodsk, pp 22–32

    Google Scholar 

  • Svetov SA, Svetova AI, Huhma H (2001) Geochemistry of the komatiite-tholeiite rock association in the Vedlozero-Segozero Archean greenstone belt, Central Karelia. Geochem Int 39(1):24–38

    Google Scholar 

  • Tateno S, Hirose K, Sata N et al (2009) Determination of post-perovskite phase transition boundary up to 4400 K and implications for thermal structure in D″ layer. Earth and Planetary Sci Lett 277:130–136

    Google Scholar 

  • Thompson RN (1982) British Tertiary province. Scottish J of Geol 18:49–107

    Google Scholar 

  • Thurston P (2002) Autochthonous development of Superior Province greenstone belts? Precambrian Res 115:11–36

    Google Scholar 

  • Thuston HC, Kozhenvnikov VN (2000) An Archean quartz arenite–andesite association in the eastern Baltic Shield, Russia: implications for assemblage types and Shield history. Precambrian Res 101:313–340

    Google Scholar 

  • Tuisku P (1988) Geothermobarometry in the Archean Kuhmo-Suomussalmi greenstone belt eastern Finland. Geological Survey of Finland Special Paper 4:171–172

    Google Scholar 

  • Vaasjoki M, Sorjonen-Ward P, Lavikainen S (1993) U-Pb age determinations and sulfide Pb-Pb characteristics from the late Archean Hattu schist belt, Ilomantsi, eastern Finland. Geological Survey of Finland Special Paper 17:103–131

    Google Scholar 

  • van der Velden AJ, Cook FA, Drummond BJ et al (2006) Reflections of the Neoarchean: a global perspective. In: Benn K, Mareschal J-C, Condie KC (eds) Archean geodynamics and environments. Geophysical Monograph 164:255–265

    Google Scholar 

  • van Hunen J, van den Berg AP, Vlaar NJ (2004) Various mechanisms to induce present-day shallow flat subduction and implications for the younger Earth: a numerical parameter study. Phys Earth and Planetary Interiors 146:179–194

    Google Scholar 

  • Volodichev OI, Slabunov AI, Bibikova EV et al (2004) Archean eclogites in the Belomorian mobile belt, baltic shield. Petrology 12(6):540–560

    Google Scholar 

  • Volodichev OI, Slabunov AI (2011) Superposition of two age and genetic groups of eclogites in the Gridino area, Belomorian province, Fennoscandian Shield. In: Slabunov AI, Perchuk AL (eds) Granulite and eclogite complexes in the Earth’s history. Extended Abstracts and Field Guide. Karelian Research Centre (KRC), Russian Academy of Sciences (RAS), Petrozavodsk, pp 46–48

    Google Scholar 

  • Watkins JM, Clemens JD, Treloar PJ (2007) Archaean TTGs as sources of younger granitic magmas: melting of sodic metatonalites at 0.6–1.2 GPa. Contrib Mineral Petrol 154:91–110

    Google Scholar 

  • Wu C-M, Zhang J, Ren L-D (2004) Empirical garnet–biotite–plagioclase–quartz (GBPQ) geobarometry in medium- to high-grade metapelites. J of Petrol 45(9):1907–1921

    Google Scholar 

Download references

Acknowledgements

Yildirim Dilek and Jaana Halla are thanked for reviews that greatly improved the manuscript. This work was partly supported by the Russian Foundation for Basic Research (grant nr 11-05-00168-a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pentti Hölttä .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hölttä, P. et al. (2014). The Archaean Karelia and Belomorian Provinces, Fennoscandian Shield. In: Dilek, Y., Furnes, H. (eds) Evolution of Archean Crust and Early Life. Modern Approaches in Solid Earth Sciences, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7615-9_3

Download citation

Publish with us

Policies and ethics