Skip to main content

The GPCR Crystallography Boom: Providing an Invaluable Source of Structural Information and Expanding the Scope of Homology Modeling

  • Chapter
  • First Online:
G Protein-Coupled Receptors - Modeling and Simulation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 796))

Abstract

G protein-coupled receptors (GPCRs) are integral membrane proteins of high pharmaceutical interest. Until relatively recently, their structures have been particularly elusive, and rhodopsin has been for many years the only member of the superfamily with experimentally elucidated structures. However, a number of recent technical and scientific advancements made the determination of GPCR structures more feasible, thus leading to the solution of the structures of several receptors. Besides providing direct structural information, these experimental GPCR structures also provide templates for the construction of GPCR models. In depth studies have been performed to probe the accuracy of these models, in particular with respect to the interactions with their ligands, and to assess their applicability the rational discovery of GPCR modulators. Given the current state of the art and the pace of the field, the future of GPCR structural studies is likely to be characterized by a landscape populated by an increasingly higher number of experimental and theoretical structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Audet M, Bouvier M (2012) Restructuring G-protein- coupled receptor activation. Cell 151:14–23

    Article  PubMed  CAS  Google Scholar 

  • Baldwin J (1993) The probable arrangement of the helices in G protein-coupled receptors. EMBO J 12:1693–1703

    PubMed  CAS  Google Scholar 

  • Ballesteros JA, Weinstein H (1992) Analysis and refinement of criteria for predicting the structure and relative orientations of transmembranal helical domains. Biophys J 62:107–109

    Article  PubMed  CAS  Google Scholar 

  • Carlsson J, Coleman RG, Setola V, Irwin JJ, Fan H, Schlessinger A, Sali A, Roth BL, Shoichet BK (2011) Ligand discovery from a dopamine D(3) receptor homology model and crystal structure. Nat Chem Biol 7:769–778

    Article  PubMed  CAS  Google Scholar 

  • Cavasotto CN (2011) Homology models in docking and high-throughput docking. Curr Top Med Chem 11:1528–1534

    Article  PubMed  CAS  Google Scholar 

  • Cavasotto CN, Orry AJ, Murgolo NJ, Czarniecki MF, Kocsi SA, Hawes BE, O'Neill KA, Hine H, Burton MS, Voigt JH et al (2008) Discovery of novel chemotypes to a G-protein-coupled receptor through ligand-steered homology modeling and structure-based virtual screening. J Med Chem 51:581–588

    Article  PubMed  CAS  Google Scholar 

  • Cherezov V, Rosenbaum D, Hanson M, Rasmussen S, Thian F, Kobilka T, Choi H, Kuhn P, Weis W, Kobilka B et al (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318:1258–1265

    Article  PubMed  CAS  Google Scholar 

  • Chien EY, Liu W, Zhao Q, Katritch V, Han GW, Hanson MA, Shi L, Newman AH, Javitch JA, Cherezov V et al (2010) Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 330:1091–1095

    Article  PubMed  CAS  Google Scholar 

  • Choe HW, Kim YJ, Park JH, Morizumi T, Pai EF, Krauss N, Hofmann KP, Scheerer P, Ernst OP (2011) Crystal structure of metarhodopsin II. Nature 471:651–655

    Article  PubMed  CAS  Google Scholar 

  • Congreve M, Marshall F (2009) The impact of GPCR structures on pharmacology and structure-based drug design. Br J Pharmacol 159:986–996

    Article  PubMed  Google Scholar 

  • Congreve M, Langmead CJ, Mason JS, Marshall FH (2011) Progress in structure based drug design for G protein-coupled receptors. J Med Chem 54:4283–4311

    Article  PubMed  CAS  Google Scholar 

  • Costanzi S (2008) On the applicability of GPCR homology models to computer-aided drug discovery: a comparison between in silico and crystal structures of the beta2-adrenergic receptor. J Med Chem 51:2907–2914

    Article  PubMed  CAS  Google Scholar 

  • Costanzi S (2010) Modeling G protein-coupled receptors: a concrete possibility. Chim Oggi 28:26–31

    PubMed  CAS  Google Scholar 

  • Costanzi S (2011) Chapter 18. Structure-based virtual screening for ligands of G protein-coupled receptors. In: Giraldo J, Pin J-P (eds) G protein-coupled receptors: from structure to function. The Royal Society of Chemistry, London and Cambridge, pp 359–374

    Chapter  Google Scholar 

  • Costanzi S (2012) Homology modeling of class a G protein-coupled receptors. Methods Mol Biol 857:259–279

    Article  PubMed  CAS  Google Scholar 

  • Costanzi S, Siegel J, Tikhonova I, Jacobson K (2009) Rhodopsin and the others: a historical perspective on structural studies of G protein-coupled receptors. Curr Pharm Des 15:3994–4002

    Article  PubMed  CAS  Google Scholar 

  • Day P, Rasmussen S, Parnot C, Fung J, Masood A, Kobilka T, Yao X, Choi H, Weis W, Rohrer D et al (2007) A monoclonal antibody for G protein-coupled receptor crystallography. Nat Methods 4:927–929

    Article  PubMed  CAS  Google Scholar 

  • Dixon R, Kobilka B, Strader D, Benovic J, Dohlman H, Frielle T, Bolanowski M, Bennett C, Rands E, Diehl R et al (1986) Cloning of the gene and cDNA for mammalian beta-adrenergic receptor and homology with rhodopsin. Nature 321:75–79

    Article  PubMed  CAS  Google Scholar 

  • Dohlman H, Bouvier M, Benovic J, Caron M, Lefkowitz R (1987) The multiple membrane spanning topography of the beta 2-adrenergic receptor. Localization of the sites of binding, glycosylation, and regulatory phosphorylation by limited proteolysis. J Biol Chem 262:14282–14288

    PubMed  CAS  Google Scholar 

  • Donati RJ, Rasenick MM (2003) G protein signaling and the molecular basis of antidepressant action. Life Sci 73:1–17

    Article  PubMed  CAS  Google Scholar 

  • Fredriksson R, Lagerström M, Lundin L, Schiöth H (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:1256–1272

    Article  PubMed  CAS  Google Scholar 

  • Gloriam D, Fredriksson R, Schiöth H (2007) The G protein-coupled receptor subset of the rat genome. BMC Genomics 8:338

    Article  PubMed  Google Scholar 

  • Goldfeld DA, Zhu K, Beuming T, Friesner RA (2011) Successful prediction of the intra- and extracellular loops of four G-protein-coupled receptors. Proc Natl Acad Sci U S A 108:8275–8280

    Article  PubMed  CAS  Google Scholar 

  • Goldfeld DA, Zhu K, Beuming T, Friesner RA (2012) Loop prediction for a GPCR homology model: algorithms and results. Proteins 81:214–228

    Article  PubMed  Google Scholar 

  • Granier S, Manglik A, Kruse AC, Kobilka TS, Thian FS, Weis WI, Kobilka BK (2012) Structure of the delta-opioid receptor bound to naltrindole. Nature 485:400–404

    Article  PubMed  CAS  Google Scholar 

  • Hanson MA, Stevens RC (2009) Discovery of new GPCR biology: one receptor structure at a time. Structure 17:8–14

    Article  PubMed  CAS  Google Scholar 

  • Hargrave PA (2001) Rhodopsin structure, function, and topography the Friedenwald lecture. Invest Ophthalmol Vis Sci 42:3–9

    PubMed  CAS  Google Scholar 

  • Hargrave P, McDowell J, Curtis D, Wang J, Juszczak E, Fong S, Rao J, Argos P (1983) The structure of bovine rhodopsin. Biophys Struct Mech 9:235–244

    Article  PubMed  CAS  Google Scholar 

  • Henderson R, Unwin PN (1975) Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257:28–32

    Article  PubMed  CAS  Google Scholar 

  • IJzerman A, Van Galen P, Jacobson K (1992) Molecular modeling of adenosine receptors. I. The ligand binding site on the A1 receptor. Drug Des Discov 9:49–67

    PubMed  CAS  Google Scholar 

  • IJzerman AP, van der Wenden EM, Van Galen PJ, Jacobson KA (1994) Molecular modeling of adenosine receptors. The ligand binding site on the rat adenosine A2A receptor. Eur J Pharmacol 268:95–104

    Article  PubMed  CAS  Google Scholar 

  • Jaakola V, Griffith M, Hanson M, Cherezov V, Chien E, Lane J, Ijzerman A, Stevens R (2008) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322:1211–1217

    Article  PubMed  CAS  Google Scholar 

  • Jacobson KA, Costanzi S (2012) New insights for drug design from the x-ray crystallographic structures of g-protein-coupled receptors. Mol Pharmacol 82:361–371

    Article  PubMed  CAS  Google Scholar 

  • Jacobson KA, Deflorian F, Mishra S, Costanzi S (2011) Pharmacochemistry of the platelet purinergic receptors. Purinergic Signal 7:305–324

    Article  PubMed  CAS  Google Scholar 

  • Katritch V, Rueda M, Lam P, Yeager M, Abagyan R (2010) GPCR 3D homology models for ligand screening: lessons learned from blind predictions of adenosine A2a receptor complex. Proteins 78:197–211

    Article  PubMed  CAS  Google Scholar 

  • Kufareva I, Rueda M, Katritch V, Stevens RC, Abagyan R (2011) Status of GPCR modeling and docking as reflected by community-wide GPCR Dock 2010 assessment. Structure 19:1108–1126

    Article  PubMed  CAS  Google Scholar 

  • Lefkowitz RJ (2007a) Seven transmembrane receptors: a brief personal retrospective. Biochim Biophys Acta 1768:748–755

    Article  PubMed  CAS  Google Scholar 

  • Lefkowitz RJ (2007b) Seven transmembrane receptors: something old, something new. Acta Physiol (Oxf) 190:9–19

    Article  CAS  Google Scholar 

  • Manglik A, Kruse AC, Kobilka TS, Thian FS, Mathiesen JM, Sunahara RK, Pardo L, Weis WI, Kobilka BK, Granier S (2012) Crystal structure of the mu-opioid receptor bound to a morphinan antagonist. Nature 485:321–326

    Article  PubMed  CAS  Google Scholar 

  • Mason JS, Bortolato A, Congreve M, Marshall FH (2012) New insights from structural biology into the druggability of G protein-coupled receptors. Trends Pharmacol Sci 33:249–260

    Article  PubMed  CAS  Google Scholar 

  • Michino M, Abola E, 2008 Participants G, Brooks Cr, Dixon J, Moult J, Stevens R (2009) Community-wide assessment of GPCR structure modelling and ligand docking: GPCR Dock 2008. Nat Rev Drug Discov 8:455–463

    Google Scholar 

  • Mobarec J, Sanchez R, Filizola M (2009) Modern homology modeling of G-protein coupled receptors: which structural template to use? J Med Chem 52:5207–5216

    Article  PubMed  CAS  Google Scholar 

  • Mysinger MM, Weiss DR, Ziarek JJ, Gravel S, Doak AK, Karpiak J, Heveker N, Shoichet BK, Volkman BF (2012) Structure-based ligand discovery for the protein-protein interface of chemokine receptor CXCR4. Proc Natl Acad Sci U S A 109:5517–5522

    Article  PubMed  CAS  Google Scholar 

  • Okada T, Palczewski K (2001) Crystal structure of rhodopsin: implications for vision and beyond. Curr Opin Struct Biol 11:420–426

    Article  PubMed  CAS  Google Scholar 

  • Oliveira L, Paiva ACM, Vriend G (1993) A common motif in G-protein-coupled 7 transmembrane helix receptors. J Comput Aided Mol Des 7:649–658

    Article  CAS  Google Scholar 

  • Ovchinnikov Y, Abdulaev N, Feigina M, Artamonov I, Zolotarev A, Kostina M, Bogachuk A, Miroshnikov A, Martinov V, Kudelin A (1982) The complete amino-acid-sequence of visual rhodopsin. Bioorganicheskaya Khimiya 8:1011–1014

    CAS  Google Scholar 

  • Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5:993–996

    Article  PubMed  CAS  Google Scholar 

  • Palczewski K, Kumasaka T, Hori T, Behnke C, Motoshima H, Fox B, Le Trong I, Teller D, Okada T, Stenkamp R et al (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745

    Article  PubMed  CAS  Google Scholar 

  • Pardo L, Ballesteros JA, Osman R, Weinstein H (1992) On the use of the transmembrane domain of bacteriorhodopsin as a template for modeling the three-dimensional structure of guanine nucleotide-binding regulatory protein-coupled receptors. Proc Natl Acad Sci U S A 89:4009–4012

    Article  PubMed  CAS  Google Scholar 

  • Park JH, Scheerer P, Hofmann KP, Choe HW, Ernst OP (2008) Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 454:183–187

    Article  PubMed  CAS  Google Scholar 

  • Park SH, Das BB, Casagrande F, Tian Y, Nothnagel HJ, Chu M, Kiefer H, Maier K, De Angelis AA, Marassi FM et al (2012) Structure of the chemokine receptor CXCR1 in phospholipid bilayers. Nature 491:779–783

    Article  PubMed  CAS  Google Scholar 

  • Phatak SS, Gatica EA, Cavasotto CN (2010) Ligand-steered modeling and docking: a benchmarking study in class a G-protein-coupled receptors. J Chem Inf Model 50:2119–2128

    Article  PubMed  CAS  Google Scholar 

  • Pierce K, Premont R, Lefkowitz R (2002) Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3:639–650

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen S, Choi H, Rosenbaum D, Kobilka T, Thian F, Edwards P, Burghammer M, Ratnala V, Sanishvili R, Fischetti R et al (2007) Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450:383–387

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen SG, Choi HJ, Fung JJ, Pardon E, Casarosa P, Chae PS, Devree BT, Rosenbaum DM, Thian FS, Kobilka TS et al (2011a) Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor. Nature 469:175–180

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D et al (2011b) Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature 477:549–555

    Article  PubMed  CAS  Google Scholar 

  • Rosenbaum D, Cherezov V, Hanson M, Rasmussen S, Thian F, Kobilka T, Choi H, Yao X, Weis W, Stevens R et al (2007) GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science 318:1266–1273

    Article  PubMed  CAS  Google Scholar 

  • Rosskopf D, Michel MC (2008) Pharmacogenomics of G protein-coupled receptor ligands in cardiovascular medicine. Pharmacol Rev 60:513–535

    Article  PubMed  CAS  Google Scholar 

  • Salon JA, Lodowski DT, Palczewski K (2011) The significance of G protein-coupled receptor crystallography for drug discovery. Pharmacol Rev 63:901–937

    Article  PubMed  CAS  Google Scholar 

  • Scheerer P, Park JH, Hildebrand PW, Kim YJ, Krauss N, Choe HW, Hofmann KP, Ernst OP (2008) Crystal structure of opsin in its G-protein-interacting conformation. Nature 455:497–502

    Article  PubMed  CAS  Google Scholar 

  • Schertler G, Villa C, Henderson R (1993) Projection structure of rhodopsin. Nature 362:770–772

    Article  PubMed  CAS  Google Scholar 

  • Spetea M, Schmidhammer H (2012) Recent advances in the development of 14-alkoxy substituted morphinans as potent and safer opioid analgesics. Curr Med Chem 19:2442–2457

    Article  PubMed  CAS  Google Scholar 

  • Standfuss J, Edwards PC, D'Antona A, Fransen M, Xie G, Oprian DD, Schertler GF (2011) The structural basis of agonist-induced activation in constitutively active rhodopsin. Nature 471:656–660

    Article  PubMed  CAS  Google Scholar 

  • Steyaert J, Kobilka BK (2011) Nanobody stabilization of G protein-coupled receptor conformational states. Curr Opin Struct Biol 21:567–572

    Article  PubMed  CAS  Google Scholar 

  • Tate CG (2012) A crystal clear solution for determining G-protein-coupled receptor structures. Trends Biochem Sci 37:343–352

    Article  PubMed  CAS  Google Scholar 

  • Thompson AA, Liu W, Chun E, Katritch V, Wu H, Vardy E, Huang XP, Trapella C, Guerrini R, Calo G et al (2012) Structure of the nociceptin/orphanin FQ receptor in complex with a peptide mimetic. Nature 485:395–399

    Article  PubMed  CAS  Google Scholar 

  • Vilar S, Ferino G, Phatak SS, Berk B, Cavasotto CN, Costanzi S (2010) Docking-based virtual screening for ligands of G protein-coupled receptors: Not only crystal structures but also in silico models. J Mol Graph Model. doi:10.1016/j.jmgm.2010.1011.1005

    Google Scholar 

  • Vilar S, Karpiak J, Berk B, Costanzi S (2011) In silico analysis of the binding of agonists and blockers to the beta2-adrenergic receptor. J Mol Graph Model 29:809–817

    Article  PubMed  CAS  Google Scholar 

  • White JF, Noinaj N, Shibata Y, Love J, Kloss B, Xu F, Gvozdenovic-Jeremic J, Shah P, Shiloach J, Tate CG et al (2012) Structure of the agonist-bound neurotensin receptor. Nature 490:508–513

    Article  PubMed  CAS  Google Scholar 

  • Worth C, Kleinau G, Krause G (2009) Comparative sequence and structural analyses of G-protein-coupled receptor crystal structures and implications for molecular models. PLoS One 4:e7011

    Article  PubMed  Google Scholar 

  • Wu B, Chien EY, Mol CD, Fenalti G, Liu W, Katritch V, Abagyan R, Brooun A, Wells P, Bi FC et al (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330:1066–1071

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Wacker D, Mileni M, Katritch V, Han GW, Vardy E, Liu W, Thompson AA, Huang XP, Carroll FI et al (2012) Structure of the human kappa-opioid receptor in complex with JDTic. Nature 485:327–332

    Article  PubMed  CAS  Google Scholar 

  • Xu F, Wu H, Katritch V, Han GW, Jacobson KA, Gao ZG, Cherezov V, Stevens RC (2011) Structure of an agonist-bound human A2A adenosine receptor. Science 332:322–327

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Srinivasan Y, Arlow DH, Fung JJ, Palmer D, Zheng Y, Green HF, Pandey A, Dror RO, Shaw DE et al (2012) High-resolution crystal structure of human protease-activated receptor 1. Nature 492:387–392

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Costanzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Costanzi, S., Wang, K. (2014). The GPCR Crystallography Boom: Providing an Invaluable Source of Structural Information and Expanding the Scope of Homology Modeling. In: Filizola, M. (eds) G Protein-Coupled Receptors - Modeling and Simulation. Advances in Experimental Medicine and Biology, vol 796. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7423-0_1

Download citation

Publish with us

Policies and ethics