Skip to main content

Driving Forces: Slab Pull, Ridge Push

  • Living reference work entry
  • First Online:
Encyclopedia of Marine Geosciences

Definition

Plate Driving Forces: The forces that drive the motions of tectonic plates at the surface.

Slab Pull: The force exerted by the weight of the subducted slab on the plate it is attached to.

Ridge Push: The pressure exerted by the excess height of the mid-ocean ridge.

Introduction

The history of the development of plate tectonics is centrally tied to the question of what drives plate motions. This has been the case since the failure of Wegener’s ideas about polflucht to explain continental drift to the seminal papers by Elsasser (1969), Solomon and Sleep (1974), and Forsyth and Uyeda (1975) on slab pull and ridge push. This contribution cannot possibly review all the seminal and historical publications that led to the establishment of the terms and concepts of slab pull and ridge push as major plate driving forces; instead, it gives a brief historical introduction and then focuses on modern views of the plate-mantle system and what remains to be understood.

Historical Overview

B...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Alisic, L., Gurnis, M., Stadler, G., Burstedde, C., and Ghattas, O., 2012. Multi-scale dynamics and rheology of mantle flow with plates. Journal of Geophysical Research: Solid Earth (1978–2012), 117, B10.

    Article  Google Scholar 

  • Anderson, D. L., 2007. The New Theory of the Earth. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Becker, T. W., 2006. On the effect of temperature and strain-rate dependent viscosity on global mantle flow, net rotation, and driving forces. Geophysical Journal International, 167, 943–957.

    Article  Google Scholar 

  • Becker, T. W., and O’Connell, R. J., 2001. Predicting plate velocities with mantle circulation models. Geochemistry, Geophysics, Geosystems, 2, 1060.

    Article  Google Scholar 

  • Bercovici, D., 2003. The generation of plate tectonics from mantle convection. Earth and Planetary Science Letters, 205, 107–121.

    Article  Google Scholar 

  • Bird, P., 1998. Testing hypotheses on plate-driving mechanisms with global lithosphere models including topography, thermal structure, and faults. Journal of Geophysical Research: Solid Earth (1978–2012), 103, 10115–10129.

    Article  Google Scholar 

  • Chapple, W. M., and Tullis, T. E., 1977. Evaluation of the forces that drive the plates. Journal of Geophysical Research, 82, 1967–1984.

    Article  Google Scholar 

  • Chase, C. G., and Sprowl, D. R., 1983. The modern geoid and ancient plate boundaries. Earth and Planetary Science Letters, 62, 314–320.

    Article  Google Scholar 

  • Coblentz, D. D., Zhou, S., Hillis, R. R., Richardson, R. M., and Sandiford, M., 1998. Topography, boundary forces, and the Indo-Australian intraplate stress field. Journal of Geophysical Research: Solid Earth (1978–2012), 103, 919–931.

    Article  Google Scholar 

  • Conrad, C. P., and Lithgow-Bertelloni, C., 2002. How mantle slabs drive plate tectonics. Science, 298, 207–209.

    Article  Google Scholar 

  • Dziewonski, A. M., Hager, B. H., and O’Connell, R. J., 1977. Large-scale heterogeneities in the lower mantle. Journal of Geophysical Research, 82, 239–255.

    Article  Google Scholar 

  • Elsasser, W. M., 1969. Convection and stress propagation in the upper mantle. In Runcorn, S. K. (ed.), The Application of Modern Physics to the Earth and Planetary Interiors. Hoboken: Wiley-Interscience, pp. 1–41.

    Google Scholar 

  • Elsasser, W. M., 1971. Sea-floor spreading as thermal convection. Journal of Geophysical Research, 76, 1101–1112.

    Article  Google Scholar 

  • Forsyth, D. W., and Uyeda, S., 1975. On the relative importance of driving forces of plate motions. Geophysical Journal of the Royal Astronomical Society, 43, 163–200.

    Article  Google Scholar 

  • Govers, R., and Meijer, P. T., 2001. On the dynamics of the Juan de Fuca plate. Earth and Planetary Science Letters, 189, 115–131.

    Article  Google Scholar 

  • Hager, B. H., and O’Connell, R. J., 1981. A simple global model of plate dynamics and mantle convection. Journal of Geophysical Research, 86, 4843–4867.

    Article  Google Scholar 

  • Harper, J. F., 1975. On the driving forces of plate tectonics. Geophysical Journal of the Royal Astronomical Society, 40, 465–474.

    Article  Google Scholar 

  • Lister, C. R. B., 1975. Gravitational drive on oceanic plates caused by thermal contraction. Nature, 257, 663–665.

    Article  Google Scholar 

  • Lithgow-Bertelloni, C., and Richards, M. A., 1995. Cenozoic plate driving forces. Geophysical Research Letters, 22, 1317–1320.

    Article  Google Scholar 

  • Lithgow-Bertelloni, C., and Silver P. G., 1998. Dynamic topography, plate driving forces and the African Superswell, Nature, 395, 269–272.

    Article  Google Scholar 

  • McKenzie, D. P., 1972. Plate tectonics. In Robertson, E. C. (ed.), The Nature of the Solid Earth. New York: McGraw Hill, pp. 323–360.

    Google Scholar 

  • Meade, B. J., and Conrad, C. P., 2008. Andean growth and the deceleration of South American subduction: time evolution of a coupled orogen-subduction system. Earth and Planetary Science Letters, 275, 93–101.

    Article  Google Scholar 

  • Ricard, Y., and Vigny, C., 1989. Mantle dynamics with induced plate tectonics. Journal of Geophysical Research, 94, 17543–17560.

    Article  Google Scholar 

  • Richards, M. A., and Engebretson, D. C., 1992. Large-scale mantle convection and the history of subduction. Nature, 355, 437–440.

    Article  Google Scholar 

  • Richards, M. A., Yang, W. S., Baumgardner, J. R., and Bunge, H. P., 2001. Role of a low-viscosity zone in stabilizing plate tectonics: implications for comparative terrestrial planetology. Geochemistry, Geophysics, Geosystems, 2, 2000GC000115

    Google Scholar 

  • Solomon, S. C., and Sleep, N. H., 1974. Some simple physical models for absolute plate motions. Journal of Geophysical Research, 79, 2557–2567.

    Article  Google Scholar 

  • Stadler, G., Gurnis, M., Burstedde, C., Wilcox, L. C., Alisic, L., and Ghattas, O., 2010. The dynamics of plate tectonics and mantle flow: from local to global scales. Science, 329, 1033–1038.

    Article  Google Scholar 

  • Tackley, P. J., 2000. Mantle convection and plate tectonics: towards and integrated physical and chemical theory. Science, 288, 2002–2007.

    Article  Google Scholar 

  • Turcotte, D. L., and Oxburgh, E. R., 1967. Finite amplitude convective cells and continental drift. Journal of Fluid Mechanics, 28, 29–42.

    Article  Google Scholar 

  • Turcotte, D. L., and Schubert, G., 2014. Geodynamics. Cambridge: Cambridge University Press.

    Google Scholar 

  • van Summeren, J., Conrad, C. P., and Lithgow-Bertelloni, C. R., 2012. The importance of slab pull and a global asthenosphere to plate motions. Geochemistry, Geophysics, Geosystems, 13, Q0AK03.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina Lithgow-Bertelloni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Lithgow-Bertelloni, C. (2014). Driving Forces: Slab Pull, Ridge Push. In: Harff, J., Meschede, M., Petersen, S., Thiede, J. (eds) Encyclopedia of Marine Geosciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6644-0_105-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6644-0_105-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6644-0

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics