Skip to main content

TGF Beta Signaling and Its Role in Glioma Pathogenesis

  • Chapter
  • First Online:
Glioma Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 986))

Abstract

Transforming growth factor beta (TGF-β) signaling is involved in the regulation of proliferation, differentiation and survival/or apoptosis of many cells, including glioma cells. TGF-β acts via specific receptors activating multiple intracellular pathways resulting in phosphorylation of receptor-regulated Smad2/3 proteins that associate with the common mediator, Smad4. Such complex translocates to the nucleus, binds to DNA and regulates transcription of many genes. Furthermore, TGF-β-activated kinase-1 (TAK1) is a component of TGF-β signaling and activates mitogen-activated protein kinase cascades. Negative regulation of TGF-β/Smad signaling may occur through the inhibitory Smad6/7. Increased expression of TGF-β1-3 correlates with a degree of malignancy of human gliomas. TGF-β may contribute to tumor pathogenesis by direct support of tumor growth, self-renewal of glioma initiating stem cells and inhibiting of anti-tumor immunity. TGF-β1,2 stimulate expression of the vascular endothelial growth factor as well as the plasminogen activator inhibitor and some metalloproteinases that are involved in vascular remodeling, angiogenesis and degradation of the extracellular matrix. Inhibitors of TGF-β signaling reduce viability and invasion of gliomas in animal models and show promises as novel, potential anti-tumor therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADAMTS-1:

Metalloproteinase and disintegrin-like domain

Akt:

Protein kinase B/Akt kinase

ALKs:

Activin-receptor-like kinases

AP-1:

Activator protein

BMPs:

Bone morphogenetic proteins

CTLs:

Cytotoxic T lymphocytes

EGFR:

Epidermal growth factor receptor

ECM:

Extracellular matrix

ERK1/2:

Extracellular signal-regulated kinases 1/2

GDFs:

Growth and differentiation factors

JAK:

Janus kinase

JNK c:

Jun N-terminal kinases

LAP:

Latency-associated peptide

LIF:

Leukemia inhibitory factor

LTBP:

Latent TGF-β binding protein

MT1-MMP:

Membrane-type 1 matrix metalloproteinase

p38 MAPK:

P38 mitogen-activated protein kinases

R-Smads:

Receptor-Smad proteins

SARA:

Smad anchor for receptor activation, STAT, signal transducer and activator of transcription

TAK1:

TGF-β-activated kinase-1

TβRI:

TGF-β type I receptor

TβRII:

TGF-β type II receptor

TGF-β:

Transforming growth factor β

TMZ:

Temozolomide

TNFα:

Tumor necrosis factor α

TRAF:

TNF receptor associated factor

VEGF:

Vascular endothelial growth factor.

References

  • Alexandrow MG, Moses HL (1995) Transforming growth factor beta and cell cycle regulation. Cancer Res 55:1452–1457

    PubMed  CAS  Google Scholar 

  • Anido J, Saez-Borderias A, Gonzalez-Junca A, Rodon L, Folch G, Carmona MA, Prieto-Sanchez RM, Barba I, Martinez-Saez E, Prudkin L, Cuartas I, Raventos C, Martinez-Ricarte F, Poca MA, Garcia-Dorado D, Lahn MM, Yingling JM, Rodon J, Sahuquillo J, Baselga J, Seoane J (2010) TGF-beta receptor inhibitors target the CD44(high)/Id1(high) glioma-initiating cell population in human glioblastoma. Cancer Cell 18:655–668

    PubMed  CAS  Google Scholar 

  • Annes JP, Chen Y, Munger JS, Rifkin DB (2004) Integrin alphaVbeta6-mediated activation of latent TGF-beta requires the latent TGF-beta binding protein-1. J Cell Biol 165:723–734

    PubMed  CAS  Google Scholar 

  • Arslan F, Bosserhoff AK, Nickl-Jockschat T, Doerfelt A, Bogdahn U, Hau P (2007) The role of versican isoforms V0/V1 in glioma migration mediated by transforming growth factor-beta2. Br J Cancer 96:1560–1568

    PubMed  CAS  Google Scholar 

  • Attisano L, Wrana JL (2002) Signal transduction by the TGF-beta superfamily. Science 296:1646–1647

    PubMed  CAS  Google Scholar 

  • Beck C, Schreiber H, Rowley D (2001) Role of TGF-beta in immune-evasion of cancer. Microsc Res Tech 52:387–395

    PubMed  CAS  Google Scholar 

  • Benigni A, Zoja C, Corna D, Zatelli C, Conti S, Campana M, Gagliardini E, Rottoli D, Zanchi C, Abbate M, Ledbetter S, Remuzzi G (2003) Add-on anti-TGF-beta antibody to ACE inhibitor arrests progressive diabetic nephropathy in the rat. J Am Soc Nephrol 14:1816–1824

    PubMed  CAS  Google Scholar 

  • Bhowmick NA, Zent R, Ghiassi M, McDonnell M, Moses HL (2001) Integrin beta 1 signaling is necessary for transforming growth factor-beta activation of p38MAPK and epithelial plasticity. J Biol Chem 276:46707–46713

    PubMed  CAS  Google Scholar 

  • Bian Y, Kaklamani V, Reich J, Pasche B (2003) TGF-beta signaling alterations in cancer. Cancer Treat Res 115:73–94

    PubMed  CAS  Google Scholar 

  • Bollard CM, Rossig C, Calonge MJ, Huls MH, Wagner HJ, Massague J, Brenner MK, Heslop HE, Rooney CM (2002) Adapting a transforming growth factor beta-related tumor protection strategy to enhance antitumor immunity. Blood 99:3179–3187

    PubMed  CAS  Google Scholar 

  • Bottner M, Krieglstein K, Unsicker K (2000) The transforming growth factor-betas: structure, signaling, and roles in nervous system development and functions. J Neurochem 75:2227–2240

    PubMed  CAS  Google Scholar 

  • Bruna A, Darken RS, Rojo F, Ocana A, Penuelas S, Arias A, Paris R, Tortosa A, Mora J, Baselga J, Seoane J (2007) High TGFbeta-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. Cancer Cell 11:147–160

    PubMed  CAS  Google Scholar 

  • Cambier S, Gline S, Mu D, Collins R, Araya J, Dolganov G, Einheber S, Boudreau N, Nishimura SL (2005) Integrin alpha(v)beta8-mediated activation of transforming growth factor-beta by perivascular astrocytes: an angiogenic control switch. Am J Pathol 166:1883–1894

    PubMed  CAS  Google Scholar 

  • Chen YG, Hata A, Lo RS, Wotton D, Shi Y, Pavletich N, Massague J (1998) Determinants of specificity in TGF-beta signal transduction. Genes Dev 12:2144–2152

    PubMed  CAS  Google Scholar 

  • Chen CR, Kang Y, Siegel PM, Massague J (2002) E2F4/5 and p107 as Smad cofactors linking the TGFbeta receptor to c-myc repression. Cell 110:19–32

    PubMed  CAS  Google Scholar 

  • Chen ML, Pittet MJ, Gorelik L, Flavell RA, Weissleder R, von Boehmer H, Khazaie K (2005) Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-beta signals in vivo. Proc Natl Acad Sci U S A 102:419–424

    PubMed  CAS  Google Scholar 

  • Crane CA, Han SJ, Barry JJ, Ahn BJ, Lanier LL, Parsa AT (2010) TGF-beta downregulates the activating receptor NKG2D on NK cells and CD8+ T cells in glioma patients. Neuro Oncol 12:7–13

    PubMed  CAS  Google Scholar 

  • DaCosta Byfield S, Major C, Laping NJ, Roberts AB (2004) SB-505124 is a selective inhibitor of transforming growth factor-beta type I receptors ALK4, ALK5, and ALK7. Mol Pharmacol 65:744–752

    PubMed  Google Scholar 

  • Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425:577–584

    PubMed  CAS  Google Scholar 

  • Dubois CM, Laprise MH, Blanchette F, Gentry LE, Leduc R (1995) Processing of transforming growth factor beta 1 precursor by human furin convertase. J Biol Chem 270:10618–10624

    PubMed  CAS  Google Scholar 

  • Dziembowska M, Danilkiewicz M, Wesolowska A, Zupanska A, Chouaib S, Kaminska B (2007) Cross-talk between Smad and p38 MAPK signalling in transforming growth factor beta signal transduction in human glioblastoma cells. Biochem Biophys Res Commun 354:1101–1106

    PubMed  CAS  Google Scholar 

  • Edlund S, Landstrom M, Heldin CH, Aspenstrom P (2002) Transforming growth factor-beta-induced mobilization of actin cytoskeleton requires signaling by small GTPases Cdc42 and RhoA. Mol Biol Cell 13:902–914

    PubMed  CAS  Google Scholar 

  • Fakhrai H, Mantil JC, Liu L, Nicholson GL, Murphy-Satter CS, Ruppert J, Shawler DL (2006) Phase I clinical trial of a TGF-beta antisense-modified tumor cell vaccine in patients with advanced glioma. Cancer Gene Ther 13:1052–1060

    PubMed  CAS  Google Scholar 

  • Friese MA, Wischhusen J, Wick W, Weiler M, Eisele G, Steinle A, Weller M (2004) RNA interference targeting transforming growth factor-beta enhances NKG2D-mediated antiglioma immune response, inhibits glioma cell migration and invasiveness, and abrogates tumorigenicity in vivo. Cancer Res 64:7596–7603

    PubMed  CAS  Google Scholar 

  • Gorelik L, Flavell RA (2001) Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells. Nat Med 7:1118–1122

    PubMed  CAS  Google Scholar 

  • Goumans MJ, Mummery C (2000) Functional analysis of the TGFbeta receptor/Smad pathway through gene ablation in mice. Int J Dev Biol 44:253–265

    PubMed  CAS  Google Scholar 

  • Goumans MJ, Valdimarsdottir G, Itoh S, Rosendahl A, Sideras P, ten Dijke P (2002) Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. EMBO J 21:1743–1753

    PubMed  CAS  Google Scholar 

  • Grainger DJ, Wakefield L, Bethell HW, Farndale RW, Metcalfe JC (1995) Release and activation of platelet latent TGF-beta in blood clots during dissolution with plasmin. Nat Med 1:932–937

    PubMed  CAS  Google Scholar 

  • Groppe J, Hinck CS, Samavarchi-Tehrani P, Zubieta C, Schuermann JP, Taylor AB, Schwarz PM, Wrana JL, Hinck AP (2008) Cooperative assembly of TGF-beta superfamily signaling complexes is mediated by two disparate mechanisms and distinct modes of receptor binding. Mol Cell 29:157–168

    PubMed  CAS  Google Scholar 

  • Hanafusa H, Ninomiya-Tsuji J, Masuyama N, Nishita M, Fujisawa J, Shibuya H, Matsumoto K, Nishida E (1999) Involvement of the p38 mitogen-activated protein kinase pathway in transforming growth factor-beta-induced gene expression. J Biol Chem 274:27161–27167

    PubMed  CAS  Google Scholar 

  • Hau P, Kunz-Schughart LA, Rummele P, Arslan F, Dorfelt A, Koch H, Lohmeier A, Hirschmann B, Muller A, Bogdahn U, Bosserhoff AK (2006) Tenascin-C protein is induced by transforming growth factor-beta1 but does not correlate with time to tumor progression in high-grade gliomas. J Neurooncol 77:1–7

    PubMed  CAS  Google Scholar 

  • Hau P, Jachimczak P, Schlingensiepen R, Schulmeyer F, Jauch T, Steinbrecher A, Brawanski A, Proescholdt M, Schlaier J, Buchroithner J, Pichler J, Wurm G, Mehdorn M, Strege R, Schuierer G, Villarrubia V, Fellner F, Jansen O, Straube T, Nohria V, Goldbrunner M, Kunst M, Schmaus S, Stauder G, Bogdahn U, Schlingensiepen KH (2007) Inhibition of TGF-beta2 with AP 12009 in recurrent malignant gliomas: from preclinical to phase I/II studies. Oligonucleotides 17:201–212

    PubMed  CAS  Google Scholar 

  • Hau P, Jachimczak P, Schlaier J, Bogdahn U (2011) TGF-beta2 signaling in high-grade gliomas. Curr Pharm Biotechnol 12:2150–2157

    PubMed  CAS  Google Scholar 

  • Held-Feindt J, Lutjohann B, Ungefroren H, Mehdorn HM, Mentlein R (2003) Interaction of transforming growth factor-beta (TGF-beta) and epidermal growth factor (EGF) in human glioma cells. J Neurooncol 63:117–127

    PubMed  Google Scholar 

  • Hjelmeland MD, Hjelmeland AB, Sathornsumetee S, Reese ED, Herbstreith MH, Laping NJ, Friedman HS, Bigner DD, Wang XF, Rich JN (2004) SB-431542, a small molecule transforming growth factor-beta-receptor antagonist, inhibits human glioma cell line proliferation and motility. Mol Cancer Ther 3:737–745

    PubMed  CAS  Google Scholar 

  • Hyytiainen M, Penttinen C, Keski-Oja J (2004) Latent TGF-beta binding proteins: extracellular matrix association and roles in TGF-beta activation. Crit Rev Clin Lab Sci 41:233–264

    PubMed  Google Scholar 

  • Ijichi H, Otsuka M, Tateishi K, Ikenoue T, Kawakami T, Kanai F, Arakawa Y, Seki N, Shimizu K, Miyazono K, Kawabe T, Omata M (2004) Smad4-independent regulation of p21/WAF1 by transforming growth factor-beta. Oncogene 23:1043–1051

    PubMed  CAS  Google Scholar 

  • Ikushima H, Todo T, Ino Y, Takahashi M, Miyazawa K, Miyazono K (2009) Autocrine TGF-beta signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors. Cell Stem Cell 5:504–514

    PubMed  CAS  Google Scholar 

  • Itoh S, ten Dijke P (2007) Negative regulation of TGF-beta receptor/Smad signal transduction. Curr Opin Cell Biol 19:176–184

    PubMed  CAS  Google Scholar 

  • Jachimczak P, Bogdahn U, Schneider J, Behl C, Meixensberger J, Apfel R, Dorries R, Schlingensiepen KH, Brysch W (1993) The effect of transforming growth factor-beta 2-specific phosphorothioate-anti-sense oligodeoxynucleotides in reversing cellular immunosuppression in malignant glioma. J Neurosurg 78:944–951

    PubMed  CAS  Google Scholar 

  • Jachimczak P, Hessdorfer B, Fabel-Schulte K, Wismeth C, Brysch W, Schlingensiepen KH, Bauer A, Blesch A, Bogdahn U (1996) Transforming growth factor-beta-mediated autocrine growth regulation of gliomas as detected with phosphorothioate antisense oligonucleotides. Int J Cancer 65:332–337

    PubMed  CAS  Google Scholar 

  • Jennings MT, Pietenpol JA (1998) The role of transforming growth factor beta in glioma progression. J Neurooncol 36:123–140

    PubMed  CAS  Google Scholar 

  • Jennings MT, Maciunas RJ, Carver R, Bascom CC, Juneau P, Misulis K, Moses HL (1991) TGF beta 1 and TGF beta 2 are potential growth regulators for low-grade and malignant gliomas in vitro: evidence in support of an autocrine hypothesis. Int J Cancer 49:129–139

    PubMed  CAS  Google Scholar 

  • Kaminska B (2009) Molecular characterization of inflammation-induced JNK/c-Jun signaling pathway in connection with tumorigenesis. Methods Mol Biol 512:249–264

    PubMed  CAS  Google Scholar 

  • Karsdal MA, Hjorth P, Henriksen K, Kirkegaard T, Nielsen KL, Lou H, Delaisse JM, Foged NT (2003) Transforming growth factor-beta controls human osteoclastogenesis through the p38 MAPK and regulation of RANK expression. J Biol Chem 278:44975–44987

    PubMed  CAS  Google Scholar 

  • Khaw P, Grehn F, Hollo G, Overton B, Wilson R, Vogel R, Smith Z (2007) A phase III study of subconjunctival human anti-transforming growth factor beta(2) monoclonal antibody (CAT-152) to prevent scarring after first-time trabeculectomy. Ophthalmology 114:1822–1830

    PubMed  Google Scholar 

  • Kim SJ, Angel P, Lafyatis R, Hattori K, Kim KY, Sporn MB, Karin M, Roberts AB (1990) Autoinduction of transforming growth factor beta 1 is mediated by the AP-1 complex. Mol Cell Biol 10:1492–1497

    PubMed  CAS  Google Scholar 

  • Lee MK, Pardoux C, Hall MC, Lee PS, Warburton D, Qing J, Smith SM, Derynck R (2007) TGF-beta activates Erk MAP kinase signalling through direct phosphorylation of ShcA. EMBO J 26:3957–3967

    PubMed  CAS  Google Scholar 

  • Levy L, Hill CS (2005) Smad4 dependency defines two classes of transforming growth factor beta (TGF-{beta}) target genes and distinguishes TGF-{beta}-induced epithelial-mesenchymal transition from its antiproliferative and migratory responses. Mol Cell Biol 25:8108–8125

    PubMed  CAS  Google Scholar 

  • Liau LM, Fakhrai H, Black KL (1998) Prolonged survival of rats with intracranial C6 gliomas by treatment with TGF-beta antisense gene. Neurol Res 20:742–747

    PubMed  CAS  Google Scholar 

  • Lin HK, Bergmann S, Pandolfi PP (2004) Cytoplasmic PML function in TGF-beta signalling. Nature 431:205–211

    PubMed  CAS  Google Scholar 

  • Lindholm D, Castren E, Kiefer R, Zafra F, Thoenen H (1992) Transforming growth factor-beta 1 in the rat brain: increase after injury and inhibition of astrocyte proliferation. J Cell Biol 117:395–400

    PubMed  CAS  Google Scholar 

  • Liu Y, Wang Q, Kleinschmidt-DeMasters BK, Franzusoff A, Ng KY, Lillehei KO (2007) TGF-beta2 inhibition augments the effect of tumor vaccine and improves the survival of animals with pre-established brain tumors. J Neurooncol 81:149–162

    PubMed  CAS  Google Scholar 

  • Lu Y, Jiang F, Zheng X, Katakowski M, Buller B, To SS, Chopp M (2011) TGF-beta1 promotes motility and invasiveness of glioma cells through activation of ADAM17. Oncol Rep 25:1329–1335

    PubMed  CAS  Google Scholar 

  • Maeda H, Kuwahara H, Ichimura Y, Ohtsuki M, Kurakata S, Shiraishi A (1995) TGF-beta enhances macrophage ability to produce IL-10 in normal and tumor-bearing mice. J Immunol 155:4926–4932

    PubMed  CAS  Google Scholar 

  • Massague J (2008) TGFbeta in cancer. Cell 134:215–230

    PubMed  CAS  Google Scholar 

  • Massague J, Wotton D (2000) Transcriptional control by the TGF-beta/Smad signaling system. EMBO J 19:1745–1754

    PubMed  CAS  Google Scholar 

  • Massague J, Seoane J, Wotton D (2005) Smad transcription factors. Genes Dev 19:2783–2810

    PubMed  CAS  Google Scholar 

  • Mead AL, Wong TT, Cordeiro MF, Anderson IK, Khaw PT (2003) Evaluation of anti-TGF-beta2 antibody as a new postoperative anti-scarring agent in glaucoma surgery. Invest Ophthalmol Vis Sci 44:3394–3401

    PubMed  Google Scholar 

  • Melisi D, Ishiyama S, Sclabas GM, Fleming JB, Xia Q, Tortora G, Abbruzzese JL, Chiao PJ (2008) LY2109761, a novel transforming growth factor beta receptor type I and type II dual inhibitor, as a therapeutic approach to suppressing pancreatic cancer metastasis. Mol Cancer Ther 7:829–840

    PubMed  CAS  Google Scholar 

  • Miura S, Takeshita T, Asao H, Kimura Y, Murata K, Sasaki Y, Hanai JI, Beppu H, Tsukazaki T, Wrana JL, Miyazono K, Sugamura K (2000) Hgs (Hrs), a FYVE domain protein, is involved in Smad signaling through cooperation with SARA. Mol Cell Biol 20:9346–9355

    PubMed  CAS  Google Scholar 

  • Moustakas A, Heldin CH (2005) Non-Smad TGF-beta signals. J Cell Sci 118:3573–3584

    PubMed  CAS  Google Scholar 

  • Moustakas A, Souchelnytskyi S, Heldin CH (2001) Smad regulation in TGF-beta signal transduction. J Cell Sci 114:4359–4369

    PubMed  CAS  Google Scholar 

  • Mu Y, Sundar R, Thakur N, Ekman M, Gudey SK, Yakymovych M, Hermansson A, Dimitriou H, Bengoechea-Alonso MT, Ericsson J, Heldin CH, Landstrom M (2011) TRAF6 ubiquitinates TGFbeta type I receptor to promote its cleavage and nuclear translocation in cancer. Nat Commun 2:330

    PubMed  Google Scholar 

  • Mulder KM (2000) Role of Ras and Mapks in TGFbeta signaling. Cytokine Growth Factor Rev 11:23–35

    PubMed  CAS  Google Scholar 

  • Nakada M, Miyamori H, Kita D, Takahashi T, Yamashita J, Sato H, Miura R, Yamaguchi Y, Okada Y (2005) Human glioblastomas overexpress ADAMTS-5 that degrades brevican. Acta Neuropathol 110:239–246

    PubMed  CAS  Google Scholar 

  • Nakao A, Imamura T, Souchelnytskyi S, Kawabata M, Ishisaki A, Oeda E, Tamaki K, Hanai J, Heldin CH, Miyazono K, ten Dijke P (1997) TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO J 16:5353–5362

    PubMed  CAS  Google Scholar 

  • Pen A, Moreno MJ, Durocher Y, Deb-Rinker P, Stanimirovic DB (2008) Glioblastoma-secreted factors induce IGFBP7 and angiogenesis by modulating Smad-2-dependent TGF-beta signaling. Oncogene 27:6834–6844

    PubMed  CAS  Google Scholar 

  • Penheiter SG, Mitchell H, Garamszegi N, Edens M, Dore JJ Jr, Leof EB (2002) Internalization-dependent and -independent requirements for transforming growth factor beta receptor signaling via the Smad pathway. Mol Cell Biol 22:4750–4759

    PubMed  CAS  Google Scholar 

  • Penuelas S, Anido J, Prieto-Sanchez RM, Folch G, Barba I, Cuartas I, Garcia-Dorado D, Poca MA, Sahuquillo J, Baselga J, Seoane J (2009) TGF-beta increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma. Cancer Cell 15:315–327

    PubMed  CAS  Google Scholar 

  • Pepper MS (1997) Transforming growth factor-beta: vasculogenesis, angiogenesis, and vessel wall integrity. Cytokine Growth Factor Rev 8:21–43

    PubMed  CAS  Google Scholar 

  • Piek E, Westermark U, Kastemar M, Heldin CH, van Zoelen EJ, Nister M, Ten Dijke P (1999) Expression of transforming-growth-factor (TGF)-beta receptors and Smad proteins in glioblastoma cell lines with distinct responses to TGF-beta1. Int J Cancer 80:756–763

    PubMed  CAS  Google Scholar 

  • Platten M, Wick W, Wild-Bode C, Aulwurm S, Dichgans J, Weller M (2000) Transforming growth factors beta(1) (TGF-beta(1)) and TGF-beta(2) promote glioma cell migration via Up-regulation of alpha(V)beta(3) integrin expression. Biochem Biophys Res Commun 268:607–611

    PubMed  CAS  Google Scholar 

  • Platten M, Wick W, Weller M (2001) Malignant glioma biology: role for TGF-beta in growth, motility, angiogenesis, and immune escape. Microsc Res Tech 52:401–410

    PubMed  CAS  Google Scholar 

  • Rao JS (2003) Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer 3:489–501

    PubMed  CAS  Google Scholar 

  • Ribeiro SM, Poczatek M, Schultz-Cherry S, Villain M, Murphy-Ullrich JE (1999) The activation sequence of thrombospondin-1 interacts with the latency-associated peptide to regulate activation of latent transforming growth factor-beta. J Biol Chem 274:13586–13593

    PubMed  CAS  Google Scholar 

  • Rich JN (2003) The role of transforming growth factor-beta in primary brain tumors. Front Biosci 8:e245–e260

    PubMed  CAS  Google Scholar 

  • Rich JN, Zhang M, Datto MB, Bigner DD, Wang XF (1999) Transforming growth factor-beta-mediated p15(INK4B) induction and growth inhibition in astrocytes is SMAD3-dependent and a pathway prominently altered in human glioma cell lines. J Biol Chem 274:35053–35058

    PubMed  CAS  Google Scholar 

  • Rider CC, Mulloy B (2010) Bone morphogenetic protein and growth differentiation factor cytokine families and their protein antagonists. Biochem J 429:1–12

    PubMed  CAS  Google Scholar 

  • Sanchez-Elsner T, Botella LM, Velasco B, Corbi A, Attisano L, Bernabeu C (2001) Synergistic cooperation between hypoxia and transforming growth factor-beta pathways on human vascular endothelial growth factor gene expression. J Biol Chem 276:38527–38535

    PubMed  CAS  Google Scholar 

  • Sawyer JS, Beight DW, Britt KS, Anderson BD, Campbell RM, Goodson T Jr, Herron DK, Li HY, McMillen WT, Mort N, Parsons S, Smith EC, Wagner JR, Yan L, Zhang F, Yingling JM (2004) Synthesis and activity of new aryl- and heteroaryl-substituted 5,6-dihydro-4H-pyrrolo[1,2-b]pyrazole inhibitors of the transforming growth factor-beta type I receptor kinase domain. Bioorg Med Chem Lett 14:3581–3584

    PubMed  CAS  Google Scholar 

  • Schlingensiepen KH, Bischof A, Egger T, Hafner M, Herrmuth H, Jachimczak P, Kielmanowicz M, Niewel M, Zavadova E, Stauder G (2004) The TGF-beta1 antisense oligonucleotide AP 11014 for the treatment of non-small cell lung, colorectal and prostate cancer: preclinical studies. J Clin Oncol, 2004 ASCO annual meeting proceedings, 22, 14S:3132

    Google Scholar 

  • Schlingensiepen KH, Schlingensiepen R, Steinbrecher A, Hau P, Bogdahn U, Fischer-Blass B, Jachimczak P (2006) Targeted tumor therapy with the TGF-beta 2 antisense compound AP 12009. Cytokine Growth Factor Rev 17:129–139

    PubMed  CAS  Google Scholar 

  • Schlingensiepen KH, Fischer-Blass B, Schmaus S, Ludwig S (2008) Antisense therapeutics for tumor treatment: the TGF-beta2 inhibitor AP 12009 in clinical development against malignant tumors. Cancer Res 177:137–150

    CAS  Google Scholar 

  • Schmierer B, Hill CS (2007) TGFbeta-SMAD signal transduction: molecular specificity and functional flexibility. Nat Rev Mol Cell Biol 8:970–982

    PubMed  CAS  Google Scholar 

  • Seoane J (2008) The TGFBeta pathway as a therapeutic target in cancer. Clin Transl Oncol 10:14–19

    PubMed  CAS  Google Scholar 

  • Seoane J, Pouponnot C, Staller P, Schader M, Eilers M, Massague J (2001) TGFbeta influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b. Nat Cell Biol 3:400–408

    PubMed  CAS  Google Scholar 

  • Seoane J, Le HV, Shen L, Anderson SA, Massague J (2004) Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 117:211–223

    PubMed  CAS  Google Scholar 

  • Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113:685–700

    PubMed  CAS  Google Scholar 

  • Siegel PM, Shu W, Cardiff RD, Muller WJ, Massague J (2003a) Transforming growth factor beta signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proc Natl Acad Sci U S A 100:8430–8435

    PubMed  CAS  Google Scholar 

  • Siegel PM, Shu W, Massague J (2003b) Mad upregulation and Id2 repression accompany transforming growth factor (TGF)-beta-mediated epithelial cell growth suppression. J Biol Chem 278:35444–35450

    PubMed  CAS  Google Scholar 

  • Smyth MJ, Strobl SL, Young HA, Ortaldo JR, Ochoa AC (1991) Regulation of lymphokine-activated killer activity and pore-forming protein gene expression in human peripheral blood CD8+ T lymphocytes. Inhibition by transforming growth factor-beta. J Immunol 146:3289–3297

    PubMed  CAS  Google Scholar 

  • Sorrentino A, Thakur N, Grimsby S, Marcusson A, von Bulow V, Schuster N, Zhang S, Heldin CH, Landstrom M (2008) The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat Cell Biol 10:1199–1207

    PubMed  CAS  Google Scholar 

  • Tatti O, Vehvilainen P, Lehti K, Keski-Oja J (2008) MT1-MMP releases latent TGF-beta1 from endothelial cell extracellular matrix via proteolytic processing of LTBP-1. Exp Cell Res 314:2501–2514

    PubMed  CAS  Google Scholar 

  • Tchaicha JH, Reyes SB, Shin J, Hossain MG, Lang FF, McCarty JH (2011) Glioblastoma angiogenesis and tumor cell invasiveness are differentially regulated by {beta}8 integrin. Cancer Res 71:6371–6381

    PubMed  CAS  Google Scholar 

  • ten Dijke P, Hill CS (2004) New insights into TGF-beta-Smad signalling. Trends Biochem Sci 29:265–273

    PubMed  Google Scholar 

  • Tiemann K, Rossi JJ (2009) RNAi-based therapeutics-current status, challenges and prospects. EMBO Mol Med 1:142–151

    PubMed  CAS  Google Scholar 

  • Tran TT, Uhl M, Ma JY, Janssen L, Sriram V, Aulwurm S, Kerr I, Lam A, Webb HK, Kapoun AM, Kizer DE, McEnroe G, Hart B, Axon J, Murphy A, Chakravarty S, Dugar S, Protter AA, Higgins LS, Wick W, Weller M, Wong DH (2007) Inhibiting TGF-beta signaling restores immune surveillance in the SMA-560 glioma model. Neuro Oncol 9:259–270

    PubMed  CAS  Google Scholar 

  • Tsukazaki T, Chiang TA, Davison AF, Attisano L, Wrana JL (1998) SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor. Cell 95:779–791

    PubMed  CAS  Google Scholar 

  • Ueda R, Fujita M, Zhu X, Sasaki K, Kastenhuber ER, Kohanbash G, McDonald HA, Harper J, Lonning S, Okada H (2009) Systemic inhibition of transforming growth factor-beta in glioma-bearing mice improves the therapeutic efficacy of glioma-associated antigen peptide vaccines. Clin Cancer Res 15:6551–6559

    PubMed  CAS  Google Scholar 

  • Uhl M, Aulwurm S, Wischhusen J, Weiler M, Ma JY, Almirez R, Mangadu R, Liu YW, Platten M, Herrlinger U, Murphy A, Wong DH, Wick W, Higgins LS, Weller M (2004) SD-208, a novel transforming growth factor beta receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo. Cancer Res 64:7954–7961

    PubMed  CAS  Google Scholar 

  • Van Obberghen-Schilling E, Roche NS, Flanders KC, Sporn MB, Roberts AB (1988) Transforming growth factor beta 1 positively regulates its own expression in normal and transformed cells. J Biol Chem 263:7741–7746

    PubMed  Google Scholar 

  • Verrecchia F, Mauviel A (2002) Transforming growth factor-beta signaling through the Smad pathway: role in extracellular matrix gene expression and regulation. J Invest Dermatol 118:211–215

    PubMed  CAS  Google Scholar 

  • Vogt J, Traynor R, Sapkota GP (2011) The specificities of small molecule inhibitors of the TGFss and BMP pathways. Cell Signal 23:1831–1842

    PubMed  CAS  Google Scholar 

  • Wang L, Zhu Y, Sharma K (1998) Transforming growth factor-beta1 stimulates protein kinase A in mesangial cells. J Biol Chem 273:8522–8527

    PubMed  CAS  Google Scholar 

  • Wesolowska A, Kwiatkowska A, Slomnicki L, Dembinski M, Master A, Sliwa M, Franciszkiewicz K, Chouaib S, Kaminska B (2008) Microglia-derived TGF-beta as an important regulator of glioblastoma invasion–an inhibition of TGF-beta-dependent effects by shRNA against human TGF-beta type II receptor. Oncogene 27:918–930

    PubMed  CAS  Google Scholar 

  • Wick W, Platten M, Weller M (2001) Glioma cell invasion: regulation of metalloproteinase activity by TGF-beta. J Neurooncol 53:177–185

    PubMed  CAS  Google Scholar 

  • Wilkes MC, Murphy SJ, Garamszegi N, Leof EB (2003) Cell-type-specific activation of PAK2 by transforming growth factor beta independent of Smad2 and Smad3. Mol Cell Biol 23:8878–8889

    PubMed  CAS  Google Scholar 

  • Won J, Kim H, Park EJ, Hong Y, Kim SJ, Yun Y (1999) Tumorigenicity of mouse thymoma is suppressed by soluble type II transforming growth factor beta receptor therapy. Cancer Res 59:1273–1277

    PubMed  CAS  Google Scholar 

  • Wong C, Rougier-Chapman EM, Frederick JP, Datto MB, Liberati NT, Li JM, Wang XF (1999) Smad3-Smad4 and AP-1 complexes synergize in transcriptional activation of the c-Jun promoter by transforming growth factor beta. Mol Cell Biol 19:1821–1830

    PubMed  CAS  Google Scholar 

  • Yamaguchi K, Shirakabe K, Shibuya H, Irie K, Oishi I, Ueno N, Taniguchi T, Nishida E, Matsumoto K (1995) Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction. Science 270:2008–2011

    PubMed  CAS  Google Scholar 

  • Zagzag D, Salnikow K, Chiriboga L, Yee H, Lan L, Ali MA, Garcia R, Demaria S, Newcomb EW (2005) Downregulation of major histocompatibility complex antigens in invading glioma cells: stealth invasion of the brain. Lab Invest 85:328–341

    PubMed  CAS  Google Scholar 

  • Zhang YE (2009) Non-Smad pathways in TGF-beta signaling. Cell Res 19:128–139

    PubMed  CAS  Google Scholar 

  • Zhang L, Sato E, Amagasaki K, Nakao A, Naganuma H (2006) Participation of an abnormality in the transforming growth factor-beta signaling pathway in resistance of malignant glioma cells to growth inhibition induced by that factor. J Neurosurg 105:119–128

    PubMed  CAS  Google Scholar 

  • Zhang D, Jing Z, Qiu B, Wu A, Wang Y (2011a) Temozolomide decreases invasion of glioma stem cells by down-regulating TGF-beta2. Oncol Rep 26:901–908

    PubMed  CAS  Google Scholar 

  • Zhang M, Herion TW, Timke C, Han N, Hauser K, Weber KJ, Peschke P, Wirkner U, Lahn M, Huber PE (2011b) Trimodal glioblastoma treatment consisting of concurrent radiotherapy, temozolomide, and the novel TGF-beta receptor I kinase inhibitor LY2109761. Neoplasia 13:537–549

    PubMed  CAS  Google Scholar 

  • Zhang X, Wu A, Fan Y, Wang Y (2011c) Increased transforming growth factor-beta2 in epidermal growth factor receptor variant III-positive glioblastoma. J Clin Neurosci 18:821–826

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work in the Author’s Laboratory is supported by a grant NN301 786240 from the Ministry of Science and Higher Education. M.K. is a recipient of a scholarship from Postgraduate School of Molecular Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bozena Kaminska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kaminska, B., Kocyk, M., Kijewska, M. (2013). TGF Beta Signaling and Its Role in Glioma Pathogenesis. In: Barańska, J. (eds) Glioma Signaling. Advances in Experimental Medicine and Biology, vol 986. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4719-7_9

Download citation

Publish with us

Policies and ethics