Skip to main content

Scaling Emissions from Agroforestry Plantations and Urban Habitats

  • Chapter
  • First Online:
Biology, Controls and Models of Tree Volatile Organic Compound Emissions

Part of the book series: Tree Physiology ((TREE,volume 5))

Abstract

Agroforestry plantations and urban habitats contribute importantly to atmospheric volatile compound fluxes in densely populated areas. Simulation of emissions from such habitats is associated with several key challenges, including high spatial heterogeneity due to habitat fragmentation and high diversity of planted tree species. On the other hand, plants in urban habitats and in agroforestry plantations commonly receive more nutrients and water than species in natural communities, resulting in higher production and potentially greater capacity for volatile production per unit of land area. This chapter reviews the strategies for simulation of biogenic volatile organic compound (BVOC) fluxes from urban habitats and agroforestry plantations and provides an outline for parameterization of volatile emission models for densely populated areas with high vegetation fragmentation and large number of gardened, often exotic, tree species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agelopoulos NG, Chamberlain K, Pickett JA (2000) Factors affecting volatile emissions of intact potato plants, Solanum tuberosum: variability of quantities and stability of ratios. J Chem Ecol 26:497–511

    Article  CAS  Google Scholar 

  • Alvey A (2006) Promoting and preserving biodiversity in the urban forest. Urban Forest Urban Green 5:195–201

    Article  Google Scholar 

  • Anderson J, Martin ME, Smith M-L, Dubayah R, Hofton MA, Hyde P, Peterson BE, Blair JB, Knox RJ (2006) The use of waveform lidar to measure northern temperate mixed conifer and deciduous forest structure in New Hampshire. Remote Sens Environ 105:248–261

    Article  Google Scholar 

  • Ardila JP, Bijker W, Tolpekin VA, Stein A (2012) Context-sensitive extraction of tree crown objects in urban areas using VHR satellite images. Int J Appl Earth Observ Geoinform 15:57–69

    Article  Google Scholar 

  • Arey J, Crowley D, Crowley M, Resketo M, Lester J (1995) Hydrocarbon emissions from natural vegetation in California south-coast-air-basin. Atmos Environ 29(21):2977–2988

    Article  CAS  Google Scholar 

  • Ashworth K, Boissard C, Folberth G, Lathière J, Schurgers G (2013) Global modeling of volatile organic compound emissions. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Atkinson R (2000) Atmospheric chemistry of VOCs and NOx. Atmos Environ 34(12–14):2063–2101

    Article  CAS  Google Scholar 

  • Baghi R, Helmig D, Guenther A, Duhl T, Daly R (2012) Contribution of flowering trees to urban atmospheric biogenic volatile organic compound emissions. Biogeosci 9:3777–3785

    Article  CAS  Google Scholar 

  • Baker B, Bai JH, Johnson C, Cai ZT, Li QJ, Wang YF, Guenther A, Greenberg J, Klinger L, Geron C, Rasmussen R (2005) Wet and dry season ecosystem level fluxes of isoprene and monoterpenes from a southeast Asian secondary forest and rubber tree plantation. Atmos Environ 39(2):381–390

    Article  CAS  Google Scholar 

  • Baker AK, Beyersdorf AJ, Doezema LA, Katzenstein A, Meinardi S, Simpson IJ, Blake DR, Rowland FS (2008) Measurements of nonmethane hydrocarbons in 28 United States cities. Atmos Environ 42(1):170–182

    Article  CAS  Google Scholar 

  • Balzter H, Rowland CS, Saich P (2007) Forest canopy height and carbon estimation at Monks Wood National Nature Reserve, UK, using dual-wavelength SAR interferometry. Remote Sens Environ 108(3):224–239

    Article  Google Scholar 

  • Barletta B, Meinardi S, Rowland FS, Chan C-Y, Wang X, Zou S, Chan LY, Blake DR (2005) Volatile organic compounds in 43 Chinese cities. Atmos Environ 39:5979–5990

    Article  CAS  Google Scholar 

  • Behnke K, Grote R, Brüggemann N, Zimmer I, Zhou G, Elobeid M, Janz D, Polle A, Schnitzler J-P (2012) Isoprene emission-free poplars – a chance to reduce the impact from poplar plantations on the atmosphere. New Phytol 194:70–82

    Article  PubMed  CAS  Google Scholar 

  • Benjamin MT, Sudol M, Bloch L, Winer AM (1996) Low-emitting urban forests: a taxonomic methodology for assigning isoprene and monoterpene emission rates. Atmos Environ 30:1437–1452

    Article  CAS  Google Scholar 

  • Bertin N, Staudt M (1996) Effect of water stress on monoterpene emissions from young potted holm oak (Quercus ilex L.) trees. Oecologia 107:456–462

    Article  Google Scholar 

  • Blanch J-S, Peñuelas J, Llusià J (2007) Sensitivity of terpene emissions to drought and fertilization in terpene-storing Pinus halepensis and non-storing Quercus ilex. Physiol Plant 131:211–225

    PubMed  CAS  Google Scholar 

  • Blanch J-S, Sampedro L, Llusià J, Moreira X, Zas R, Peñuelas J (2012) Effects of phosphorus availability and genetic variation of leaf terpene content and emission rate in Pinus pinaster seedlings susceptible and resistant to the pine weevil, Hylobius abietis. Plant Biol 14(Suppl 1):66–72

    Article  PubMed  CAS  Google Scholar 

  • Borbon A, Fontaine H, Veillerot M, Locoge N, Galloo JC, Guillermo R (2001) An investigation into the traffic-related fraction of isoprene at an urban location. Atmos Environ 35(22):3749–3760

    Article  CAS  Google Scholar 

  • Bracho-Nunez A, Welter S, Staudt M, Kesselmeier J (2011) Plant-specific volatile organic compound emission rates from young and mature leaves of Mediterranean vegetation. J Geophys Res Atmos 116, D16304

    Article  CAS  Google Scholar 

  • Brilli F, Barta C, Fortunati A, Lerdau M, Loreto F, Centritto M (2007) Response of isoprene emission and carbon metabolism to drought in white poplar (Populus alba) saplings. New Phytol 175:244–254

    Article  PubMed  CAS  Google Scholar 

  • Brilli F, Ciccioli P, Frattoni M, Prestininzi M, Spanedda AF, Loreto F (2009) Constitutive and herbivore-induced monoterpenes emitted by Populus x euramericana leaves are key volatiles that orient Chrysomela populi beetles. Plant Cell Environ 32:542–552

    Article  PubMed  CAS  Google Scholar 

  • Brilli F, Ruuskanen TM, Schnitzhofer R, Müller M, Breitenlechner M, Bittner V, Wohlfahrt G, Loreto F, Hansel A (2011) Detection of plant volatiles after leaf wounding and darkening by proton transfer reaction “time-of-flight” mass spectrometry (PTR-TOF). PLoS One 6(5):e20419

    Article  PubMed  CAS  Google Scholar 

  • Brockerhoff EG, Jactel H, Parrotta JA, Quine CP, Sayer J (2008) Plantation forests and biodiversity: oxymoron or opportunity? Biodivers Conserv 17:925–951

    Article  Google Scholar 

  • Bryant JP, Chapin F, Klein DR (1983) Carbon nutrient balance of Boreal plants in relation to vertebrate herbivory. Oikos 40(3):357–368

    Article  CAS  Google Scholar 

  • Calfapietra C, Pallozzi E, Lusini I, Velikova V (2013) Modification of BVOC emissions by changes in atmospheric [CO2] and air pollution. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Cescatti A, Niinemets Ü (2004) Sunlight capture. Leaf to landscape. In: Smith WK, Vogelmann TC, Chritchley C (eds) Photosynthetic adaptation: chloroplast to landscape, vol 178, Ecological studies. Springer, Berlin, pp 42–85

    Chapter  Google Scholar 

  • Ciccioli P, Brancaleoni E, Frattoni M, Marta S, Brachetti A, Vitullo M, Tirone G, Valentini R (2003) Relaxed eddy accumulation, a new technique for measuring emission and deposition fluxes of volatile organic compounds by capillary gas chromatography and mass spectrometry. J Chromatogr A 985:283–296

    Article  PubMed  CAS  Google Scholar 

  • Dai Y-J, Dickinson RE, Wang YP (2004) A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance. J Climate 17:2281–2299

    Article  Google Scholar 

  • Dallimer M, Tang Z, Bibby PR, Brindley P, Gaston KJ, Davies ZG (2011) Temporal changes in greenspace in a highly urbanized region. Biol Lett 7:763–766

    Article  PubMed  Google Scholar 

  • Davison B, Brunner A, Ammann C, Spirig C, Jocher M, Neftel A (2008) Cut-induced VOC emissions from agricultural grasslands. Plant Biol 10(1):76–85

    Article  PubMed  CAS  Google Scholar 

  • de Pury DGG, Farquhar GD (1997) Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant Cell Environ 20:537–557

    Article  Google Scholar 

  • Diem JE, Comrie AC (2000) Integrating remote sensing and local vegetation information for a high-resolution biogenic emissions inventory—application to an urbanized, semiarid region. J Air Waste Manag Assoc 50(11):1968–1979

    Article  PubMed  CAS  Google Scholar 

  • Donovan RG, Owen S, Hewitt N, MacKenzie R, Brett H (2011) The development of an urban tree air quality score (UTAQS): using the West Midlands, UK conurbation as a case study area. VDM Verlag Dr. Müller, Düsseldorf, 392 pp

    Google Scholar 

  • Durana N, Navazo M, Gomez MC, Alonso L, Garcia JA, Ilardia JL, Gangoiti G, Iza J (2006) Long term hourly measurement of 62 non-methane hydrocarbons in an urban area: main results and contribution of non-traffic sources. Atmos Environ 40(16):2860–2872

    Article  CAS  Google Scholar 

  • Dwyer JF, Nowak DJ, Noble MH, Sisinni SM (2000) Connecting people with ecosystems in the 21st century, an assessment of our nation’s urban forests. U S Forest Service Gen Tech Rep PNW 490:1–483

    Google Scholar 

  • Fall R, Karl T, Hansel A, Jordan A, Lindinger W (1999) Volatile organic compounds emitted after leaf wounding: on-line analysis by proton-transfer-reaction mass spectrometry. J Geophys Res 104:15963–15974

    Article  CAS  Google Scholar 

  • Fall R, Karl T, Jordan A, Lindinger W (2001) Biogenic C5 VOCs: release from leaves after freeze-thaw wounding and occurrence in air at a high mountain observatory. Atmos Environ 35:3905–3916

    Article  CAS  Google Scholar 

  • Fang C, Monson RK, Cowling EB (1996) Isoprene emission, photosynthesis, and growth in sweetgum (Liquidambar styraciflua) seedlings exposed to short- and long-term drying cycles. Tree Physiol 16:441–446

    Article  PubMed  Google Scholar 

  • FAO (2006) Global planted forests thematic study: results and analysis. In Del Lungo A, Ball J, Carle J (eds.) Planted forests and trees working paper 38. Rome (also available at http://www.fao.org/forestry/12139-03441d093f070ea7d7c4e3ec3f306507.pdf)

  • FAO (2010) Global forest resources assessment 2010. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • FAO (2011) State of the world’s forests 2011. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Filella I, Wilkinson MJ, Llusià J, Hewitt CN, Peñuelas J (2007) Volatile organic compounds emissions in Norway spruce (Picea abies) in response to temperature changes. Physiol Plant 130(1):58–66

    Article  CAS  Google Scholar 

  • Filella I, Peñuelas J, Seco R (2009) Short-chained oxygenated VOC emissions in Pinus halepensis in response to changes in water availability. Acta Physiol Plant 31(2):311–318

    Article  CAS  Google Scholar 

  • Fineschi S, Loreto F (2012) Leaf volatile isoprenoids: an important defensive armament in forest tree species. Forest Biogeosci Forest 5:13–17

    Article  Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309(5734):570–574

    Article  PubMed  CAS  Google Scholar 

  • Folkers A, Hüve K, Ammann C, Dindorf T, Kesselmeier J, Kleist E, Kuhn U, Uerlings R, Wildt J (2008) Methanol emissions from deciduous tree species: dependence on temperature and light intensity. Plant Biol 10(1):65–75

    Article  PubMed  CAS  Google Scholar 

  • Forkel R, Klemm O, Graus M, Rappengluck B, Stockwell WR, Grabmer W, Held A, Hansel A, Steinbrecher R (2006) Trace gas exchange and gas phase chemistry in a Norway spruce forest: A study with a coupled 1-dimensional canopy atmospheric chemistry emission model. Atmos Environ 40:S28–S42

    Article  CAS  Google Scholar 

  • Fulton D, Gillespie T, Fuentes J, Wang D (1998) Volatile organic compound emissions from young black spruce trees. Agric Forest Met 90(3):247–255

    Article  Google Scholar 

  • Funk JL, Giardina CP, Knohl LMT (2006) Influence of nutrient availability, stand age, and canopy structure on isoprene flux in a Eucalyptus saligna experimental forest. J Geophys Res Biogeosci 111(G2), G02012

    Article  CAS  Google Scholar 

  • Gallagher MW, Clayborough R, Beswick KM, Hewitt CN, Owen S, Moncrieff J, Pilegaard K (2000) Assessment of a relaxed eddy accumulation system for measurements of fluxes of biogenic volatile organic compounds: study over arable crops and a mature beech forest. Atmos Environ 34:2887–2899

    Article  CAS  Google Scholar 

  • Gaveau D, Hill RA (2003) Quantifying canopy height underestimation by laser pulse penetration in small-footprint airborne laser scanning data. Can J Remote Sens 29:650–657

    Article  Google Scholar 

  • Geron C, Harley P, Guenther A (2001) Isoprene emission capacity for US tree species. Atmos Environ 35(19):3341–3352

    Article  CAS  Google Scholar 

  • Gimaret-Carpentier C, Pélissier R, Pascal J-P, Houllier F (1998) Sampling strategies for the assessment of tree species diversity. J Veg Sci 9:161–172

    Article  Google Scholar 

  • Grabmer W, Kreuzwieser J, Wisthaler A, Cojocariu C, Graus M, Rennenberg H, Steigner D, Steinbrecher R, Hansel A (2006) VOC emissions from Norway spruce (Picea abies L. [Karst.]) twigs in the field. Results of a dynamic enclosure study. Atmos Environ 40:S128–S137

    Article  CAS  Google Scholar 

  • Greenberg J, Guenther A, Harley P, Otter L, Veenendahl E, Hewitt CN, James A, Owen SM (2003) Eddy flux and leaf-level measurements of biogenic VOC emissions from Mopane woodlands of Botswana. J Geophys Res 108:8466–8474

    Article  CAS  Google Scholar 

  • Grote R, Monson RK, Niinemets Ü (2013) Leaf-level models of constitutive and stress-driven volatile organic compound emissions. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Guenther A (2013) Upscaling biogenic volatile compound emissions from leaves to landscapes. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Guenther AB, Hills AJ (1998) Eddy covariance measurement of isoprene fluxes. J Geophys Res Atmos 103:13145–13152

    Article  CAS  Google Scholar 

  • Guenther A, Monson RK, Fall R (1991) Isoprene and monoterpene emission rate variability: observations with Eucalyptus and emission rate algorithm development. J Geophys Res 96:10799–10808

    Article  Google Scholar 

  • Guenther AB, Hewitt CN, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klinger L, Lerdau M, McKay WA, Pierce T, Scholes B, Steinbrecher R, Tallamraju R, Taylor J, Zimmerman P (1995) A global model of natural volatile organic compound emissions. J Geophys Res 100:8873–8892

    Article  CAS  Google Scholar 

  • Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer PI, Geron C (2006) Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature). Atmos Chem Phys 6:3181–3210

    Article  CAS  Google Scholar 

  • Guenther AB, Jiang X, Heald CL, Sakulyanontvittaya T, Duhl T, Emmons LK, Wang X (2012) The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): an extended and updated framework for modelling biogenic emissions. Geosci Model Dev 5:1471–1492

    Article  Google Scholar 

  • Guidolotti G, Calfapietra C, Loreto F (2011) The relationship between isoprene emission, CO2 assimilation and water use efficiency across a range of poplar genotypes. Physiol Plant 142(3):297–304

    Article  PubMed  CAS  Google Scholar 

  • Hakola H, Rinne J, Laurila T (1998) The hydrocarbon emission rates of tea-leafed willow (Salix phylicifolia), silver birch (Betula pendula) and European aspen (Populus tremula). Atmos Environ 32(10):1825–1833

    Article  CAS  Google Scholar 

  • Hakola H, Laurila T, Lindfors V, Hellén H, Gaman A, Rinne J (2001) Variation of the VOC emission rates of birch species during the growing season. Boreal Environ Res 6:237–249

    CAS  Google Scholar 

  • Harley PC, Litvak ME, Sharkey TD, Monson RK (1994) Isoprene emission from velvet bean leaves. Interactions among nitrogen availability, growth photon flux density, and leaf development. Plant Physiol 105:279–285

    PubMed  CAS  Google Scholar 

  • Harley P, Guenther A, Zimmerman P (1996) Effects of light, temperature and canopy position on net photosynthesis and isoprene emission from sweetgum (Liquidambar styraciflua) leaves. Tree Physiol 16(1–2):25–32

    Article  PubMed  CAS  Google Scholar 

  • Harley PC, Monson RK, Lerdau MT (1999) Ecological and evolutionary aspects of isoprene emission from plants. Oecologia 118:109–123

    Article  Google Scholar 

  • Harley P, Otter L, Guenther A, Greenberg J (2003) Micrometeorological and leaf-level measurements of isoprene emissions from a southern African savanna. J Geophys Res Atmos 108(D13):8468

    Article  CAS  Google Scholar 

  • Harrison RM, Yin J, Tilling RM, Cai X, Seakins PW, Hopkins JR, Lansley DL, Lewis AC, Hunter MC, Heard DE, Carpenter LJ, Creasy DJ, Lee JD, Pilling MJ, Carslaw N, Emmerson KM, Redington A, Derwent RG, Ryall D, Mills G, Penkett SA (2006) Measurement and modelling of air pollution and atmospheric chemistry in the UK West Midlands conurbation: overview of the PUMA consortium project. Sci Total Environ 360:5–25

    Article  PubMed  CAS  Google Scholar 

  • Hayward S, Tani A, Owen SM, Hewitt CN (2004) Online analysis of volatile organic compound emissions from Sitka spruce (Picea sitchensis). Tree Physiol 24:721–728

    Article  PubMed  CAS  Google Scholar 

  • He C, Murray F, Lyons T (2000) Monoterpene and isoprene emissions from 15 Eucalyptus species in Australia. Atmos Environ 34:645–655

    Article  CAS  Google Scholar 

  • Hewitt CN, Street R (1992) A qualitative assessment of the emission of non-methane hydrocarbon compounds from the biosphere to the atmosphere in the UK: present knowledge and uncertainties. Atmos Environ 26A:3069–3077

    CAS  Google Scholar 

  • Hewitt CN, Karl T, Langford B, Owen SM, Possell M (2011) Quantification of VOC emission rates from the biosphere. Trends Anal Chem 30:937–944

    Article  CAS  Google Scholar 

  • Holopainen JK, Gershenzon J (2010) Multiple stress factors and the emission of plant VOCs. Trends Plant Sci 15:176–184

    Article  PubMed  CAS  Google Scholar 

  • Hörtnagl L, Bamberger I, Graus M, Ruuskanen TM, Schnitzhofer R, Müller M, Hansel A, Wohlfahrt G (2011) Biotic, abiotic, and management controls on methanol exchange above a temperate mountain grassland. J Geophys Res Biogeosci 116, G03021

    Article  CAS  Google Scholar 

  • Jordan A, Haidacher S, Hanel G, Hartungen E, Märk L, Seehauser H, Schottkowsky R, Sulzer P, Märk TD (2009) A high resolution and high sensitivity proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS). Int J Mass Spectrom 286(2–3):122–128

    CAS  Google Scholar 

  • Karl T, Guenther A, Jordan A, Fall R, Lindinger W (2001) Eddy covariance measurement of biogenic oxygenated VOC emissions from hay harvesting. Atmos Environ 35:491–495

    Article  CAS  Google Scholar 

  • Keenan R, Lamb D, Woldring O, Irvine T, Jensen R (1997) Restoration of plant biodiversity beneath tropical tree plantations in Northern Australia. Forest Ecol Manage 99(1–2):117–131

    Article  Google Scholar 

  • Keenan T, Niinemets Ü, Sabate S, Gracia C, Peñuelas J (2009a) Process based inventory of isoprenoid emissions from European forests: model comparisons, current knowledge and uncertainties. Atmos Chem Phys Discuss 9:6147–6206

    Article  Google Scholar 

  • Keenan T, Niinemets Ü, Sabate S, Gracia C, Peñuelas J (2009b) Process based inventory of isoprenoid emissions from European forests: model comparisons, current knowledge and uncertainties. Atmos Chem Phys 9:4053–4076

    Article  CAS  Google Scholar 

  • Kim JC, Kim KJ, Kim DS, Han JS (2005) Seasonal variations of monoterpene emissions from coniferous trees of different ages in Korea. Chemosphere 59(11):1685–1696

    Article  PubMed  CAS  Google Scholar 

  • Komenda M, Koppmann R (2002) Monoterpene emissions from Scots pine (Pinus sylvestris): field studies of emission rate variabilities. J Geophys Res Atmos 107:4161

    Article  Google Scholar 

  • Langford B, Nemitz E, House E, Phillips G, Famulari D, Davison B, Hopkins JR, Lewis AC, Hewitt CN (2010) Fluxes and concentrations of volatile organic compounds above central London, UK. Atmos Chem Phys 10(2):627–645

    Article  CAS  Google Scholar 

  • Laothawornkitkul J, Taylor JE, Paul ND, Hewitt CN (2009) Biogenic volatile organic compounds in the Earth system. New Phytol 183:27–51

    Article  PubMed  CAS  Google Scholar 

  • Lavoir A-V, Staudt M, Schnitzler J-P, Landais D, Massol F, Rocheteau A, Rodriguez R, Zimmer I, Rambal S (2009) Drought reduced monoterpene emissions from the evergreen Mediterranean oak Quercus ilex: results from a throughfall displacement experiment. Biogeosciences 6:1167–1180

    Article  CAS  Google Scholar 

  • Lavoir AV, Duffet C, Mouillot F, Rambal S, Ratte JP, Schnitzler J-P, Staudt M (2011) Scaling-up leaf monoterpene emissions from a water limited Quercus ilex woodland. Atmos Environ 45(17):2888–2897

    Article  CAS  Google Scholar 

  • Lehning A, Zimmer W, Zimmer I, Schnitzler J-P (2001) Modeling of annual variations of oak (Quercus robur L.) isoprene synthase activity to predict isoprene emission rates. J Geophys Res Atmos 106(D3):3157–3166

    Article  CAS  Google Scholar 

  • Lerdau M, Guenther A, Monson R (1997) Plant production and emission of volatile organic compounds. BioScience 47:373–383

    Article  Google Scholar 

  • Litvak ME, Loreto F, Harley PC, Sharkey TD, Monson RK (1996) The response of isoprene emission rate and photosynthetic rate to photon flux and nitrogen supply in aspen and white oak trees. Plant Cell Environ 19:549–559

    Article  CAS  Google Scholar 

  • Llusià J, Peñuelas J (1998) Changes in terpene content and emission in potted Mediterranean woody plants under severe drought. Can J Bot 76(8):1366–1373

    Google Scholar 

  • Llusià J, Peñuelas J, Sardans J, Owen SM, Niinemets Ü (2010) Measurement of volatile terpene emissions in 70 dominant vascular plant species in Hawaii: aliens emit more than natives. Glob Ecol Biogeogr 19:863–874

    Article  Google Scholar 

  • Loreto F, Barta C, Brilli F, Nogues I (2006) On the induction of volatile organic compound emissions by plants as consequence of wounding or fluctuations of light and temperature. Plant Cell Environ 29:1820–1828

    Article  PubMed  CAS  Google Scholar 

  • MacKenzie AR, Harrison RM, Colbeck I, Hewitt CN (1991) The role of biogenic hydrocarbons in the production of ozone in urban plumes in southeast England. Atmos Environ 25A(2):351–359

    CAS  Google Scholar 

  • Martin MJ, Stirling CM, Humphries SW, Long SP (2000) A process-based model to predict the effects of climatic change on leaf isoprene emission rates. Ecol Modell 131:161–174

    Article  CAS  Google Scholar 

  • Misztal PK, Owen SM, Guenther AB, Rasmussen R, Geron C, Harley P, Phillips GJ, Ryan A, Edwards DP, Hewitt CN, Nemitz E, Siong J, Heal MR, Cape JN (2010) Large estragole fluxes from oil palms in Borneo. Atmos Chem Phys 10(9):4343–4358

    Article  CAS  Google Scholar 

  • Misztal PK, Nemitz E, Langford B, Di Marco CF, Phillips GJ, Hewitt CN, MacKenzie AR, Owen SM, Fowler D, Heal MR, Cape JN (2011) Direct ecosystem fluxes of volatile organic compounds from oil palms in South-East Asia. Atmos Chem Phys 11:8995–9017

    Article  CAS  Google Scholar 

  • Monson RK, Hill AJ, Zimmerman PR, Fall RR (1991) Studies of the relationship between isoprene emission rate and CO2 or photon-flux density using a real time isoprene analyser. Plant Cell Environ 14:517–523

    Article  Google Scholar 

  • Morgan JL, Gergel SE, Coops NC (2010) Aerial photography: A rapidly evolving tool for ecological management. BioScience 60:47–59

    Article  Google Scholar 

  • Müller M, Graus M, Ruuskanen TM, Schnitzhofer R, Bamberger I, Kaser L, Titzmann T, Hörtnagl L, Wohlfahrt G, Karl T, Hansel A (2010) First eddy covariance flux measurements by PTR-TOF. Atmos Meas Techn 3(2):387–395

    Article  Google Scholar 

  • Niinemets Ü (2010) Mild versus severe stress and BVOCs: thresholds, priming and consequences. Trends Plant Sci 15(3):145–153

    Article  PubMed  CAS  Google Scholar 

  • Niinemets Ü, Peñuelas J (2008) Gardening and urban landscaping: significant players in global change. Trends Plant Sci 13:60–65

    Article  PubMed  CAS  Google Scholar 

  • Niinemets Ü, Hauff K, Bertin N, Tenhunen JD, Steinbrecher R, Seufert G (2002) Monoterpene emissions in relation to foliar photosynthetic and structural variables in Mediterranean evergreen Quercus species. New Phytol 153:243–256

    Article  CAS  Google Scholar 

  • Niinemets Ü, Copolovici L, Hüve K (2010a) High within-canopy variation in isoprene emission potentials in temperate trees: implications for predicting canopy scale isoprene fluxes. J Geophys Res Biogeosci 115:G04029

    Article  CAS  Google Scholar 

  • Niinemets Ü, Arneth A, Kuhn U, Monson RK, Peñuelas J, Staudt M (2010b) The emission factor of volatile isoprenoids: stress, acclimation, and developmental responses. Biogeosciences 7(7):2203–2223

    Article  CAS  Google Scholar 

  • Niinemets Ü, Monson RK, Arneth A, Ciccioli P, Kesselmeier J, Kuhn U, Noe SM, Peñuelas J, Staudt M (2010c) The leaf-level emission factor of volatile isoprenoids: caveats, model algorithms, response shapes and scaling. Biogeosciences 7(6):1809–1832

    Article  CAS  Google Scholar 

  • Niinemets Ü, Kuhn U, Harley PC, Staudt M, Arneth A, Cescatti A, Ciccioli P, Copolovici L, Geron C, Guenther A, Kesselmeier J, Lerdau MT, Monson RK, Peñuelas J (2011) Estimations of isoprenoid emission capacity from enclosure studies: measurements, data processing, quality and standardized measurement protocols. Biogeosciences 8(8):2209–2246

    Article  CAS  Google Scholar 

  • Niinemets Ü, Ciccioli P, Noe SM, Reichstein M (2013) Scaling BVOC emissions from leaf to canopy and landscape: how different are predictions based on contrasting emission algorithms? In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Offerle B, Grimmond CSB, Fortuniak K, Pawlak W (2006) Intraurban differences of surface energy fluxes in a central European city. J Appl Meterol Climatol 45(1):125–136

    Article  Google Scholar 

  • Olofsson M, Ek-Olausson B, Jensen NO, Langer S, Ljungström E (2005) The flux of isoprene from a willow coppice plantation and the effect on local air quality. Atmos Environ 39(11):2061–2070

    Article  CAS  Google Scholar 

  • Onaindia M, Dominguez I, Albizu I, Garbisu C, Amezaga I (2004) Vegetation diversity and vertical structure as indicators of forest disturbance. For Ecol Manage 195:341–354

    Article  Google Scholar 

  • Ormeño E, Mevy JP, Vila B, Bousquet-Melou A, Greff S, Bonin G, Fernandez C (2007) Water deficit stress induces different monoterpene and sesquiterpene emission changes in Mediterranean species: relationship between terpene emissions and plant water potential. Chemosphere 67:276–284

    Article  PubMed  CAS  Google Scholar 

  • Ormeño E, Olivier R, Mevy JP, Baldy V, Fernandez C (2009) Compost may affect volatile and semivolatile plant emissions through nitrogen supply and chlorophyll fluorescence. Chemosphere 77(1):94–104

    Article  PubMed  CAS  Google Scholar 

  • Ortega J, Helmig D (2008) Approaches for quantifying reactive and low-volatility biogenic organic compound emissions by vegetation enclosure techniques – part A. Chemosphere 72:343–364

    Article  PubMed  CAS  Google Scholar 

  • Ortega J, Helmig D, Daly RW, Tanner DM, Guenther AB, Herrick JD (2008) Approaches for quantifying reactive and low-volatility biogenic organic compound emissions by vegetation enclosure techniques – part B: applications. Chemosphere 72:365–380

    Article  PubMed  CAS  Google Scholar 

  • Osmond P (2010) Hemispherical photography as a tool for urban sustainability evaluation and design. OIDA Int J Sustain Dev 1:63–74

    Google Scholar 

  • Owen SM, Hewitt CN (2000) Extrapolating branch enclosure measurements of biogenic VOC emission rates to regional flux estimates in the northern Mediterranean basin. J Geophys Res 105:11573–11583

    Article  CAS  Google Scholar 

  • Owen SM, Boissard C, Street R, Duckham SC, Csiky O, Hewitt CN (1997) The BEMA project: screening of 18 Mediterranean plant species for volatile organic compound emissions. Atmos Environ 31:101–118

    Article  CAS  Google Scholar 

  • Owen SM, Boissard C, Hewitt CN (2001) Volatile organic compounds emitted from 40 Mediterranean plant species: VOC speciation and extrapolation to habitat scale. Atmos Environ 35:5393–5409

    Article  CAS  Google Scholar 

  • Owen SM, Harley P, Guenther A, Hewitt CN (2002) Light dependency of VOC emissions from selected Mediterranean plant species. Atmos Environ 36(19):3147–3159

    Article  CAS  Google Scholar 

  • Owen SM, MacKenzie AR, Stewart H, Donovan R, Hewitt CN (2003) Biogenic volatile organic compound (VOC) emission estimates from an urban tree canopy. Ecol Appl 13(4):927–938

    Article  Google Scholar 

  • Owen SM, MacKenzie AR, Bunce RGH, Stewart HE, Donovan RG, Stark G, Hewitt CN (2006) Urban land classification and its uncertainties using principal component and cluster analyses: a case study for the UK West Midlands. Landscape Urban Plann 78(4):311–321

    Article  Google Scholar 

  • Papiez MR, Potosnak MJ, Goliff WS, Guenther AB, Matsunaga SN, Stockwell WR (2009) The impacts of reactive terpene emissions from plants on air quality in Las Vegas, Nevada. Atmos Environ 43(27):4109–4123

    Article  CAS  Google Scholar 

  • Park C, Schade GW, Boedeker I (2011) Characteristics of the flux of isoprene and its oxidation products in an urban area. J Geophys Res 116, D21303

    Article  CAS  Google Scholar 

  • Pegoraro E, Rey A, Greenberg J, Harley P, Grace J, Malhi Y, Guenther A (2004) Effect of drought on isoprene emission rates from leaves of Quercus virginiana Mill. Atmos Environ 38:6149–6156

    Article  CAS  Google Scholar 

  • Peñuelas J, Filella I, Seco R, Llusià J (2009) Increase in isoprene and monoterpene emissions after re-watering of droughted Quercus ilex seedlings. Biol Plant 53:351–354

    Article  CAS  Google Scholar 

  • Pierce TE, Waldruff PS (1991) PC-BEIS – a personal-computer version of the biogenic emissions inventory system. J Air Waste Manage Assoc 41:937–941

    Article  CAS  Google Scholar 

  • Piesik D, Panka D, Delaney KJ, Skoczek A, Lamparski R, Weaver DK (2011) Cereal crop volatile organic compound induction after mechanical injury, beetle herbivory (Oulema spp.), or fungal infection (Fusarium spp.). J Plant Physiol 168(9):878–886

    Article  PubMed  CAS  Google Scholar 

  • Possell M, Hewitt CN (2011) Isoprene emissions from plants are mediated by atmospheric CO2 concentrations. Glob Change Biol 17(4):1595–1610

    Article  Google Scholar 

  • Possell M, Loreto F (2013) The role of volatile organic compounds in plant resistance to abiotic stresses: responses and mechanisms. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Possell M, Heath J, Hewitt CN, Ayres E, Kerstiens G (2004) Interactive effects of elevated CO2 and soil fertility on isoprene emissions from Quercus robur. Glob Change Biol 10(11):1835–1843

    Article  Google Scholar 

  • Quattrochi DA, Ridd MK (1994) Measurement and analysis of thermal-energy responses from discrete urban surfaces using remote-sensing data. Int J Remote Sens 15(10):1991–2022

    Article  Google Scholar 

  • Räisänen T, Ryyppo A, Kellomäki S (2008) Impact of timber felling on the ambient monoterpene concentration of a Scots pine (Pinus sylvestris L.) forest. Atmos Environ 42(28):6759–6766

    Article  CAS  Google Scholar 

  • Räisänen T, Ryyppo A, Kellomäki S (2009) Monoterpene emission of a boreal Scots pine (Pinus sylvestris L.) forest. Agric Forest Meterol 149(5):808–819

    Article  Google Scholar 

  • Richardson DM, Rejmánek M (2011) Trees and shrubs as invasive alien species – a global review. Divers Distrib 17:788–809

    Article  Google Scholar 

  • Rinnan R, Rinnan A, Faubert P, Tiiva P, Holopainen JK, Michelsen A (2011) Few long-term effects of simulated climate change on volatile organic compound emissions and leaf chemistry of three subarctic dwarf shrubs. Environ Exp Bot 72(3):377–386

    Article  CAS  Google Scholar 

  • Rosenkranz M, Schnitzler J-P (2013) Genetic engineering to modify the volatile organic emissions from trees. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Ruuskanen TM, Hakola H, Kajos MK, Hellen H, Tarvainen V, Rinne J (2007) Volatile organic compound emissions from Siberian larch. Atmos Environ 41(27):5807–5812

    Article  CAS  Google Scholar 

  • Ruuskanen TM, Müller M, Schnitzhofer R, Karl T, Graus M, Bamberger I, Hörtnagl L, Brilli F, Wohlfahrt G, Hansel A (2011) Eddy covariance VOC emission and deposition fluxes above grassland using PTR-TOF. Atmos Chem Phys 11(2):611–625

    Article  CAS  Google Scholar 

  • Ryan A, Cojocariu C, Possell M, Davies WJ, Hewitt CN (2009) Defining hybrid poplar (Populus deltoides x Populus trichocarpa) tolerance to ozone: identifying key parameters. Plant Cell Environ 32(1):31–45

    Article  PubMed  CAS  Google Scholar 

  • Saito S, Nagao I, Kanzawa H (2009) Characteristics of ambient C2-C11 non-methane hydrocarbons in metropolitan Nagoya, Japan. Atmos Environ 43(29):4384–4395

    Article  CAS  Google Scholar 

  • Schaub A, Blande JD, Graus M, Oksanen E, Holopainen JK, Hansel A (2010) Real-time monitoring of herbivore induced volatile emissions in the field. Physiol Plant 138(2):123–133

    Article  PubMed  CAS  Google Scholar 

  • Schneider A, Friedl MA, Potere D (2009) A new map of global urban extent from MODIS satellite data. Environ Res Lett 4(4):044003

    Article  Google Scholar 

  • Schurgers G, Hickler T, Miller PA, Arneth A (2009) European emissions of isoprene and monoterpenes from the Last Glacial Maximum to present. Biogeosciences 6:2779–2797

    Article  CAS  Google Scholar 

  • Seco R, Peñuelas J, Filella I (2007) Short-chain oxygenated VOCs: Emission and uptake by plants and atmospheric sources, sinks, and concentrations. Atmos Environ 41(12):2477–2499

    Article  CAS  Google Scholar 

  • Sellers PJ, Berry JA, Collatz GJ, Field CB, Hall FG (1992) Canopy reflectance, photosynthesis, and transpiration 3. A reanalysis using improved leaf models and a new canopy integration scheme. Remote Sens Environ 42:187–216

    Article  Google Scholar 

  • Seto KC, Shepherd JM (2009) Global urban land-use trends and climate impacts. Curr Opin Environ Sust 1(1):89–95

    Article  Google Scholar 

  • Sharkey T, Loreto F (1993) Water stress, temperature and light effects on the capacity for isoprene emission and photosynthesis of kudzu leaves. Oecologia 95:328–333

    Article  Google Scholar 

  • Sharma CM, Suyal S, Gairola S, Ghildiyal SK (2009) Species richness and diversity along an altitudinal gradient in moist temperate forest of Garhwal Himalaya. J Am Sci 5:119–128

    Google Scholar 

  • Shepherd JM (2005) A review of current investigations of urban-induced rainfall and recommendations for the future. Earth Interact 9(12):1–27

    Article  Google Scholar 

  • Shrestha R, Wynne RH (2012) Estimating biophysical parameters of individual trees in an urban environment using small footprint discrete-return imaging LiDAR. Remote Sens 4:484–508

    Article  Google Scholar 

  • Simpson EH (1949) Measurement of diversity. Nature 163:688

    Article  Google Scholar 

  • Singh L, Shrama B, Agrawal R, Puri S (2005) Diversity and dominance of a tropical moist deciduous forest in Achanakmar Wildlife Sanctuary. Bull Nat Inst Ecol 15:1–9

    CAS  Google Scholar 

  • Singh P, Varshney CK, Singh UK (2007) Seasonal variations in isoprene emission from tropical deciduous tree species. Environ Monit Assess 131(1–3):231–235

    Article  PubMed  CAS  Google Scholar 

  • Small C, Lu JWT (2006) Estimation and vicarious validation of urban vegetation abundance by spectral mixture analysis. Remote Sens Environ 100:441–456

    Article  Google Scholar 

  • Somers B, Asner GP (2012) Hyperspectral time series analysis of native and invasive species in Hawaiian rainforests. Remote Sens 4:2510–2529

    Article  Google Scholar 

  • Sorensen PL, Michelsen A, Jonasson S (2008) Nitrogen uptake during one year in subarctic plant functional groups and in microbes after long-term warming and fertilization. Ecosystems 11(8):1223–1233

    Article  CAS  Google Scholar 

  • Staudt M, Lhoutellier L (2007) Volatile organic compound emission from holm oak infested by gypsy moth larvae: evidence for distinct responses in damaged and undamaged leaves. Tree Physiol 27(10):1433–1440

    Article  PubMed  CAS  Google Scholar 

  • Staudt M, Lhoutellier L (2011) Monoterpene and sesquiterpene emissions from Quercus coccifera exhibit interacting responses to light and temperature. Biogeosciences 8(9):2757–2771

    Article  CAS  Google Scholar 

  • Staudt M, Ennajah A, Mouillot F, Joffre R (2008) Do volatile organic compound emissions of Tunisian cork oak populations originating from contrasting climatic conditions differ in their responses to summer drought? Can J Forest Res 38:2965–2975

    Article  CAS  Google Scholar 

  • Steinbrecher R, Hauff K, Rabong R, Steinbrecher J (1997) Isoprenoid emission of oak species typical for the Mediterranean area: source strength and controlling variables. Atmos Environ 31:79–88

    Article  CAS  Google Scholar 

  • Steinbrecher R, Klauer M, Hauff K, Stockwell WR, Jäschke W, Dietrich T, Herbert F (2000) Biogenic and anthropogenic fluxes of non-methane hydrocarbons over an urban-impacted forest, Frankfurter Stadtwald, Germany. Atmos Environ 34(22):3779–3788

    Article  CAS  Google Scholar 

  • Stewart HE, Hewitt CN, Bunce RGH, Steinbrecher R, Smiatek G, Schoenemeyer T (2003) A highly spatially and temporally resolved inventory for biogenic isoprene and monoterpene emissions: model description and application to Great Britain. J Geophys Res Atmos 108(D20):4644

    Article  CAS  Google Scholar 

  • St-Onge B, Jumelet J, Cobello M, Vega C (2004) Measuring individual tree height using a combination of stereophotogrammetry and lidar. Can J Forest Res 34:2122–2130

    Article  Google Scholar 

  • Street RA, Duckham SC, Hewitt CN (1996) Laboratory and field studies of biogenic volatile organic compound emissions from Sitka spruce (Picea sitchensis Bong.) in the United Kingdom. J Geophys Res 101(D17):22799–22806

    Article  CAS  Google Scholar 

  • Street RA, Owen S, Duckham SC, Boissard C, Hewitt CN (1997a) Effect of habitat and age on variations in volatile organic compound (VOC) emissions from Quercus ilex and Pinus pinea. Atmos Environ 31(1):89–100

    Article  CAS  Google Scholar 

  • Street RA, Hewitt CN, Mennicken S (1997b) Isoprene and monoterpene emissions from a Eucalyptus plantation in Portugal. J Geophys Res 102(D13):15875–15887

    Article  CAS  Google Scholar 

  • Sun WQ (1992) Quantifying species diversity of streetside trees in our cities. J Arboricult 18:91–93

    Google Scholar 

  • Tani A, Kawawata Y (2008) Isoprene emission from the major native Quercus spp. in Japan. Atmos Environ 42(19):4540–4550

    Article  CAS  Google Scholar 

  • Tarvainen V, Hakola H, Hellen H, Bäck J, Hari P, Kulmala M (2005) Temperature and light dependence of the VOC emissions of Scots pine. Atmos Chem Phys 5:989–998

    Article  CAS  Google Scholar 

  • Tingey DT, Evans R, Gumpertz M (1981) Effects of environmental conditions on isoprene emission from live oak. Planta 152:565–570

    Article  CAS  Google Scholar 

  • UN (United Nations) (2008) World urbanization prospects. The 2007 Revision Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat http://esa.un.org/unup

  • Valerie T, Marie-Pierre J (2006) Tree species identification on large-scale aerial photographs in a tropical rain forest, French Guiana – application for management and conservation. Forest Ecol Manage 225:51–61

    Article  Google Scholar 

  • Vickers CE, Gershenzon J, Lerdau MT, Loreto F (2009) A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat Chem Biol 5(5):283–291

    Article  PubMed  CAS  Google Scholar 

  • von Schneidemesser E, Monks PS, Plass-Duelmer C (2010) Global comparison of VOC and CO observations in urban areas. Atmos Environ 44:5053–5064

    Article  CAS  Google Scholar 

  • Wang Y-F, Owen SM, Li QJ, Peñuelas J (2007) Monoterpene emissions from rubber trees (Hevea brasiliensis) in a changing landscape and climate: chemical speciation and environmental control. Glob Change Biol 13(11):2270–2282

    Article  Google Scholar 

  • Wang B, Shao M, Lu SH, Yuan B, Zhao Y, Wang M, Zhang SQ, Wu D (2010) Variation of ambient non-methane hydrocarbons in Beijing city in summer 2008. Atmos Chem Phys 10(13):5911–5923

    Article  CAS  Google Scholar 

  • Wiberley AE, Linskey AR, Falbel TG, Sharkey TD (2005) Development of the capacity for isoprene emission in kudzu. Plant Cell Environ 28(7):898–905

    Article  CAS  Google Scholar 

  • Wilkinson MJ, Monson RK, Trahan N, Lee S, Brown E, Jackson RB, Polley HW, Fay PA, Fall R (2009) Leaf isoprene emission rate as a function of atmospheric CO2 concentration. Glob Change Biol 15:1189–1200

    Article  Google Scholar 

  • Winer AM, Fitz DR, Miller PR, Atkinson R, Brown DE, Carter WPL, Dodd MC, Johnson CW, Myers MA, Neisess KR, Poe MP, Stephens ER (1983) Investigation of the role of natural hydrocarbons in photochemical smog formation in California. Final Report to California Air Resources Board. Contract No. A0-056-32

    Google Scholar 

  • Winters AJ, Adams MA, Bleby TM, Rennenberg H, Steigner D, Steinbrecher R, Kreuzwieser J (2009) Emissions of isoprene, monoterpene and short-chained carbonyl compounds from Eucalyptus spp. in southern Australia. Atmos Environ 43(19):3035–3043

    Article  CAS  Google Scholar 

  • Young PJ, Arneth A, Schurgers G, Zeng G, Pyle JA (2009) The CO2 inhibition of terrestrial isoprene emission significantly affects future ozone projections. Atmos Chem Phys 9:2793–2803

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan M. Owen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Owen, S.M., Hewitt, C.N., Rowland, C.S. (2013). Scaling Emissions from Agroforestry Plantations and Urban Habitats. In: Niinemets, Ü., Monson, R. (eds) Biology, Controls and Models of Tree Volatile Organic Compound Emissions. Tree Physiology, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6606-8_15

Download citation

Publish with us

Policies and ethics