Skip to main content

Radiation Hybrids: A valuable Tool for Genetic, Genomic and Functional Analysis of Plant Genomes

  • Chapter
  • First Online:
Genomics of Plant Genetic Resources

Abstract

Radiation has been used as a mean to break and transfer fragments of DNA from one plant species to another. Early examples include the experiments by Sears, (Brookhaven Symp Biol 9:1–22, 1956) to transfer rust resistance genes from Aegilops umbellulata to wheat. Radiation found its niche as a mutagen due to advances in nuclear technology and formation of the International Atomic Energy Agency and their sponsorship of developing mutation breeding through “Mutation Enhanced Technologies for Agriculture”. Mutation breeding has resulted in the release of several important cultivars. Although radiation was used in plants for the mutation and introgression of genes from related species (Sears, Brookhaven Symp Biol 9:1–22, 1956; Driscoll and Jensen, Genetics 48:459–468, 1963; Riley and Law, Stadler Genet Symp 16:301–322, 1984; Sears, Crop Sci 33:897–901, 1993), this approach was not used for mapping. This aspect of radiation application was first utilized in animal cell culture lines to generate radiation hybrid (RH) panels. In the beginning these panels were generated for single chromosomes but evolved to the development of whole genome panels. This technology matured in animal systems with the onset of genomics era by its use in the development of high resolution RH-based physical maps for many species before or during the development of complete genome sequence information. The advantages of this system are: (1) radiation-induced breaks are independent of recombination events providing higher and more uniform resolution, (2) radiation dosage could be adjusted to provide varied resolution without greatly affecting the population size and (3) all markers regardless of their polymorphism can be mapped on RH panels. Plant scientists followed these studies by the development of RH panels for individual chromosomes or whole genomes. However, early RH panels in plant systems were of low to medium resolution and of limited use in physical mapping. Recently, RH panels have been produced resulting in map resolutions of 200–400 Kb. These high resolution panels promise the same value as animal systems in helping generate a complete genome sequence with a fraction of the cost of traditional methods. But the use of radiation in plants has matured to go beyond physical mapping by its application to gene cloning and forward/reverse genetic studies. These applications take advantage of plasticity offered by many plant species in tolerating radiation to produce seed and live progeny. This ability allows scientists to phenotype RH lines and to associate the phenotypic data with the genotypic data. The great potential of this system is just being realized.

Genetic variation is the key to phenotypic improvement in plants.Variation in the genome provides individuals the potential tonucleus and interact with DNA adapt to changing environmental pressures and improve their chances of survival. Genetic variation also lays the foundation of genomic studies and efforts made towards crop improvement. Genetic variability in any population can be the result of natural processes such as recombination, mistakes in DNA replication and repair, gene flow or induced mutagenesis which results from chemical or radiation treatment. In this chapter, we discuss the use of radiation-induced changes on genes and chromosomes to understand the structure and function of plant genomes, dissect genetic mechanisms, and the potential use of these changes for plant improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahloowalia BS, Maluszynski M, Nichterlein K (2004) Global impact of mutation-derived varieties. Euphytica 135:187–204

    Google Scholar 

  • Ahmed EA, Philippens MEP, Kal HB et al (2010) Genetic probing of homologous recombination and non-homologous end joining during meiotic prophase in irradiated mouse spermatocytes. Mutat Res 688:12–18

    CAS  PubMed  Google Scholar 

  • Akhunov ED, Goodyear AW, Geng S et al (2003) The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosome arms. Genome Res 5:753–763

    Google Scholar 

  • Ali SNH, Ramanna MS, Jacobsen E, Visser RGF (2001) Establishment of a complete series of a monosomic tomato chromosome addition lines in the cultivated potato using RFLP and GISH analyses. Theor Appl Genet 103:687–695

    CAS  Google Scholar 

  • Al-Kaff N, Knight E, Bertin I et al (2008) Detailed dissection of the chromosomal region containing the Ph1 locus in wheat Triticum aestivum: with deletion mutants and expression profiling. Ann Bot 105:6075–6080

    Google Scholar 

  • Alnemer LM, Seetan RI, Bassi FM, et al (2013) Wheat Zapper: a flexible online tool for colinearity studies in plants. Funct Integr Genomics 13:11–17

    Google Scholar 

  • Ananiev EV, Riera-lizarazu O, Rines HW, Phillips RL (1997) Oat-maize chromosome addition lines: a new system for mapping the maize genome. Proc Natl Acad Sci U S A 94: 3524–3529

    CAS  PubMed Central  PubMed  Google Scholar 

  • Anderson EG, Longley AE, Li CH, Retherford KL (1949) Hereditary effects produced in maize by radiations from the Bikini atomic bomb I. Studies on seedlings and pollen of the exposed generation. Genetics 34:639–646

    CAS  PubMed Central  PubMed  Google Scholar 

  • Argonne National Laboratory (2005) Ionizing radiation. Human health fact sheet, August

    Google Scholar 

  • Barbazuk WB, Emrich SJ, Chen HD et al (2007) SNP discovery via 454 transcriptome sequencing. Plant J 51:910–918

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bassi FM, Kumar A, Zhang Q et al (2013) Radiation hybrid QTL mapping of Tdes2 involved in the first meiotic division of wheat. Theor Appl Genet 126(8):1977–1990

    Google Scholar 

  • Bertagne-Sagnard B, Fouilloux G, Chupeau Y (1996) Induced albino mutations as a tool for genetic analysis and cell biology in flax (Linum usitatssimum). J Exp Bot 47:189–194

    Google Scholar 

  • Blakeslee AF (1935) Obituary: Hugo De Vries: 1848–1935. Science 81:581–582

    Google Scholar 

  • Blonstein AD, Parry AD, Horgan R, King PJ (1991a) A cytokinin-resistant mutant of Nicotiana plumbaginifolia is wilty. Planta 183:244–250

    CAS  Google Scholar 

  • Blonstein AD, Stirnberg P, King PJ (1991b) Mutants of Nicotiana plumbaginifolia with specific resistance to auxin. Mol Gen Genetics 228:361–371

    CAS  Google Scholar 

  • Britt AB (1996) DNA damage and repair in plants. Annu Rev Plant Physiol Plant Mol Biol 47:75–100

    CAS  PubMed  Google Scholar 

  • Britt AB (1999) Molecular genetics of DNA repair in higher plants. Trends Biotechnol 4:20–25

    Google Scholar 

  • Carroll BJ, Gresshoff PM, Delves AC (1988) Inheritance of supernodulation in soybean and estimation of the genetically effective cell number. Theor Appl Genet 76:54–58

    CAS  PubMed  Google Scholar 

  • Chetelat RT, Rick CM, Cisneros P et al (1998) Identification, transmission, and cytological behavior of Solanum lycopersicoides Dun. monosomic alien addition lines in tomato (Lycopersicon esculentum Mill.). Genome 41:40–50

    CAS  Google Scholar 

  • Conley E, Nduati V, Gonzalez-Hernande JL et al (2004) A 2,600-locus chromosome bin map of wheat group 2 reveals interstitial gene-rich islands and colinearity with rice. Genetics 168:625–637

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cox DR, Burmeister M, Price ER et al (1990) Radiation hybrid mapping: a somatic cell genetic method for constructing high-resolution maps of mammalian chromosomes. Science 250:245–250

    CAS  PubMed  Google Scholar 

  • de Bona CM, Stelly D, Miller JC, Louzada ES (2009) Fusion of protoplasts with irradiated microprotoplasts as a tool for radiation hybrid panel in citrus. Pesq Agropec Bras 44:1616–1623

    Google Scholar 

  • de Pontbriand A, Wang XP, Cavaloc Y et al (2002) Synteny comparison between apes and human using fine-mapping of the genome. Genomics 80:395–401

    PubMed  Google Scholar 

  • Deloukas P, Schuler GD, Gyapay G et al (1998) A physical map of 30,000 human genes. Science 282:744–746

    CAS  PubMed  Google Scholar 

  • Deynze AE, Nelson JC, Yglesias ES et al (1995) Comparative mapping in grasses. Wheat relationships. Mol Gen Genetics 248:744–754

    Google Scholar 

  • Donthu R, Lewin HA, Larkin DM (2009) SyntenyTracker: a tool for defining homologous synteny blocks using radiation hybrid maps and whole-genome sequence. BMC Res Notes 2:148

    PubMed Central  PubMed  Google Scholar 

  • Driscoll CJ, Jensen NF (1963) A genetic method for detecting induced intergeneric translocations. Genetics 48:459–468

    CAS  PubMed Central  PubMed  Google Scholar 

  • Elsik CG, Tellam RL et al (2009) The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science 324:522–528

    Google Scholar 

  • Endo TR, Gill BS (1996) The deletion stocks of common wheat. Heredity 87:295–307

    CAS  Google Scholar 

  • Erayman M, Sanduh D, Sidhu D et al (2004) Demarcating the gene-rich regions of the wheat genome. Nucleic Acids Res 32:3546–3565

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fahleson J, Glimelius K (1999) Protoplast fusion for symmetric somatic hybrid production in Brassicaceae. Methods Mol Biol 111:195–209

    CAS  PubMed  Google Scholar 

  • Faraut T, de Givry S, Hitte C et al (2009) Contribution of radiation hybrids to genome mapping in domestic animals. Cytogenet Genome Res 126:21–33

    CAS  PubMed  Google Scholar 

  • Faris JD, Fellers JP, Brooks SA, Gill BS (2003) A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene. Genetics 164:311–321

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feuillet C, Leach JE, Rogers J et al (2011) Crop genome sequencing: lessons and rationales. Trends in Plant Sci 16:77–88

    CAS  Google Scholar 

  • Freisleben R, Lein A (1944) Rontgenindurzierte Mutationen bei Gerste. Zuchter 16:49–64

    Google Scholar 

  • Friebe B, Qi LL, Nasuda S et al (2000) Development of a complete set of Triticum aestivum-Aegilops speltoides chromosome addition lines. Theor Appl Genet 101:51–58

    Google Scholar 

  • Gao D, Guo D, Jung C (2001) Monosomic addition lines of Beta corolliflora in sugar beet: cytological and molecular marker analysis. Theor Appl Genet 103:240–247

    CAS  Google Scholar 

  • Gao W, Chen ZJ, Yu JZ et al (2004) Wide-cross whole-genome radiation hybrid mapping of cotton (Gossypium hirsutum L.). Genetics 167:1317–1329

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gao W, Chen ZJ, Yu JZ et al (2006) Wide-cross whole-genome radiation hybrid mapping of the cotton (Gossypium barbadense L.) genome. Mol Gen Genomics 275:105–113

    CAS  Google Scholar 

  • Gautier M, Eggen A (2005) The construction and use of radiation hybrid maps in genomic research. Encyclopedia of genetics, genomics, proteomics and bioinformatics

    Google Scholar 

  • Gibbs RA, Weinstock GM, Metzker ML et al (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428:493–521

    CAS  PubMed  Google Scholar 

  • Goss SJ, Harris H (1975) New method for mapping genes in human chromosomes. Nature 255:680–684

    CAS  PubMed  Google Scholar 

  • Gottschalk W (1989) Allgemeine Genetik. 3 Aufl. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  • Gupta PK (2008) Single-molecule DNA sequencing technologies for future genomics research. Trends Biotechnol 26:602–611

    CAS  PubMed  Google Scholar 

  • Gustafsson A (1954) Swedish mutation work in plants: background and present organization. Acta Agriculturae Scandinavica IV 3:361–364

    Google Scholar 

  • Gyapay G, Schmitt K, Fizames C et al (1996) A radiation hybrid map of the human genome. Hum Mol Genet 5:339–346

    CAS  PubMed  Google Scholar 

  • Harten AM van (1998) Mutation breeding: theory and practical applications. Cambridge University Press, London

    Google Scholar 

  • Hitte C, Madeoy J, Kirkness EF et al (2005) Facilitating genome navigation: survey sequencing and dense radiation-hybrid gene mapping. Nat Rev Genet 6:643–648

    CAS  PubMed  Google Scholar 

  • Hlatky L, Sachs RK, Vazquez M, Cornforth MN (2002) Radiation-induced chromosome aberrations: insight gained from biophysical modeling. Bioessays 24:714–723

    PubMed  Google Scholar 

  • Hodgdon AL, Marcus AH, Arenaz P et al (1981) Ontogeny of the barley plant as related to mutation expression and detection of pollen mutations. Environmental Health Prospectives 37:5–7

    CAS  Google Scholar 

  • Hoffmann W, Zoschke U (1955) Rontgenmutationen beim Flachs (Linum usitatissimum L.) Zuchter 25:199–206

    Google Scholar 

  • Hossain KG, Kalavacharla V, Lazo GR et al (2004a) A chromosome bin map of 2,148 EST loci of wheat homoeologous group 7. Genetics 168:687–699

    CAS  Google Scholar 

  • Hossain KG, Riera-lizarazu O, Kalavacharla V et al (2004b) Radiation hybrid mapping of the species cytoplasm-specific (scs ae) gene in wheat. Genetics 168:415–423

    CAS  Google Scholar 

  • Hossain KG, Riera-lizarazu O, Kalavacharla V et al (2004c) Molecular cytogenetic characterization of an alloplasmic durum wheat line with a portion of chromosome 1D of Triticum aestivum carrying the scs ae gene. Genome 47:206–214

    CAS  Google Scholar 

  • International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Google Scholar 

  • Islam AKMR, Shepherd KW (1981) Production of disomic wheat barley chromosome addition lines using Hordeum bulbosum crosses. Genet Res 37:215–219

    Google Scholar 

  • Jena KK, Khush GS (1986) Production of monosomic alien addition lines of Oryza sativa having a single chromosome of O. officinalis. In: Rice Genetics. IRRI, Manila, pp 199–208

    Google Scholar 

  • Johri MM, Coe EH (1983) Clonal analysis of corn plant development I. The development of the tassel and ear shoot. Dev Biol 97:154–172

    CAS  PubMed  Google Scholar 

  • Jones HB (1996) Hybrid selection as a method of increasing mapping power for radiation hybrids. Genome Res 6:761–769

    CAS  PubMed  Google Scholar 

  • Joppa LR, Williams ND (1977) D-genome substitution monosomics of durum wheat. Crop Sci 17:772–776

    Google Scholar 

  • Joppa LR, Williams ND (1983) The Langdon durum disomic-substitutions: development, characteristics, and uses. Agron Abstr pp 68

    Google Scholar 

  • Kalavacharla V, Hossain K, Gu Y et al (2006) High-resolution radiation hybrid map of wheat chromosome 1D. Genetics 173:1089–1099

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karere GM, Froenicke L, Millon L et al (2008) A high-resolution radiation hybrid map of Rhesus macaque chromosome 5 identifies rearrangements in the genome assembly. Genomics 92:210–218

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kavathas P, Bach FH, DeMars R (1980) Gamma ray-induced loss of expression of HLA and glyoxalase I alleles in lymphoblastoid cells. Proc Natl Acad Sci U S A 77:4251–4255

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kirkness EF, Bafna V, Halpern AL et al (2003) The dog genome: survey sequencing and comparative analysis. Science 301:1898–1903

    PubMed  Google Scholar 

  • Konzak CF (1954) Stem rust resistance in oats induced by nuclear radiation. Agron J 46:538–540

    Google Scholar 

  • Koornneef M, van der Veen JH (1980) Induction and analysis of gibberellin-sensitive mutants in Arabidopsis thaliana (L.) Heynh. Theor Appl Genet 58:257–263

    CAS  PubMed  Google Scholar 

  • Koornneef M, Dellaert LWM, van der Veen JH (1982) EMS-and radiation-induced mutation frequencies at individual loci in Arabidopsis thaliana (L.) Heynh. Mutat Res 93:109–123

    CAS  PubMed  Google Scholar 

  • Koornneef M, Hanhart CJ, Veen JH (1991) A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet 229:57–66

    CAS  PubMed  Google Scholar 

  • Kumar A, Bassi FM, Paux E et al (2012a) DNA repair and crossing over favor similar chromosome regions as discovered in radiation hybrid of Triticum. BMC Genomics 13:339

    CAS  Google Scholar 

  • Kumar A, Simons K, Iqbal MJ et al (2012b) Physical mapping resources for large plant genomes: radiation hybrids for wheat D-genome progenitor Aegilops tauschii accession AL8/78. BMC genomics 13:597

    Google Scholar 

  • Kurata N, Moore G, Nagamura Y et al (1994) Conservation of genome structure between rice and wheat. Nature Biotechnology 12:276–278

    CAS  Google Scholar 

  • Kynast RG, Riera-Lizarazu O, Vales MI et al (2001a) A complete set of maize individual chromosome additions to the oat genome. Plant Physiol 125:1216–1227

    CAS  Google Scholar 

  • Kynast RG, Okagaki RJ, Odland WE et al (2001b) Oat-maize chromosome manipulation for the physical mapping of maize sequences. Maize Genet Coop Newslett 75:54–55

    Google Scholar 

  • Kynast RG, Okagaki RJ, Rines HW, Phillips RL (2002) Maize individualized chromosome and derived radiation hybrid lines and their use in functional genomics. Funct Integr Genomic 2:60–69

    CAS  Google Scholar 

  • Kynast RG, Okagaki RJ, Galatowitsch MW et al (2004) Dissecting the maize genome by using chromosome addition and radiation hybrid lines. Proc Natl Acad Sci U S A 101:9921–9926

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    CAS  PubMed  Google Scholar 

  • Le Signor C, Savois V, Aubert G et al (2009) Optimizing TILLING populations for reverse genetics in Medicago truncatula. Plant Biotech J 7:430–441

    CAS  Google Scholar 

  • Li C, Xia G, Xiang F et al (2004) Regeneration of asymmetric somatic hybrid plants from the fusion of two types of wheat with Russian wild rye. Plant Cell Rep 23:461–467

    CAS  PubMed  Google Scholar 

  • Lindblad-Toh K, Wade CM, Mikkelsen TS et al (2005) Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438:803–819

    CAS  PubMed  Google Scholar 

  • Linkiewicz AM, Qi LL, Gill BS et al (2004) A 2,500-locus bin map of wheat homoeologous group 5 provides new insights on gene distribution and colinearity with rice. Genetics 168:665–676

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lönnig WE (2005) Mutation breeding, evolution, and the law of recurrent variation. Recent Res Devel Genet Breeding 2:45–70

    Google Scholar 

  • Lukowitz W, Gilmore CS, Scheible WR (2000) Positional cloning in Arabidopsis. Why it feels good to have a genome initiative working for you. Plant Physiol 123:795–805

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lundqvist U (1986) Svalöf 1886–1986, research and results in plant breeding. In: Olsson G (ed), Stockholm, pp 76–84

    Google Scholar 

  • Lunetta KL, Boehnke M, Lange K, Cox DR (1996) Selected locus and multiple panel models for radiation hybrid mapping. Am J Hum Genet 59:717–725

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luo MC, Deal KR, Akhunov ED et al (2009) Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae. Proc Natl Acad Sci U S A 106:15780–15785

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maluszynski M, Ahloowalia BS, Sigurbjornsson B (1995) Application of in vivo and in vitro mutation techniques for crop improvement. Euphytica 85:303–315

    Google Scholar 

  • Maluszynski M, Nichterlein K, van Zanten L, Ahloowalia BS (2000) Officially released mutant varieties—the FAO/IAEA Database. Mut Breed Rev 12:1–84

    Google Scholar 

  • Matsukura C, Aoki K, Fukuda N et al (2007) Comprehensive resources for tomato functional genomics based on the miniature model tomato micro-tom. Current Genomics 9:436–443

    Google Scholar 

  • McGrath JM, Quiros CF, Harada JJ, Lanbdry BS (1990) Identification of Brassica oleracea monosomic alien-chromosome addition lines with molecular markers reveals extensive gene duplication. Mol Gen Genet 223:198–204

    CAS  PubMed  Google Scholar 

  • Mesbah M, De Bock TSM, Sandbrink JM et al (1997) Molecular and morphological characterization of monosomic additions in Beta vulgaris, carrying extra chromosomes of B. procumbens or B. patellaris. Mol Breed 3:147–157

    CAS  Google Scholar 

  • Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11:31–46

    CAS  PubMed  Google Scholar 

  • Mézard C (2006) Meiotic recombination hotspots in plants. Biochem Soc Trans 34:531–534

    Google Scholar 

  • Mia MM, Shaikh AQ (1967) Gamma radiation and interspecific hybridization in jute. Euphytica 16:61–68

    Google Scholar 

  • Michalak MK, Ghavami F, Lazo GR et al (2009) Evolutionary relationship of nuclear genes encoding mitochondrial proteins across four grass species and Arabidopsis thaliana. Maydica 54:471–483

    Google Scholar 

  • Michalck de Jimenez MK, Bassi FM, Ghavami F, et al (2013) A radiation hybrid map of chromosome 1D reveals synteny conservation at a wheat speciation locus. Funct Int Gen 13:19–32

    Google Scholar 

  • Miftahudin, RK, Ma XF et al (2004) Analysis of EST loci on wheat chromosome group 4. Genetics 168:651–663

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mir RR, Rustgi S, Sharma S et al (2008) A preliminary genetic analysis of fibre traits and the use of new genomic SSRs for genetic diversity in jute. Euphytica 161:413–427

    CAS  Google Scholar 

  • Mir RR, Banerjee S, Das M et al (2009) Development and characterization of large scale simple sequence repeats in jute. Crop Sci 49:1687–1694

    CAS  Google Scholar 

  • Munkvold JD, Greene RA, Bermudez-Kandianis CE et al (2004) Group 3 chromosome bin maps of wheat and their relationship to rice chromosome 1. Genetics 168:639–650

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murphy WJ, Page JE, Smith C et al (2001) A radiation hybrid mapping panel for the rhesus macaque. Heredity J 92:516–519

    CAS  Google Scholar 

  • Murphy WJ, Larkin DM, Everts-van der Wind A et al (2005) Dynamics of mammalian chromosome evolution inferred from multispecies comparative maps. Science 309:613–617

    CAS  PubMed  Google Scholar 

  • Novaes E, Drost DR, Farmerie WG et al (2008) High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome. BMC Genomics 9:312

    PubMed Central  PubMed  Google Scholar 

  • O’Brien SJ, Menotti-Raymond M, Murphy WJ et al (1999) The promise of comparative genomics in mammals. Science 286:458–481

    PubMed  Google Scholar 

  • Okagaki RJ, Kynast RG, Livingston SM et al (2001) Mapping maize sequences to chromosomes using oat-maize chromosome addition materials. Plant Physiol 125:1228–1235

    CAS  PubMed Central  PubMed  Google Scholar 

  • Olivier M, Aggarwal A, Allen J et al (2001) A high-resolution radiation hybrid map of the human genome draft sequence. Science 291:1298–1302

    Google Scholar 

  • Oltmann W (1950) Zuchterische Auswertung rontgeninduzierter Mutationen an physiologischen Merkmalen bei Winterweizen. Zeits Pflanzenz 29:76–89

    Google Scholar 

  • Page DR, Grossniklaus U (2002) The art and design of genetic screens: Arabidopsis thaliana. Nat Rev Genet 3:124–136

    CAS  PubMed  Google Scholar 

  • Paterson AH, Bowers JE, Burow MD et al (2000) Comparative genomics of plant chromosomes. Plant Cell 12:1523–1539

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paux E, Sourdille P, Salse J et al (2008) A physical map of the 1-gigabase bread wheat chromosome 3B. Science 322:101–104

    CAS  PubMed  Google Scholar 

  • Pelsy F, Kronenberger J, Pollien JM, Caboche M (1991) M2 seed screening for nitrate reductase deficiency in Nicotiana plumbaginifolia. Plant Sci 76:109–114

    CAS  Google Scholar 

  • Peng JH, Zadeh H, Lazo GR et al (2004) Chromosome bin map of expressed sequence tags in homoeologous group 1 of hexaploid wheat and homoeology with rice and Arabidopsis. Genetics 168:609–623

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peters JL, Crude F, Gerats T (2003) Forward genetics and map-based cloning approaches. Trends Plant Sci 8:484–491

    CAS  PubMed  Google Scholar 

  • Qi LL, Echalier B, Chao S et al (2004) A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168:701–712

    CAS  PubMed Central  PubMed  Google Scholar 

  • Quiros CF, Ochoa O, Kianian SF, Douches D (1987) Analysis of the Brassica oleracea genome by the generation of B. campestris-oleracea chromosome addition lines: characterization by isozymes and rDNA genes. Theor Appl Genet 74:758–766

    CAS  PubMed  Google Scholar 

  • Randhawa HS, Dilbirligi M, Sidhu D et al (2004) Deletion mapping of homoeologous group 6-specific wheat ESTs. Genetics 168:677–686

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reamon-Ramos SM, Wricke G (1992) A full set of monosomic addition lines in Beta vulgaris from Beta webbiana: morphology and isozyme markers. Theor Appl Genet 84:411–418

    CAS  PubMed  Google Scholar 

  • Riera-Lizarazu O, Rines HW, Phillips RL (1996) Cytological and molecular characterization of oat × maize partial hybrids. Theor Appl Genet 93:123–135

    CAS  PubMed  Google Scholar 

  • Riera-Lizarazu O, Vales MI, Ananiev EV et al (2000) Production and characterization of maize chromosome 9 radiation hybrids derived from an oat-maize addition line. Genetics 156:327–339

    CAS  PubMed Central  PubMed  Google Scholar 

  • Riera-Lizarazu O, Leonard JM, Tiwari VK, Kianian SF (2010) A method to produce radiation hybrids for the D-genome chromosomes of wheat (Triticum aestivum L.). Cytogenet Genome Res 129:234–240

    CAS  PubMed  Google Scholar 

  • Riley R, Law CN (1984) Chromosome manipulation in plant breeding: progress and prospects. Stadler Genet Symp 16:301–322

    Google Scholar 

  • Roberts MA, Reader SM, Dalgliesh C et al (1999) Induction and characterization of Ph1 wheat mutants. Genetics 153:1909–1918

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saintenac C, Falque M, Martin OC et al (2009) Detailed recombination studies along chromosome 3B provide new insights on crossover distribution in wheat (Triticum aestivum L.). Genetics 181:393–403

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sakai K, Nasuda S, Sato K, Endo TR (2009) Dissection of barley chromosome 3H in common wheat and a comparison of 3H physical and genetic maps. Genes Genet Syst 84:25–34

    CAS  PubMed  Google Scholar 

  • Salse J, Bolot S, Throude M et al (2008) Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. Plant Cell 20:11–24

    CAS  PubMed Central  PubMed  Google Scholar 

  • Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and future challenges. Trends in Plant Sci 10:297–304.

    CAS  Google Scholar 

  • Sarma RN, Fish L, Gill BS, Snape JW (2000) Physical characterization of the homoeologous group 5 chromosomes of wheat in terms of rice linkage blocks, and physical mapping of some important genes. Genome 43:191–198

    CAS  PubMed  Google Scholar 

  • Saxton WM, Hicks J, Goldstein LSB, Raff EC (1991) Kinesin heavy chain is essential for viability and neuromuscular functions in Drosophila, but mutants show no defect in mitosis. Cell 64:1093–1102

    CAS  PubMed  Google Scholar 

  • Schnurbusch T, Collins NC, Eastwood RF et al (2007) Fine mapping and targeted SNP survey using rice-wheat gene colinearity in the region of the Bo1 boron toxicity tolerance locus of bread wheat. Theor Appl Genet 115:451–461

    CAS  PubMed  Google Scholar 

  • Sears ER (1954) The aneuploids of common wheat. Missouri Agr Exp Sta Res Bull 572:1–58

    Google Scholar 

  • Sears ER (1956) The transfer of leaf-rust resistance from Aegilops umbellulata to wheat. Brookhaven Symp Biol 9:1–22

    Google Scholar 

  • Sears ER (1966). Nullisomic-tetrasomic combinations in hexaploid wheat. In: Riley R, Lewis KR (eds) Chromosome manipulations and plant genetics, Oliver and Boyd Ltd., Edinburgh, p 2945

    Google Scholar 

  • Sears ER (1993) Use of radiation to transfer alien chromosome segments to wheat. Crop Sci 33:897–901

    Google Scholar 

  • Sears ER, Sears LMS (1978) The telocentric chromosomes of common wheat. In: Ramanujam S (ed) Proceedings of the fifth international wheat genetics symposium, New Delhi, pp 389–407

    Google Scholar 

  • Sengupta S, Harris CC (2005) p53: traffic cop at the crossroads of DNA repair and recombination. Nat Rev Mol Cell Biol 6:44–55

    CAS  PubMed  Google Scholar 

  • Shebeski LH, Lawrence T (1954) The production of beneficial mutations in barley by irradiation. Canad J Agri Sci 34:1–9

    Google Scholar 

  • Sheridan WF, Auger DL (2006) Construction and uses of new compound B-A-A maize chromosome translocations. Genetics 174:1755–1765

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shigyo M, Tashiro Y, Isshiki S, Miyazaki S (1996) Establishment of a series of alien monosomic addition lines of Japanese bunching onion (Allium fistulosum L) with extra chromosomes from shallot (A. cepa L. Aggregatum group). Genes Genet Syst 71:363–371

    CAS  PubMed  Google Scholar 

  • Shirley BM, Hanley S, Goodman HM (1992) Effects of ionizing radiation on a plant genome: analysis of two Arabidopsis transparent testa mutations. Plant Cell 4:333–347

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shu QY (2009) Turning plant mutation breeding into a new era: molecular mutation breeding. In: Induced plant mutations in the genomics era. FAO, Rome, pp 425–427

    Google Scholar 

  • Silkova OG, Dobrovolskaya OB, Dubovets NI et al (2006) Production of wheat-rye substitution lines and identification of chromosome composition of karyotypes using C-banding, GISH, and SSR markers. Russ J Genet 42:645–653

    CAS  Google Scholar 

  • Song XQ, Xia GM, Chen HM (2000) Chromosomal variation in long-term cultures of several related plants in Triticinae. Acta Phytophysiol Sin 26:33–38

    CAS  Google Scholar 

  • Stewart EA, McKusick KB, Aggarwal A et al (1997) An STS-based radiation hybrid map of the human genome. Genome Res 7:422–433

    CAS  PubMed  Google Scholar 

  • Surzycki SA, Belknap WR (1999) Characterization of repetitive DNA elements in Arabidopsis. J Mol Evol 48:684–691

    CAS  PubMed  Google Scholar 

  • Szakács É, Molnár-Láng M (2007) Development and molecular cytogenetic identification of new winter wheat-winter barley (‘Martonvásári 9 kr1’-‘Igri’) disomic addition lines. Genome 50:43–50

    PubMed  Google Scholar 

  • Szakács É, Molnár-Láng M (2010) Identification of new winter wheat-winter barley addition lines (6HS and 7H) using fluorescence in situ hybridization and the stability of the whole ‘Martonvásári 9 kr1’-‘Igri’ addition set. Genome 53:35–44

    PubMed  Google Scholar 

  • Taski-Ajdukovic K, Nagl N, Miladinovic D (2010) Towards reducing genotype specificity in regeneration protocols after somatic hybridization between cultivated sunflower and wild Helianthus species. Acta Biol Hung 61:214–223

    PubMed  Google Scholar 

  • Van Geyt JPC, Oleo M, Lange W, de Bock TSM (1988) Monosomic additions in beet (Beta vulgaris) carrying extra chromosomes of Beta procumbens. 1. Identification of the alien chromosomes with the help of isozyme markers. Theor Appl Genet 76:577–586

    CAS  PubMed  Google Scholar 

  • Van Orsouw NJ, Hogers RC, Janssen A et al (2007) Complexity reduction of polymorphic sequences (CRoPS): a novel approach for large-scale polymorphism discovery in complex genomes. PLoS ONE 2:e1172

    PubMed Central  PubMed  Google Scholar 

  • Van Vactor D, Krantz DE, Reinke R, Zipursky SL (1988) Analysis of mutants in chaoptin, a photoreceptor cell-specific glycoprotein in Drosophila, reveals its role in cellular morphogenesis. Cell 52:281–290

    CAS  PubMed  Google Scholar 

  • Vogel JP, Garvin DF, Mockler TC et al (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    CAS  Google Scholar 

  • Wade CM, Giulotto E, Sigurdsson S et al (2009) Genome sequence, comparative analysis, and population genetics of the domestic horse. Science 326:865–867

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walter MA, Spillet D J, Thomas P et al (1994) A method for constructing radiation hybrid maps of whole genomes. Nat Genet 7:22–28

    CAS  PubMed  Google Scholar 

  • Wang GX, Tang Y, Yan H et al (2011) Production and characterization of interspecific somatic hybrids between Brassica oleracea var. botrytis and B. nigra and their progenies for the selection of advanced pre-breeding materials. Plant Cell Rep 30:1811–1821

    CAS  PubMed  Google Scholar 

  • Wardrop J, Snape J, Powell W, Machray G (2002) Constructing plant radiation hybrid panels. Plant J 31:223–228

    CAS  PubMed  Google Scholar 

  • Wardrop J, Fuller J, Powell W, Machray GC (2004) Exploiting plant somatic radiation hybrids for physical mapping of expressed sequence tags. Theor Appl Genet 108:343–348

    CAS  PubMed  Google Scholar 

  • Waterston RH, Lindblad-Toh K, Birney E et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    CAS  PubMed  Google Scholar 

  • Weikard R, Goldammer T, Laurent P et al (2006) A gene-based high-resolution comparative radiation hybrid map as a framework for genome sequence assembly of a bovine chromosome 6 region associated with QTL for growth, body composition, and milk performance traits. BMC Genomics 7:53

    PubMed Central  PubMed  Google Scholar 

  • Weterings E, van Gent DC (2004) The mechanism of non-homologous end-joining: a synopsis of synapsis. DNA Repair 3:1425–1435

    CAS  PubMed  Google Scholar 

  • Wi GS, Chung BY, Kim JS et al (2007) Effects of gamma irradiation on morphological changes and biological responses in plants. Micron 38:553–564

    CAS  PubMed  Google Scholar 

  • Wu CH, Nomura K, Goldammer T et al (2008) A high-resolution comparative radiation hybrid map of ovine chromosomal regions that are homologous to human chromosome 6 (HSA6). Animal Genetics 39:459–467

    CAS  PubMed  Google Scholar 

  • Xiang F, Xia G, Chen H (2003) Asymmetric somatic hybridization between wheat (Triticum aestivum) and Avena sativa L. Sci China C Life Sci 46:243–252

    CAS  PubMed  Google Scholar 

  • Xue S, Zhang Z, Lin F et al (2008) A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags. Theor Appl Genet 117:181–189

    CAS  PubMed  Google Scholar 

  • Yamano S, Tsujimoto H, Endo TR, Nasuda S (2010) Radiation mutants for mapping genes and markers in pericentromeric region of chromosome 3B of Norin 26 wheat. Wheat Inf Serv 109:11–13

    Google Scholar 

  • Yang ZJ, Zhang T, Liu C et al (2008) Identification of wheat-Dasypyrum breviaristatum addition lines with stripe rust resistance using C-banding and genomic in situ hybridization. In: Appels R, Eastwood E, Lagudah E, Langridge P, Mackay M (eds) Proceedings of 11th international wheat genet symposium, Sydney University Press.

    Google Scholar 

  • Ya-Ping Y, Xiao C, Si-He X et al (2003) Identification of wheat-barley 2H alien substitution lines. Acta Bot Sin 45:1096–1102

    Google Scholar 

  • You Y, Bergstrom R, Lederman R et al (1997) Chromosomal deletion complexes in mice by radiation of embryonic stem cells. Nat Genet 15:285–288

    CAS  PubMed  Google Scholar 

  • Zacharias M (1956) Mutationversuche an Kulturpflanzen. VI. Rontgenbes-trahlungen der Sojabohne (Glycine sofa L.). Sieb.et Zucc Zuchter 11:321–338

    Google Scholar 

  • Zhang C, Yang Z, Gui X et al (2008) Somatic hybridization between Brassica napus and Eruca sativa mill. Sheng Wu Gong Cheng Xue Bao 24:793–802

    CAS  PubMed  Google Scholar 

  • Zhang F, Wang P, Ji D et al (2011) Asymmetric somatic hybridization between Bupleurum scorzonerifolium Willd. and Taxus chinensis var. mairei. Plant Cell Rep 30:1857–1864

    CAS  PubMed  Google Scholar 

  • Zhou C, Xia GM, Zhi DY, Chen Y (2006) Genetic characterization of asymmetric somatic hybrids between Bupleurum scorzonerifolium Willd. and Triticum aestivum L.: potential application to the study of the wheat genome. Planta 223:414–424

    Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the National Science Foundation, Plant Genome Research Program (NSF-PGRP) grant No. DBI-0822100 to SFK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahryar F. Kianian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kumar, A. et al. (2014). Radiation Hybrids: A valuable Tool for Genetic, Genomic and Functional Analysis of Plant Genomes. In: Tuberosa, R., Graner, A., Frison, E. (eds) Genomics of Plant Genetic Resources. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7572-5_12

Download citation

Publish with us

Policies and ethics