Skip to main content

Nucleic Acid Packaging in Viruses

  • Chapter
  • First Online:
Structure and Physics of Viruses

Part of the book series: Subcellular Biochemistry ((SCBI,volume 68))

Abstract

Viruses protect their genetic information by enclosing the viral nucleic acid inside a protein shell (capsid), in a process known as genome packaging. Viruses follow essentially two main strategies to package their genome: Either they co-assemble their genetic material together with the capsid protein, or they assemble first an empty shell (procapsid) and then pump the genome inside the capsid with a molecular motor that uses the energy released by ATP hydrolysis. During packaging the viral nucleic acid is condensed to very high concentration by its careful arrangement in concentric layers inside the capsid. In this chapter we will first give an overview of the different strategies used for genome packaging to discuss later some specific virus models where the structures of the main proteins involved, and the biophysics underlying the packaging mechanism, have been well documented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Also especially recommended for further reading are references [5, 20, 27, 45] listed above.

Abbreviations

ATP:

Adenosine triphosphate

bp:

Base pair

BPMV:

Bean pod mottle virus

BTV:

Bluetongue virus

Cdom:

Carboxy domain

ds:

Double-stranded

FHV:

Flock house virus

HCMV:

Human cytomegalovirus

mRNA:

messenger RNA

Ndom:

Amino domain

NPC:

Nucleoprotein complex

nt:

Nucleotides

NTP:

Nucleotide triphosphate

PaV:

Pariacoto virus

pRNA:

prohead RNA

ss:

Single stranded

STMV:

Satellite tobacco mosaic virus

TMV:

Tobacco mosaic virus

References and Further Reading

  1. Hunter E (2007) Virus assembly. In: Knipe DN, Howley PM (eds) Fields virology, vol 1. Lippincott Williams, Philadelphia, pp 141–168

    Google Scholar 

  2. Bhyravbhatla B, Watowich SJ, Caspar DL (1998) Refined atomic model of the four-layer aggregate of the tobacco mosaic virus coat protein at 2.4-Å resolution. Biophys J 74:604–615

    Article  PubMed  CAS  Google Scholar 

  3. Sachse C, Chen JZ, Coureux PD, Stroupe ME, Fandrich M, Grigorieff N (2007) High-resolution electron microscopy of helical specimens: a fresh look at tobacco mosaic virus. J Mol Biol 371:812–835

    Article  PubMed  CAS  Google Scholar 

  4. Palese P, Shaw ML (2007) Orthomyxoviridae: the viruses and their replication. In: Knipe DM, Howley PM (eds) Fields virology, vol 2. Lippincott Williams and Wilkins, Philadelphia, pp 1647–1689

    Google Scholar 

  5. Schneemann A (2006) The structural and functional role of RNA in icosahedral virus assembly. Annu Rev Microbiol 60:51–67

    Article  PubMed  CAS  Google Scholar 

  6. Spencer SM, Sgro JY, Dryden KA, Baker TS, Nibert ML (1997) IRIS explorer software for radial-depth cueing reovirus particles and other macromolecular structures determined by cryoelectron microscopy and image reconstruction. J Struct Biol 120:11–21

    Article  PubMed  CAS  Google Scholar 

  7. Agirrezabala X, Martin-Benito J, Caston JR, Miranda R, Valpuesta JM, Carrascosa JL (2005) Maturation of phage T7 involves structural modification of both shell and inner core components. EMBO J 24:3820–3829

    Article  PubMed  CAS  Google Scholar 

  8. Lamb RA (2007) Mononegavirales. In: Knipe DM, Howley P (eds) Fields virology, vol 1. Lipincott Williams and Wilkins, Philadelphia, pp 1357–1361

    Google Scholar 

  9. Green TJ, Zhang X, Wertz GW, Luo M (2006) Structure of the vesicular stomatitis virus nucleoprotein-RNA complex. Science 313:357–360

    Article  PubMed  CAS  Google Scholar 

  10. Coloma R, Valpuesta JM, Arranz R, Carrascosa JL, Ortin J, Martin-Benito J (2009) The structure of a biologically active influenza virus ribonucleoprotein complex. PLoS Pathog 5:e1000491

    Article  PubMed  Google Scholar 

  11. Bunka DH, Lane SW, Lane CL, Dykeman EC, Ford RJ, Barker AM, Twarock R, Phillips SE, Stockley PG (2011) Degenerate RNA packaging signals in the genome of satellite tobacco necrosis virus: implications for the assembly of a T=1 capsid. J Mol Biol 413:51–65

    Article  PubMed  CAS  Google Scholar 

  12. Dykeman EC, Grayson NE, Toropova K, Ranson NA, Stockley PG, Twarock R (2011) Simple rules for efficient assembly predict the layout of a packaged viral RNA. J Mol Biol 408:399–407

    Article  PubMed  CAS  Google Scholar 

  13. Prasad BV, Prevelige PE Jr (2003) Viral genome organization. Adv Protein Chem 64:219–258

    Article  PubMed  CAS  Google Scholar 

  14. Coombs KM (2006) Reovirus structure and morphogenesis. Curr Top Microbiol Immunol 309:117–167

    Article  PubMed  CAS  Google Scholar 

  15. Reinisch KM, Nibert ML, Harrison SC (2000) Structure of the reovirus core at 3.6 a resolution. Nature 404:960–967

    Article  PubMed  CAS  Google Scholar 

  16. Caston JR, Ghabrial SA, Jiang D, Rivas G, Alfonso C, Roca R, Luque D, Carrascosa JL (2003) Three-dimensional structure of penicillium chrysogenum virus: a double-stranded RNA virus with a genuine T=1 capsid. J Mol Biol 331:417–431

    Article  PubMed  CAS  Google Scholar 

  17. Sidhu SS (2001) Engineering M13 for phage display. Biomol Eng 18:57–63

    Article  PubMed  CAS  Google Scholar 

  18. Liu DJ, Day LA (1994) Pf1 Virus structure: helical coat protein and DNA with paraxial phosphates. Science 265:671–674

    Article  PubMed  CAS  Google Scholar 

  19. Chapman MS, Rossmann MG (1995) Single-stranded DNA-protein interactions in canine parvovirus. Structure 3:151–162

    Article  PubMed  CAS  Google Scholar 

  20. Johnson JE, Chiu W (2007) DNA packaging and delivery machines in tailed bacteriophages. Curr Opin Struct Biol 17:237–243

    Article  PubMed  CAS  Google Scholar 

  21. Cerritelli ME, Cheng N, Rosenberg AH, McPherson CE, Booy FP, Steven AC (1997) Encapsidated conformation of bacteriophage T7 DNA. Cell 91:271–280

    Article  PubMed  CAS  Google Scholar 

  22. Petrov AS, Boz MB, Harvey SC (2007) The conformation of double-stranded DNA inside bacteriophages depends on capsid size and shape. J Struct Biol 160:241–248

    Article  PubMed  CAS  Google Scholar 

  23. Comolli LR, Spakowitz AJ, Siegerist CE, Jardine PJ, Grimes S, Anderson DL, Bustamante C, Downing KH (2008) Three-dimensional architecture of the bacteriophage phi29 packaged genome and elucidation of its packaging process. Virology 371:267–277

    Article  PubMed  CAS  Google Scholar 

  24. Fang PA, Wright ET, Weintraub ST, Hakala K, Wu W, Serwer P, Jiang W (2008) Visualization of bacteriophage T3 capsids with DNA incompletely packaged in vivo. J Mol Biol 384:1384–1399

    Article  PubMed  CAS  Google Scholar 

  25. Poranen MM, Bamford DH (2012) Assembly of large icosahedral double-stranded RNA viruses. Adv Exp Med Biol 726:379–402

    Article  PubMed  CAS  Google Scholar 

  26. Huiskonen JT, de Haas F, Bubeck D, Bamford DH, Fuller SD, Butcher SJ (2006) Structure of the bacteriophage phi6 nucleocapsid suggests a mechanism for sequential RNA packaging. Structure 14:1039–1048

    Article  PubMed  CAS  Google Scholar 

  27. Kainov DE, Tuma R, Mancini EJ (2006) Hexameric molecular motors: P4 packaging ATPase unravels the mechanism. Cell Mol Life Sci 63:1095–1105

    Article  PubMed  CAS  Google Scholar 

  28. Mindich L (2012) Packaging in dsRNA viruses. Adv Exp Med Biol 726:601–608

    Article  PubMed  CAS  Google Scholar 

  29. Ionel A, Velazquez-Muriel JA, Luque D, Cuervo A, Caston JR, Valpuesta JM, Martin-Benito J, Carrascosa JL (2011) Molecular rearrangements involved in the capsid shell maturation of bacteriophage T7. J Biol Chem 286:234–242

    Article  PubMed  CAS  Google Scholar 

  30. Valpuesta JM, Carrascosa JL (1994) Structure of viral connectors and their function in bacteriophage assembly and DNA packaging. Quart Rev Biophys 27:107–155

    Article  CAS  Google Scholar 

  31. Steven AC, Heymann JB, Cheng N, Trus BL, Conway JF (2005) Virus maturation: dynamics and mechanism of a stabilizing structural transition that leads to infectivity. Curr Opin Struct Biol 15:227–236

    Article  PubMed  CAS  Google Scholar 

  32. Gertsman I, Gan L, Guttman M, Lee K, Speir JA, Duda RL, Hendrix RW, Komives EA, Johnson JE (2009) An unexpected twist in viral capsid maturation. Nature 458:646–650

    Article  PubMed  CAS  Google Scholar 

  33. Lawton JA, Estes MK, Prasad BV (2000) Mechanism of genome transcription in segmented dsRNA viruses. Adv Virus Res 55:185–229

    Article  PubMed  CAS  Google Scholar 

  34. Mancini EJ, Kainov DE, Grimes JM, Tuma R, Bamford DH, Stuart DI (2004) Atomic snapshots of an RNA packaging motor reveal conformational changes linking ATP hydrolysis to RNA translocation. Cell 118:743–755

    Article  PubMed  CAS  Google Scholar 

  35. McDonald SM, Patton JT (2011) Assortment and packaging of the segmented rotavirus genome. Trends Microbiol 19:136–144

    Article  PubMed  CAS  Google Scholar 

  36. Mancini EJ, Tuma R (2012) Mechanism of RNA packaging motor. Adv Exp Med Biol 726:609–629

    Article  PubMed  CAS  Google Scholar 

  37. Cuervo A, Carrascosa JL (2012) Bacteriophages: structure. In: eLS. Wiley, Chichester, pp 1–7

    Google Scholar 

  38. Rao VB, Feiss M (2008) The bacteriophage DNA packaging motor. Annu Rev Genet 42:647–681

    Article  PubMed  CAS  Google Scholar 

  39. Sun S, Rao VB, Rossmann MG (2010) Genome packaging in viruses. Curr Opin Struct Biol 20:114–120

    Article  PubMed  CAS  Google Scholar 

  40. Mettenleiter TC, Klupp BG, Granzow H (2006) Herpesvirus assembly: a tale of two membranes. Curr Opin Microbiol 9:423–429

    Article  PubMed  CAS  Google Scholar 

  41. Cuervo A, Carrascosa JL (2012) Viral connectors for DNA encapsulation. Curr Opin Biotechnol 23:529–536

    Article  PubMed  CAS  Google Scholar 

  42. Carrascosa JL, Valpuesta JM (1999) Bacteriophage connectors: structural features of a DNA translocating motors. In: recent research developments in virology. Transworld reseach network. Trivadrum 1:449–465

    CAS  Google Scholar 

  43. Feiss M, Rao VB (2012) The bacteriophage DNA packaging machine. Adv Exp Med Biol 726:489–509

    Article  PubMed  CAS  Google Scholar 

  44. Ding F, Lu C, Zhao W, Rajashankar KR, Anderson DL, Jardine PJ, Grimes S, Ke A (2011) Structure and assembly of the essential RNA ring component of a viral DNA packaging motor. Proc Natl Acad Sci U S A 108:7357–7362

    Article  PubMed  CAS  Google Scholar 

  45. Casjens SR (2011) The DNA-packaging nanomotor of tailed bacteriophages. Nat Rev Microbiol 9:647–657

    Article  PubMed  CAS  Google Scholar 

  46. Rao VB, Black LW (2010) Structure and assembly of bacteriophage T4 head. Virol J 7:356

    Article  PubMed  CAS  Google Scholar 

  47. Nemecek D, Lander GC, Johnson JE, Casjens SR, Thomas GJ Jr (2008) Assembly architecture and DNA binding of the bacteriophage P22 terminase small subunit. J Mol Biol 383:494–501

    Article  PubMed  CAS  Google Scholar 

  48. Buttner CR, Chechik M, Ortiz-Lombardia M, Smits C, Ebong IO, Chechik V, Jeschke G, Dykeman E, Benini S, Robinson CV, Alonso JC, Antson AA (2012) Structural basis for DNA recognition and loading into a viral packaging motor. Proc Natl Acad Sci U S A 109:811–816

    Article  PubMed  CAS  Google Scholar 

  49. Anderson D, Grimes S (2005) In: Catalano CE (ed) Viral Genome packaging machines: genetics, structure and mechanism. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  50. Morais MC (2012) The dsDNA packaging motor in bacteriophage φ29. Adv Exp Med Biol 726:511–547

    Article  PubMed  CAS  Google Scholar 

  51. Guo P, Lee TJ (2007) Viral nanomotors for packaging of dsDNA and dsRNA. Mol Microbiol 64:886–903

    Article  PubMed  CAS  Google Scholar 

  52. Shu D, Zhang H, Jin J, Guo P (2007) Counting of six pRNAs of phi29 DNA-packaging motor with customized single-molecule dual-view system. EMBO J 26:527–537

    Article  PubMed  CAS  Google Scholar 

  53. Hingorani MM, O’Donnell M (1998) Toroidal proteins: running rings around DNA. Curr Biol 8:R83–R86

    Article  PubMed  CAS  Google Scholar 

  54. Massey TH, Mercogliano CP, Yates J, Sherratt DJ, Lowe J (2006) Double-stranded DNA translocation: structure and mechanism of hexameric FtsK. Mol Cell 23:457–469

    Article  PubMed  CAS  Google Scholar 

  55. Gomis-Ruth FX, Moncalian G, Perez-Luque R, Gonzalez A, Cabezon E, de la Cruz F, Coll M (2001) The bacterial conjugation protein TrwB resembles ring helicases and F1-ATPase. Nature 409:637–641

    Article  PubMed  CAS  Google Scholar 

  56. Chemla YR, Smith DE (2012) Single-molecule studies of viral DNA packaging. Adv Exp Med Biol 726:549–584

    Article  PubMed  CAS  Google Scholar 

  57. Williams RS, Williams GJ, Tainer JA (2008) A charged performance by gp17 in viral packaging. Cell 135:1169–1171

    Article  PubMed  CAS  Google Scholar 

  58. Sun S, Kondabagil K, Draper B, Alam TI, Bowman VD, Zhang Z, Hegde S, Fokine A, Rossmann MG, Rao VB (2008) The structure of the phage T4 DNA packaging motor suggests a mechanism dependent on electrostatic forces. Cell 135:1251–1262

    Article  PubMed  CAS  Google Scholar 

  59. Tavares P, Zinn-Justin S, Orlova EV (2012) Genome gating in tailed bacteriophage capsids. Adv Exp Med Biol 726:585–600

    Article  PubMed  CAS  Google Scholar 

  60. Purohit PK, Inamdar MM, Grayson PD, Squires TM, Kondev J, Phillips R (2005) Forces during bacteriophage DNA packaging and ejection. Biophys J 88:851–866

    Article  PubMed  CAS  Google Scholar 

  61. Roos WH, Ivanovska IL, Evilevitch A, Wuite GJ (2007) Viral capsids: mechanical characteristics, genome packaging and delivery mechanisms. Cell Mol Life Sci 64:1484–1497

    Article  PubMed  CAS  Google Scholar 

  62. Vinga I, Sao-José C, Tavares P, Santos M (2006) Bacteriophage entry in the host cell. In: Wegrzyn G (ed) Modern bacteriophage biology and biotechnology. Research Signpost, Kerala, pp 165–205

    Google Scholar 

Further Reading

  • Flint SJ, Enquist LW, Racaniello VR, Skalka AM (eds) (2009) Principles of virology, 3rd edn. ASM Press, Washington

    Google Scholar 

  • Knipe DM, Howley PM (eds) (2007) Fields virology, 5th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Patton JT (ed) (2008) Segmented double-stranded RNA viruses. Structure and molecular biology. Caister Academic Press, Norfolk

    Google Scholar 

  • Rossmann MG, Rao VB (eds) (2012) Viral Molecular Machines. Adv Exp Med Biol vol. 726, Springer, New York

    Google Scholar 

Download references

Acknowledgements

We acknowledge Jaime Martin-Benito for his contribution to Fig. 12.1c. This work was supported by Grant BFU2011-29038 from the Spanish Ministry of Science and Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José L. Carrascosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cuervo, A., Daudén, M.I., Carrascosa, J.L. (2013). Nucleic Acid Packaging in Viruses. In: Mateu, M. (eds) Structure and Physics of Viruses. Subcellular Biochemistry, vol 68. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6552-8_12

Download citation

Publish with us

Policies and ethics