Skip to main content

Gait Based on the Spring-Loaded Inverted Pendulum

  • Living reference work entry
  • First Online:
Humanoid Robotics: A Reference

Abstract

The spring-loaded inverted pendulum (SLIP) describes gait with a point mass rebounding on spring legs. The model captures the center of mass dynamics observed in running animals and has become a basic gait template in biomechanics and robotics for studying the dynamics and control of compliant legged locomotion. This chapter provides an overview of gait based on the SLIP model. The standard SLIP model for describing sagittal plane locomotion is introduced through a review of early model developments in the biomechanics and robotics communities. Related legged platforms are presented. Methods are then discussed for studying the dynamics and control of locomotion with this model, including approximate solutions to the stance dynamics, return map analysis of periodic gait, and optimal control approaches for getting stable and robust running behavior. Finally, generalizations of the SLIP model and its analysis methods are highlighted for performing multistep planning, expanding to locomotion in 3-D environments, generating walking and gait transitions, and embedding in humanoids and other legged robots. The chapter closes with suggestions for future directions that will likely help to grow the utility of the SLIP model as a gait template for agile, stable, and robust locomotion on compliant legs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. M. Ahmadi, M. Buehler, Preliminary experiments with an actively tuned passive dynamic running robot. Exp. Robot. V, 312–324 (1998)

    Google Scholar 

  2. M. Ahmadi, M. Buehler, Controlled passive dynamic running experiments with the ARL-monopod II. IEEE Trans. Robot. 22(5), 974–986 (2006)

    Article  Google Scholar 

  3. R. Alexander, A. Jayes, Vertical movements in walking and running. J. Zool. 185(1), 27–40 (1978)

    Article  Google Scholar 

  4. E. Andrada, C. Rode, R. Blickhan, Grounded running in quails: simulations indicate benefits of observed fixed aperture angle between legs before touch-down. J. Theor. Biol. 335, 97–107 (2013)

    Article  MathSciNet  Google Scholar 

  5. M.M. Ankarali, U. Saranli, Stride-to-stride energy regulation for robust self-stability of a torque-actuated dissipative spring-mass hopper. Chaos: Interdisciplinary J. Nonlinear Sci. 20(3), 033121 (2010)

    Google Scholar 

  6. M.M. Ankarali, U. Saranli, Control of underactuated planar pronking through an embedded spring-mass hopper template. Auton. Rob. 30(2), 217–231 (2011). https://doi.org/10.1007/s10514-010-9216-x

    Article  Google Scholar 

  7. O. Arslan, U. Saranli, Reactive planning and control of planar spring-mass running on rough terrain. IEEE Trans. Robot. 28(3), 567–579 (2012)

    Article  Google Scholar 

  8. R. Blickhan, The spring-mass model for running and hopping. J. Biomech. 22, 1217–1227 (1989)

    Article  Google Scholar 

  9. R. Blickhan, R.J. Full, Similarity in multilegged locomotion: bouncing like a monopode. J. Comp. Physiol. A 173(5), 509–517 (1993)

    Article  Google Scholar 

  10. Y. Blum, H.R. Vejdani, A.V. Birn-Jeffery, C.M. Hubicki, J.W. Hurst, M.A. Daley, Swing-leg trajectory of running guinea fowl suggests task-level priority of force regulation rather than disturbance rejection. PLoS One 9 (2014)

    Google Scholar 

  11. G.S. Carver, N.J. Cowan, J.M. Guckenheimer, Lateral stability of the spring-mass hopper suggests a two-step control strategy for running. Chaos 19(2), 26106–26114 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. G.A. Cavagna, F.P. Saibene, R. Margaria, Mechanical work in running. J. Appl. Physiol. 19(2), 249–256 (1964)

    Article  Google Scholar 

  13. J.G. Cham, S.A. Bailey, J.E. Clark, R.J. Full, M.R. Cutkosky, Fast and robust: hexapedal robots via shape deposition manufacturing. Int. J. Robot. Res. 21(10), 869–882 (2002)

    Article  Google Scholar 

  14. S. Cotton, I.C. Olaru, M. Bellman, T. van der Ven, J. Godowski, J. Pratt, FastRunner: a fast, efficient and robust bipedal robot. Concept and planar simulation, in Proceedings of IEEE International Conference on Robotics and Automation, 2012, pp. 2358–2364

    Google Scholar 

  15. A. Degani, S. Feng, H.B. Brown, K.M. Lynch, H. Choset, M.T. Mason, The ParkourBot – a dynamic BowLeg climbing robot, in Proceedings of IEEE International Conference on Robotics and Automation, 2011, pp. 795–801

    Google Scholar 

  16. C.T. Farley, D.P. Ferris, Biomecahnics of walking and running: center of mass movements to muscle action. Exerc. Sport Sci. Rev. 26, 253–283 (1998)

    Article  Google Scholar 

  17. H. Geyer, A. Seyfarth, R. Blickhan, Spring-mass running: simple approximate solution and application to gait stability. J. Theor. Biol. 232(3), 315–328 (2005)

    Article  MathSciNet  Google Scholar 

  18. H. Geyer, A. Seyfarth, R. Blickhan, Compliant leg behaviour explains the basic dynamics of walking and running. Proc. R. Soc. Lond. B 273, 2861–2867 (2006)

    Article  Google Scholar 

  19. R.M. Ghigliazza, R. Altendorfer, P. Holmes, D. Koditschek, A simply stabilized running model. SIAM J. Appl. Dyn. Syst. 2, 187–218 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. P. Gregorio, M. Ahmadi, M. Buehler, Design, control, and energetics of an electrically actuated legged robot. Trans. Syst. Man Cybern. B Cybern. 27(4), 626–634 (1997)

    Article  Google Scholar 

  21. J.A. Grimes, J.W. Hurst, The design of ATRIAS 1.0 a unique monopod, hopping robot, in Proceedings of the International Conference on Climbing and Walking Robots, 2012, pp. 467–474

    Google Scholar 

  22. J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, New York, 2002)

    MATH  Google Scholar 

  23. J.K. Hodgins, Biped gait transitions, in Proceedings of IEEE International Conference on Robotics and Automation, 1991, pp. 2092–2097

    Google Scholar 

  24. J. Hodgins, M.H. Raibert, Biped gymnastics. Int. J. Robot. Res. 9(2), 115–132 (1990)

    Article  Google Scholar 

  25. J.K. Hodgins, M.N. Raibert, Adjusting step length for rough terrain locomotion. IEEE Trans. Robot. Automat. 7(3), 289–298 (1991)

    Article  Google Scholar 

  26. J.W. Hurst, The electric cable differential leg: a novel design approach for walking and running. Int. J. Hum. Robot. 08(02), 301–321 (2011)

    Article  Google Scholar 

  27. M. Hutter, C.D. Remy, M.A. Hopflinger, R. Siegwart, SLIP running with an articulated robotic leg, in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010, pp. 4934–4939

    Google Scholar 

  28. S.H. Hyon, T. Mita, Development of a biologically inspired hopping robot-“Kenken”, in Proceedings of IEEE International Conference on Robotics and Automation, vol. 4, 2002, pp. 3984–39914

    Google Scholar 

  29. J.G.D. Karssen, M. Haberland, M. Wisse, S. Kim, The effects of swing-leg retraction on running performance: analysis, simulation, and experiment. Robotica 33(10), 2137–2155 (2015)

    Article  Google Scholar 

  30. S. Kim, J.E. Clark, M.R. Cutkosky, isprawl: autonomy, and the effects of power transmission, in Climbing and Walking Robots (Springer, Berlin/New York), 859–867 (2005)

    Google Scholar 

  31. D.E. Koditschek, M. Buehler, Analysis of a simplified hopping robot. Int. J. Robot. Res. 10(6), 587–605 (1991)

    Article  Google Scholar 

  32. S.W. Lipfert, M. Gunther, D. Renjewski, S. Grimmer, A. Seyfarth, A model-experiment comparison of system dynamics for human walking and running. J. Theor. Biol. 292, 11–17 (2012)

    Article  Google Scholar 

  33. G.A. Lynch, J.E. Clark, P.-C. Lin, D.E. Koditschek, A bioinspired dynamical vertical climbing robot. Int. J. Robot. Res. 31(8), 974–996 (2012)

    Article  Google Scholar 

  34. H.R. Martinez Salazar, J.P. Carbajal, Exploiting the passive dynamics of a compliant leg to develop gait transitions. Phys. Rev. E 83 (2011)

    Google Scholar 

  35. H.-M. Maus, A. Seyfarth, Walking in circles: a modelling approach. J. R. Soc. Interface 11(99) (2014)

    Google Scholar 

  36. T. McGeer, Passive bipedal running. Proc. Royal Soc. B 240, 107–134 (1990)

    Article  Google Scholar 

  37. R.T. M’Closkey, J.W. Burdick, Periodic motions of a hopping robot with vertical and forward motion. Int. J. Robot Res. 12, 197–218 (1993)

    Article  Google Scholar 

  38. T.A. McMahon, G.C. Cheng, The mechanism of running: how does stiffness couple with speed? J. Biomech. 23, 65–78 (1990)

    Article  Google Scholar 

  39. T.A. McMahon, P.R. Greene, Fast running tracks. Sci. Am. 239(6), 148–163 (1978)

    Article  Google Scholar 

  40. T.A. McMahon, G. Valiant, E.C. Frederik, Groucho running. J. Appl. Physiol. 62(6), 2326–2337 (1987)

    Article  Google Scholar 

  41. D. Owaki, M. Koyama, S. Yamaguchi, S. Kubo, A. Ishiguro, A two-dimensional passive dynamic running biped with knees, in Proceedings of IEEE International Conference on Robotics and Automation, 2010, pp. 5237–5242

    Google Scholar 

  42. F. Peuker, C. Maufroy, A. Seyfarth, Leg-adjustment strategies for stable running in three dimensions. Bioinspir. Biomim. 7(3), 036002 (2012)

    Google Scholar 

  43. G. Piovan, K. Byl, Enforced symmetry of the stance phase for the spring-loaded inverted pendulum, in Proceedings of IEEE International Conference on Robotics and Automation, 2012, pp. 1908–1914

    Google Scholar 

  44. J. Pratt, C.-M. Chew, A. Torres, P. Dilworth, G. Pratt, Virtual model control: an intuitive approach for bipedal locomotion. Int. J. Robot. Res. 20(2), 129–143 (2001)

    Article  Google Scholar 

  45. M.H. Raibert, Legged Robots That Balance (MIT press, Cambridge, 1986)

    MATH  Google Scholar 

  46. R. Ringrose, Self-stabilizing running, in Proceedings of IEEE International Conference on Robotics and Automation, vol. 1, 1997, pp. 487–493

    Google Scholar 

  47. J. Rummel, Y. Blum, A. Seyfarth, Robust and efficient walking with spring-like legs. Bioinspir. Biomim. 5, 046004 (2010)

    Article  Google Scholar 

  48. M. Rutschmann, B. Satzinger, M. Byl, K. Byl, Nonlinear model predictive control for rough-terrain robot hopping, in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, pp. 1859–1864

    Google Scholar 

  49. U. Saranli, W.J. Schwind, D.E. Koditschek, Towards the control of a multi-jointed, monoped runner, Leuven, Belgium, in Proceedings of IEEE International Conference on Robotics and Automation, 1998, pp. 2676–2682

    Google Scholar 

  50. U. Saranli, M. Buehler, D.E. Koditschek, RHex: a simple and highly mobile robot. Int. J. Robot. Res. 20(7), 616–631 (2001)

    Article  Google Scholar 

  51. U. Saranli, O. Arslan, M.M. Ankarali, O. Morgul, Approximate analytic solutions to non-symmetric stance trajectories of the passive spring-loaded inverted pendulum with damping. Nonlinear Dyn. 62(4), 729–742 (2010)

    Article  Google Scholar 

  52. J. Schmitt, J. Clark, Modeling posture-dependent leg actuation in sagittal plane locomotion. Bioinspir. Biomim. 4(4), 46005 (2009)

    Google Scholar 

  53. J. Schmitt, P. Holmes, Mechanical models for insect locomotion: dynamics and stability in the horizontal plane I. Theory. Biol. Cybern. 83(6), 501–515 (2000)

    Article  MATH  Google Scholar 

  54. W.J. Schwind, D.E. Koditschek, Control of forward velocity for a simplified planar hopping robot, in Proceedings of IEEE International Conference on Robotics and Automation, vol. 1, 1995, pp. 691–696

    Google Scholar 

  55. W.J. Schwind, D.E. Koditschek, Approximating the stance map of a 2-DOF Monoped runner. J. Nonlinear Sci. 10, 533–568 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  56. G. Secer, U. Saranli, Control of hopping through active virtual tuning of leg damping for serially actuated legged robots, in Proceedings of IEEE International Conference on Robotics and Automation, Hong Kong, 2014, pp. 4556–4561

    Google Scholar 

  57. J.E. Seipel, P. Holmes, Running in three dimensions: analysis of a point-mass sprung-leg model. Int. J. Robot. Res. 24(8), 657–674 (2005)

    Article  Google Scholar 

  58. J. Seipel, P. Holmes, A simple model for clock-actuated legged locomotion. Regul. Chaotic Dyn. 12, 502–520 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  59. A. Seyfarth, H. Geyer, M. Günther, R. Blickhan, A movement criterion for running. J. Biomech. 35, 649–655 (2002)

    Article  Google Scholar 

  60. A. Seyfarth, H. Geyer, H.M. Herr, Swing-leg retraction: a simple control model for stable running. J. Exp. Biol. 206, 2547–2555 (2003)

    Article  Google Scholar 

  61. M. Shahbazi, G.A.D. Lopes, R. Babuska, Automated transitions between walking and running in legged robots, in Proceedings of the World Congress, International Federation of Automatic Control, 2014, pp. 2171–2176

    Google Scholar 

  62. K. Sreenath, H.-W. Park, I. Poulakakis, J.W. Grizzle, Embedding active force control within the compliant hybrid zero dynamics to achieve stable, fast running on MABEL. Int. J. Robot. Res. 32(3), 324–345 (2013)

    Article  Google Scholar 

  63. M. van Gurp, H.C. Schamhardt, A. Crowe, The ground reaction force pattern from the hindlimb of the horse simulated by a spring model. Acta. Anat. 129, 31–33 (1987)

    Article  Google Scholar 

  64. B. Vanderborght, N. Tsagarakis, R. Ham, I. Thorson, D. Caldwell, MACCEPA 2.0: compliant actuator used for energy efficient hopping robot chobino1d. Auton. Rob. 31, 55–65 (2011)

    Google Scholar 

  65. P.M. Wensing, D.E. Orin, High-speed humanoid running through control with a 3D-SLIP model, in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, pp. 5134–5140

    Google Scholar 

  66. B.R. Whittington, D.G. Thelen, A simple mass-spring model with roller feet can induce the ground reactions observed in human walking. J. Biomech. Eng. 131, 011013 (2009)

    Article  Google Scholar 

  67. A. Wu, H. Geyer, The 3-D spring-mass model reveals a time-based deadbeat control for highly robust running and steering in uncertain environments. IEEE Trans. Robot. 29(5), 1114–1124 (2013)

    Article  Google Scholar 

  68. H. Yu, M. Li, H. Cai, Approximating the stance map of the SLIP runner based on perturbation approach, in Proceedings of IEEE International Conference on Robotics and Automation, 2012, pp. 4197–4203

    Google Scholar 

  69. G. Zeglin, The Bow Leg Hopping Robot, Ph.D., CMU-RI-TR-99-33, Carnegie Mellon University, 1999

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartmut Geyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this entry

Cite this entry

Geyer, H., Saranli, U. (2017). Gait Based on the Spring-Loaded Inverted Pendulum. In: Goswami, A., Vadakkepat, P. (eds) Humanoid Robotics: A Reference. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7194-9_43-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7194-9_43-1

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7194-9

  • Online ISBN: 978-94-007-7194-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics