Skip to main content

Cysteine Proteinase Inhibitors in the Nucleus and Nucleolus in Activated Macrophages

  • Chapter
  • First Online:
Proteins of the Nucleolus
  • 1066 Accesses

Abstract

During the past decades several studies have demonstrated that cysteine cathepsins play an important role in activated macrophages. In endosomes and lysosomes they are essential for the adaptive immune response – antigen processing and presentation, as well as innate immune response – toll like receptor activation. Recently, the new roles have emerged for otherwise endosomal proteases and inhibitors in the nucleus and nucleolus. Cathepsin L deficiency, as well as interaction with nuclear inhibitor MENT, was shown to cause a global rearrangement of chromatin structure and redistribution of specifically modified histones. Cathepsin L activity in the nucleus is also regulated by nuclear and cytosolic inhibitor stefin B. The role for cathepsin L in cleavage of the CUX1 transcription factor and the resultant acceleration of cell-cycle progression into S phase has also been described. We have shown that in activated macrophages cathepsin L and an inhibitor Spia3g are both localized to the nucleolus. However, for the complete understanding of physiological consequences of this observation further studies are necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahamson M, Barrett AJ, Salvesen G, Grubb A (1986) Isolation of six cysteine proteinase inhibitors from human urine. Their physicochemical and enzyme kinetic properties and concentrations in biological fluids. J Biol Chem 261:11282–11289

    PubMed  CAS  Google Scholar 

  • Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10:1538–1543

    Article  PubMed  CAS  Google Scholar 

  • Al-Khunaizi M (2002) The serpin SQN-5 is a dual mechanistic-class inhibitor of serine and cysteine proteinases. Biochemistry 41:3189–3199

    Article  PubMed  CAS  Google Scholar 

  • Al-Khunaizi M, Luke CJ, Askew YS, Pak SC, Askew DJ, Cataltepe S, Miller D, Mills DR, Tsu C, Bromme D, Irving JA, Whisstock JC, Silverman GA (2002) The serpin SQN-5 is a dual mechanistic-class inhibitor of serine and cysteine proteinases. Biochemistry 41:3189–3199

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Fernandez M, Barrett AJ, Gerhartz B, Dando PM, Ni J, Abrahamson M (1999) Inhibition of mammalian legumain by some cystatins is due to a novel second reactive site. J Biol Chem 274:19195–19203

    Article  PubMed  CAS  Google Scholar 

  • Annand RR, Dahlen JR, Sprecher CA, De Dreu P, Foster DC, Mankovich JA, Talanian RV, Kisiel W, Giegel DA (1999) Caspase-1 (interleukin-1beta-converting enzyme) is inhibited by the human serpin analogue proteinase inhibitor 9. Biochem J 342:655–665

    Article  PubMed  CAS  Google Scholar 

  • Barrett AJ (1981) Alpha 2-macroglobulin. Methods Enzymol 80:737–754

    Article  PubMed  CAS  Google Scholar 

  • Barrett AJ (1992) Cellular proteolysis: an overview. Ann N Y Acad Sci 674:1–15

    Article  PubMed  CAS  Google Scholar 

  • Barrett AJ, Kirschke H (1981) Cathepsin B, cathepsin H and cathepsin L. Methods Enzymol 80:535–559

    Article  PubMed  CAS  Google Scholar 

  • Barrett AJ, Fritz H, Grubb A, Isemura S, Jarvinen M, Katunuma N, Machleidt W, Muller-Esterl W, Sasaki M, Turk V (1986) Nomenclature and classification of the proteins homologous with the cysteine-proteinase inhibitor chicken cystatin. Biochem J 236:312

    PubMed  CAS  Google Scholar 

  • Beers C, Honey K, Fink S, Forbush K, Rudensky A (2003) Differential regulation of cathepsin S and cathepsin L in interferon γ–treated macrophages. J Exp Med 197:169–179

    Article  PubMed  CAS  Google Scholar 

  • Bellini M (2000) Coilin, more than a molecular marker of the cajal (coiled) body. Bioessays 22:861–867

    Article  PubMed  CAS  Google Scholar 

  • Bird CH, Sutton VR, Sun J, Hirst CE, Novak A, Kumar S, Trapani JA, Bird PI (1998) Selective regulation of apoptosis: the cytotoxic lymphocyte serpin proteinase inhibitor 9 protects against granzyme B-mediated apoptosis without perturbing the Fas cell death pathway. Mol Cell Biol 18:6387–6398

    PubMed  CAS  Google Scholar 

  • Bird CH, Blink EJ, Hirst CE, Buzza MS, Steele PM, Sun J, Jans DA, Bird PI (2001) Nucleocytoplasmic distribution of the ovalbumin serpin PI-9 requires a nonconventional nuclear import pathway and the export factor Crm1. Mol Cell Biol 21:5396–5407

    Article  PubMed  CAS  Google Scholar 

  • Bird PI, Trapani JA, Villadangos JA (2009) Endolysosomal proteases and their inhibitors in immunity. Nat Rev Immunol 9:871–882

    Article  PubMed  CAS  Google Scholar 

  • Brix K, Lemansky P, Herzog V (1996) Evidence for extracellularly acting cathepsins mediating thyroid hormone liberation in thyroid epithelial cells. Endocrinology 137:1963–1974

    Article  PubMed  CAS  Google Scholar 

  • Brix K, Dunkhorst A, Mayer K, Jordans S (2008) Cystein cathepsins: cellular roadmap to different functions. Biochimie 90:194–207

    Article  PubMed  CAS  Google Scholar 

  • Bromme D, Li Z, Barnes M, Mehler E (1999a) Human cathepsin V functional expression, tissue distribution, electrostatic surface potential, enzymatic characterization and chromosomal localization. Biochemistry 38:2377–2385

    Article  PubMed  CAS  Google Scholar 

  • Bromme D, Li Z, Barnes M, Mehler E (1999b) Human cathepsin V functional expression, tissue distribution, electrostatic surface potential, enzymatic characterization, and chromosomal localization. Biochemistry 38:2377–2385

    Article  PubMed  CAS  Google Scholar 

  • Brzin J, Kopitar M, Locnikar P, Turk V (1982) An endogenous inhibitor of cysteine and serine proteinases from spleen. FEBS Lett 138:193–197

    Article  PubMed  CAS  Google Scholar 

  • Brzin J, Kopitar M, Turk V, Machleidt W (1983) Protein inhibitors of cysteine proteinases. I. Isolation and characterization of stefin, a cytosolic protein inhibitor of cysteine proteinases from human polymorphonuclear granulocytes. Hoppe Seylers Z Physiol Chem 364:1475–1480

    Article  PubMed  CAS  Google Scholar 

  • Bulynko YA, Hsing LC, Mason RW, Tremethick DJ, Grigoryev SA (2006a) Cathepsin L stabilizes the histone modification landscape on the Y chromosome and pericentromeric heterochromatin. Mol Cell Biol 26:4172–4184

    Article  PubMed  CAS  Google Scholar 

  • Bulynko YA, Hsing LC, Mason RW, Tremethick DJ, Grigoryev SA (2006b) Cathepsin L Sstabilizes the Hhistone Mmodification Llandscape on the Y Cchromosome and Ppericentromeric Hheterochromatin. Mol Cell Biol 26:4172–4184

    Article  PubMed  CAS  Google Scholar 

  • Ceru S, Konjar S, Maher K, Repnik U, Krizaj I, Bencina M, Renko M, Nepveu A, Zerovnik E, Turk B, Kopitar-Jerala N (2010) Stefin B interacts with histones and cathepsin L in the nucleus. J Biol Chem 285:10078–10086

    Article  PubMed  CAS  Google Scholar 

  • Chen CJ (2007) Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nat Med 13:851–856

    Article  PubMed  CAS  Google Scholar 

  • Chen C-J, Kono H, Golenbock D, Reed G, Akira S, Rock KL (2007) Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nat Med 13:851–856

    Article  PubMed  CAS  Google Scholar 

  • Colbert JD, Matthews SP, Kos J, Watts C (2011) Internalization of exogenous cystatin F supresses cysteine proteases and induces the accumulation of single-chain cathepsin L by multiple mechanisms. J Biol Chem 286:42082–42090

    Article  PubMed  CAS  Google Scholar 

  • Darnell JE, Kerr IM, Stark GR (1994) Jak–STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264:1415–1421

    Article  PubMed  CAS  Google Scholar 

  • Duncan EM, Muratore-Schroeder TL, Cook RG, Garcia BA, Shabanowitz J, Hunt DF, Allis CD (2008) Cathepsin L proteolytically processes histone H3 during mouse embryonic stem cell differentiation. Cell 135:284–294

    Article  PubMed  CAS  Google Scholar 

  • Edwards JP, Zhang X, Frauwirth KA, Mosser DM (2006) Biochemical and functional characterization of three activated macrophage populations. J Leukoc Biol 80:1298–1307

    Article  PubMed  CAS  Google Scholar 

  • Ewald SE, Lee BL, Lau L, Wickliffe KE, Shi G-P, Chapman HA, Barton GM (2008) The ectodomain of Toll-like receptor 9 is cleaved to generate a functional receptor. Nature 456:658–662

    Article  PubMed  CAS  Google Scholar 

  • Foster SL, Hargreaves DC, Medzhitov R (2007) Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature 447:972–978

    PubMed  CAS  Google Scholar 

  • Geissmann F, Jung S, Littman DR (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19:71–82

    Article  PubMed  CAS  Google Scholar 

  • Geissmann F, Gordon S, Hume DA, Mowat AM, Randolph GJ (2010) Unravelling mononuclear phagocyte heterogeneity. Nat Rev Immunol 10:453–460

    Article  PubMed  CAS  Google Scholar 

  • Gocheva V (2010) IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev 24:241–255

    Article  PubMed  CAS  Google Scholar 

  • Gocheva V, Wang H-W, Gadea BB, Shree T, Hunter KE, Garfall AL, Berman T, Joyce JA (2010) IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev 24:241–255

    Article  PubMed  CAS  Google Scholar 

  • Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:23–35

    Article  PubMed  CAS  Google Scholar 

  • Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5:953–964

    Article  PubMed  CAS  Google Scholar 

  • Goulet B (2004) A cathepsin L isoform that is devoid of a signal peptide localizes to the nucleus in S phase and processes the CDP/Cux transcription factor. Mol Cell 14:207–219

    Article  PubMed  CAS  Google Scholar 

  • Goulet B, Baruch A, Moon NS, Poirier M, Sansregret LL, Erickson A, Bogyo M, Nepveu A (2004a) A cathepsin L isoform that is devoid of a signal peptide localizes to the nucleus in S phase and processes the CDP/Cux transcription factor. Mol Cell 14:207–219

    Article  PubMed  CAS  Google Scholar 

  • Goulet B, Baruch A, Moon NS, Poirier M, Sansregret LL, Erickson A, Bogyo M, Nepveu A (2004b) A cathepsin L isoform that is devoid of a signal peptide localizes to the nucleus in S phase and processes the CDP/Cux transcription factor. Mol Cell 14:207–219

    Article  PubMed  CAS  Google Scholar 

  • Goulet B, Kennette W, Ablack A, Postenka CO, Hague MN, Mymryk JS, Tuck AB, Giguere V, Chambers AF, Lewis JD (2011) Nuclear localization of maspin is essential for its inhibition of tumor growth and metastasis. Lab Invest 91:1181–1187

    Article  PubMed  CAS  Google Scholar 

  • Grigoryev SA, Woodcock CL (1993) Stage-specific expression and localization of MENT, a nuclear protein associated with chromatin condensation in terminally differentiating avian erythroid cells. Exp Cell Res 206:335–343

    Article  PubMed  CAS  Google Scholar 

  • Grigoryev SA, Woodcock CL (1998) Chromatin structure in granulocytes. J Biol Chem 273:3082–3089

    Article  PubMed  CAS  Google Scholar 

  • Hajishengallis G, Lambris JD (2011) Microbial manipulation of receptor crosstalk in innate immunity. Nat Rev Immunol 11:187–200

    Article  PubMed  CAS  Google Scholar 

  • Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, Fitzgerald KA, Latz E, Moore KJ, Golenbock DT (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-[beta]. Nat Immunol 9:857–865

    Article  PubMed  CAS  Google Scholar 

  • Hamerman JA, Hayashi F, Schroeder LA, Gygi SP, Haas AL, Hampson L, Coughlin P, Aebersold R, Aderem A (2002) Serpin 2a is induced in activated macrophages and conjugates to a ubiquitin homolog. J Immunol 168:2415–2423

    PubMed  CAS  Google Scholar 

  • Hampson IN, Hampson L, Pinkoski M, Cross M, Heyworth CM, Bleackley RC, Atkinson E, Dexter TM (1997) Identification of a serpin specifically expressed in multipotent and bipotent hematopoietic progenitor cells and in activated T cells. Blood 89:108–118

    PubMed  CAS  Google Scholar 

  • Hiwasa T, Sakiyma S (1996) Nuclear localization of procathepsin L/MEP in ras-transformed mouse fibroblasts. Cancer Lett 99:87–91

    Article  PubMed  CAS  Google Scholar 

  • Hsing LC, Rudensky AY (2005) The lysosomal cysteine proteases in MHC class II antigen presentation. Immunol Rev 207:229–241

    Article  PubMed  CAS  Google Scholar 

  • Huntington JA, Read RJ, Carrell RW (2000) Structure of a serpin-protease complex shows inhibition by deformation. Nature 407:923–926

    Article  PubMed  CAS  Google Scholar 

  • Irving JA, Shushanov SS, Pike RN, Popova EY, Bromme D, Coetzer THT, Bottomley SP, Boulykno IA, Grigoryev SA, Whisstock JC (2002) Inhibitory activity of a heterochromatin-associated serpin (MENT) against papain-like cysteine proteinases affects chromatin structure and blocks cell proliferation. J Biol Chem 277:13192–13201

    Article  PubMed  CAS  Google Scholar 

  • Istomina NE, Shushanov SS, Springhetti EM, Karpov VL, Krasheninnikov IA, Stevens K, Zaret KS, Singh PB, Grigoryev SA (2003) Insulation of the chicken β-globin chromosomal domain from a chromatin-condensing protein, MENT. Mol Cell Biol 23:6455–6468

    Article  PubMed  CAS  Google Scholar 

  • Jaattela M (2002) Programmed cell death: many ways for cells to die decently. Ann Med 34:480–488

    Article  PubMed  Google Scholar 

  • Kartasova T, Cornelissen BJ, Belt P, van de Putte P (1987) Effects of UV, 4-NQO and TPA on gene expression in cultured human epidermal keratinocytes. Nucleic Acids Res 15:5945–5962

    Article  PubMed  CAS  Google Scholar 

  • Komiyama T, Ray CA, Pickup DJ, Howard AD, Thornbery NA, Peterson EP, Salvesen G (1994) Inhibition of interleukin-1 beta converting enzyme by the cowpox virus serpin CrmA. An example of cross-class inhibition. J Biol Chem 269:19331–19337

    PubMed  CAS  Google Scholar 

  • Konjar S, Yin F, Bogyo M, Turk B, Kopitar-Jerala N (2010) Increased nucleolar localization of SpiA3G in classically but not alternatively activated macrophages. FEBS Lett 584:2201–2206

    Article  PubMed  CAS  Google Scholar 

  • Kono H, Rock KL (2008) How dying cells alert the immune system to danger. Nat Rev Immunol 8:279–289

    Article  PubMed  CAS  Google Scholar 

  • Kopitar-Jerala N (2006) The role of cystatins in cells of the immune system. FEBS Lett 580:6295–6301

    Article  PubMed  CAS  Google Scholar 

  • Kopitar-Jerala N, Schweiger A, Myers RM, Turk V, Turk B (2005) Sensitization of stefin B-deficient thymocytes towards staurosporin-induced apoptosis is independent of cysteine cathepsins. FEBS Lett 579:2149–2155

    Article  PubMed  CAS  Google Scholar 

  • Kos J, Lah TT (1998) Cysteine proteinases and their endogenous inhibitors: target proteins for prognosis, diagnosis and therapy in cancer. Oncol Rep 5:1349–1361

    PubMed  CAS  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  PubMed  CAS  Google Scholar 

  • Kuopio T, Kankaanranta A, Jalava P, Kronqvist P, Kotkansalo T, Weber E, Collan Y (1998) Cysteine proteinase inhibitor cystatin A in breast cancer. Cancer Res 58:432–436

    PubMed  CAS  Google Scholar 

  • Laber B, Krieglstein K, Henschen A, Kos J, Turk V, Huber R, Bode W (1989) The cysteine proteinase inhibitor chicken cystatin is a phosphoprotein. FEBS Lett 248:162–168

    Article  PubMed  CAS  Google Scholar 

  • Lalioti MD (1997) Identification of mutations in cystatin B, the gene responsible for the Unverricht-Lundborg type of progressive myoclonus epilepsy (EPM1). Am J Hum Genet 60:342–351

    PubMed  CAS  Google Scholar 

  • Lalioti MD, Scott HS, Buresi C, Rossier C, Bottani A, Morris MA, Malafosse A, Antonarakis SE (1997) Dodecamer repeat expansion in cystatin B gene in progressive myoclonus epilepsy. Nature 386:847–851

    Article  PubMed  CAS  Google Scholar 

  • Lenarcic B, Bevec T (1998) Thyropins—new structurally related proteinase inhibitors. Biol Chem 379:105–111

    PubMed  CAS  Google Scholar 

  • Levicar N, Strojnik T, Kos J, Dewey RA, Pilkington GJ, Lah TT (2002) Lysosomal enzymes, cathepsins in brain tumour invasion. J Neurooncol 58:21–32

    Article  PubMed  Google Scholar 

  • Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128:707–719

    Article  PubMed  CAS  Google Scholar 

  • Lieuallen K, Pennacchio LA, Park M, Myers RM, Lennon GG (2001) Cystatin B-deficient mice have increased expression of apoptosis and glial activation genes. Hum Mol Genet 10:1867–1871

    Article  PubMed  CAS  Google Scholar 

  • Liu N, Raja SM, Zazzeroni F, Metkar SS, Shah R, Zhang M, Wang Y, Bromme D, Russin WA, Lee JC, Peter ME, Froelich CJ, Franzoso G, Ashton-Rickardt PG (2003) NF-[kappa]B protects from the lysosomal pathway of cell death. EMBO J 22:5313–5322

    Article  PubMed  CAS  Google Scholar 

  • Martinez FO, Sica A, Mantovani A, Locati M (2008) Macrophage activation and polarization. Front Biosci 13:453–461

    Article  PubMed  CAS  Google Scholar 

  • Maubach G, Lim MCC, Zhuo L (2008) Nuclear cathepsin F regulates activation markers in rat hepatic stellate cells. Mol Biol Cell 19:4238–4248

    Article  PubMed  CAS  Google Scholar 

  • McGowan S, Buckle AM, Irving JA, Ong PC, Bashtannyk-Puhalovich TA, Kan W-T, Henderson KN, Bulynko YA, Popova EY, Smith AI, Bottomley SP, Rossjohn J, Grigoryev SA, Pike RN, Whisstock JC (2006) X-ray crystal structure of MENT: evidence for functional loop-sheet polymers in chromatin condensation. EMBO J 25:3144–3155

    Article  PubMed  CAS  Google Scholar 

  • Medzhitov R (2007) Recognition of microorganisms and activation of the immune response. Nature 449:819–826

    Article  PubMed  CAS  Google Scholar 

  • Medzhitov R, Horng T (2009) Transcriptional control of the inflammatory response. Nat Rev Immunol 9:692–703

    Article  PubMed  CAS  Google Scholar 

  • Mehtani S, Gong Q, Panella J, Subbiah S, Peffley DM, Frankfater A (1998) In vivo expression of an alternatively spliced human tumor message that encodes a truncated form of cathepsin B. J Biol Chem 273:13236–13244

    Article  PubMed  CAS  Google Scholar 

  • Mohamed MM, Sloane BF (2006) Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer 6:764–775

    Article  PubMed  CAS  Google Scholar 

  • Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958–969

    Article  PubMed  CAS  Google Scholar 

  • Murray PJ, Wynn TA (2011) Obstacles and opportunities for understanding macrophage polarization. J Leukoc Biol 89:557–563

    Article  PubMed  CAS  Google Scholar 

  • Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo J-L, Libby P, Weissleder R, Pittet MJ (2007) The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 204:3037–3047

    Article  PubMed  CAS  Google Scholar 

  • Ochs RL, Lischwe MA, Spohn WH, Busch H (1985) Fibrillarin: a new protein of the nucleolus identified by autoimmune sera. Biol Cell 54:123–133

    Article  PubMed  CAS  Google Scholar 

  • Ohkubo I, Kurachi K, Takasawa T, Shiokawa H, Sasaki M (1984) Isolation of a human cDNA for alpha 2-thiol proteinase inhibitor and its identity with low molecular weight kininogen. Biochemistry 23:5691–5697

    Article  PubMed  CAS  Google Scholar 

  • Ong PC, McGowan S, Pearce MC, Irving JA, Kan W-T, Grigoryev SA, Turk B, Silverman GA, Brix K, Bottomley SP, Whisstock JC, Pike RN (2007) DNA accelerates the inhibition of human cathepsin V by serpins. J Biol Chem 282:36980–36986

    Article  PubMed  CAS  Google Scholar 

  • Ong PC, Golding SJ, Pearce MC, Irving JA, Grigoryev SA, Pike D, Langendorf CG, Bashtannyk-Puhalovich TA, Bottomley SP, Whisstock JC, Pike RN, McGowan S (2009) Conformational change in the chromatin remodelling protein MENT. PLoS One 4:e4727

    Article  PubMed  CAS  Google Scholar 

  • Park JS (2004) Involvement of Toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem 279:7370–7377

    Article  PubMed  CAS  Google Scholar 

  • Park B, Brinkmann MM, Spooner E, Lee CC, Kim Y-M, Ploegh HL (2008) Proteolytic cleavage in an endolysosomal compartment is required for activation of Toll-like receptor 9. Nat Immunol 9:1407–1414

    Article  PubMed  CAS  Google Scholar 

  • Pennacchio LA, Lehesjoki AE, Stone NE, Willour VL, Virtaneva K, Miao J, Dqamato E, Ramirez L, Faham M, Koskiniemi M, Warrington JA, Norio R, de la Chapelle A, Cox DR, Myers RM (1996) Mutations in the gene encoding cystatin B in progressive myoclonus epilepsy (EPM1) [see comments]. Science 271:1731–1734

    Article  PubMed  CAS  Google Scholar 

  • Pennacchio LA, Bouley DM, Higgins KM, Scott MP, Noebels JL, Myers RM (1998) Progressive ataxia, myoclonic epilepsy and cerebellar apoptosis in cystatin B-deficient mice. Nat Genet 20:251–258

    Article  PubMed  CAS  Google Scholar 

  • Puente XS, Sanchez LM, Overall CM, Lopez-Otin C (2003) Human and mouse proteases: a comparative genomic approach. Nat Rev Genet 4:544–558

    Article  PubMed  CAS  Google Scholar 

  • Rawlings ND, Barrett AJ (1994) Families of cysteine peptidases. Methods Enzymol 244:461–486

    Article  PubMed  CAS  Google Scholar 

  • Rawlings ND, Barrett AJ, Bateman A (2012) MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 40:D343–D350

    Article  PubMed  CAS  Google Scholar 

  • Reinheckel T, Deussing J, Roth W, Peters C (2001) Towards specific functions of lysosomal cysteine peptidases: phenotypes of mice deficient for cathepsin B or cathepsin L. Biol Chem 382:735–741

    Article  PubMed  CAS  Google Scholar 

  • Reiser J, Adair B, Reinheckel T (2010) Specialized roles for cysteine cathepsins in health and disease. J Clin Invest 120:3421–3431

    Article  PubMed  CAS  Google Scholar 

  • Salvesen G, Parkes C, Abrahamson M, Grubb A, Barrett AJ (1986) Human low-Mr kininogen contains three copies of a cystatin sequence that are divergent in structure and in inhibitory activity for cysteine proteinases. Biochem J 234:429–434

    PubMed  CAS  Google Scholar 

  • Sansregret L, Nepveu A (2008) The multiple roles of CUX1: insights from mouse models and cell-based assays. Gene 412:84–94

    Article  PubMed  CAS  Google Scholar 

  • Santamaria I, Velasco G, Cazorla M, Fueyo A, Campo E, Lopez-Otin C (1998) Cathepsin L2, a novel human cysteine proteinase produced by breast and colorectal carcinomas. Cancer Res 58:1624–1630

    PubMed  CAS  Google Scholar 

  • Saraiva M, O’Garra A (2010) The regulation of IL-10 production by immune cells. Nat Rev Immunol 10:170–181

    Article  PubMed  CAS  Google Scholar 

  • Satoh T, Takeuchi O, Vandenbon A, Yasuda K, Tanaka Y, Kumagai Y, Miyake T, Matsushita K, Okazaki T, Saitoh T, Honma K, Matsuyama T, Yui K, Tsujimura T, Standley DM, Nakanishi K, Nakai K, Akira S (2010) The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat Immunol 11:936–944

    Article  PubMed  CAS  Google Scholar 

  • Schick C, Pemberton PA, Shi G-P, Kamachi Y, Cataltepe S, Bartuski AJ, Gornstein ER, Bromme D, Chapman HA, Silverman GA (1998) Cross-class inhibition of the cysteine proteinases cathepsins K, L, and S by the serpin squamous cell carcinoma antigen 1: a kinetic analysis. Biochemistry 37:5258–5266

    Article  PubMed  CAS  Google Scholar 

  • Shirahama-Noda K, Yamamoto A, Sugihara K, Hashimoto N, Asano M, Nishimura M, Hara-Nishimura I (2003) Biosynthetic processing of cathepsins and lysosomal degradation are abolished in asparaginyl endopeptidase-deficient mice. J Biol Chem 278:33194–33199

    Article  PubMed  CAS  Google Scholar 

  • Silverman GA, Bird PI, Carrell RW, Church FC, Coughlin PB, Gettins PGW, Irving JA, Lomas DA, Luke CJ, Moyer RW, Pemberton PA, Remold-O’Donnell E, Salvesen GS, Travis J, Whisstock JC (2001) The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. J Biol Chem 276:33293–33296

    Article  PubMed  CAS  Google Scholar 

  • Silverman GA, Whisstock JC, Askew DJ, Pak SC, Luke CJ, Cataltepe S, Irving JA, Bird PI (2004) Human clade B serpins (ov-serpins) belong to a cohort of evolutionarily dispersed intracellular proteinase inhibitor clades that protect cells from promiscuous proteolysis. Cell Mol Life Sci 61:301–325

    Article  PubMed  CAS  Google Scholar 

  • Silverman GA, Whisstock JC, Bottomley SP, Huntington JA, Kaiserman D, Luke CJ, Pak SC, Reichhart J-M, Bird PI (2010) Serpins flex their muscle. J Biol Chem 285:24299–24305

    Article  PubMed  CAS  Google Scholar 

  • Springhetti EM, Istomina NE, Whisstock JC, Nikitina T, Woodcock CL, Grigoryev SA (2003) Role of the M-loop and reactive center loop domains in the folding and bridging of nucleosome arrays by MENT. J Biol Chem 278:43384–43393

    Article  PubMed  CAS  Google Scholar 

  • Stout RD, Suttles J (2004) Functional plasticity of macrophages: reversible adaptation to changing microenvironments. J Leukoc Biol 76:509–513

    Article  PubMed  CAS  Google Scholar 

  • Sutterwala FS, Noel GJ, Clynes R, Mosser DM (1997) Selective suppression of interleukin-12 induction after macrophage receptor ligation. J Exp Med 185:1977–1985

    Article  PubMed  CAS  Google Scholar 

  • Takeuch O, Akira S (2011) Epigenetic control of macrophage polarization. Eur J Immunol 41:2490–2493

    Article  PubMed  CAS  Google Scholar 

  • Tedelind S, Poliakova K, Valeta A, Hunegnaw R, Yemanaberhan EL, Heldin N-E, Kurebayashi J, Weber E, Kopitar-Jerala N, Turk B, Bogyo M, Brix K (2010) Nuclear cysteine cathepsin variants in thyroid carcinoma cells. Biol Chem 391:923–935

    Article  PubMed  CAS  Google Scholar 

  • Tegelberg S, Kopra O, Joensuu T, Cooper JD, Lehesjoki A-E (2012) Early microglial activation precedes neuronal loss in the brain of the Cstb−/− mouse model of progressive myoclonus epilepsy, EPM1. J Neuropathol Exp Neurol 71:40–53

    Article  PubMed  CAS  Google Scholar 

  • Turk V, Turk B, Turk D (2001) Lysosomal cysteine proteases: facts and opportunities. EMBO J 20:4629–4633

    Article  PubMed  CAS  Google Scholar 

  • Turk V, Stoka V, Turk D (2008) Cystatins: biochemical and structural properties, and medical relevance. Front Biosci 13:5406–5420

    Article  PubMed  CAS  Google Scholar 

  • Vasiljeva O, Reinheckel T, Peters C, Turk D, Turk V, Turk B (2007) Emerging roles of cysteine cathepsins in disease and their potential as drug targets. Curr Pharm Des 13:387–403

    Article  PubMed  CAS  Google Scholar 

  • Zou Z, Anisowicz A, Hendrix M, Thor A, Neveu M, Sheng S, Rafidi K, Seftor E, Sager R (1994) Maspin, a serpin with tumor-suppressing activity in human mammary epithelial cells. Science 263:526–529

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This chapter included research supported by the Slovenian Research Agency Grants J3-9324 and J3-0612 (to N. Kopitar-Jerala) and Grant P-0140 (to B. Turk).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nataša Kopitar-Jerala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kopitar-Jerala, N. (2013). Cysteine Proteinase Inhibitors in the Nucleus and Nucleolus in Activated Macrophages. In: O'Day, D., Catalano, A. (eds) Proteins of the Nucleolus. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5818-6_13

Download citation

Publish with us

Policies and ethics