Skip to main content

Research and Development Priorities Towards Recarbonization of the Biosphere

  • Chapter
  • First Online:
Recarbonization of the Biosphere

Abstract

Despite the importance of the terrestrial biosphere for the global carbon (C) cycle and its potential to reduce the rate of enrichment of atmospheric carbon dioxide (CO2) by anthropogenic emissions, there is incomplete and insufficient scientific knowledge to identify sources and sink of C, risks of biomes to climate change, and site-specific practices to recarbonizing the biosphere. Two options of mitigating climate change through management of biomes are (i) to enhance, manage and sustain biomass production and prolong the residence time of biomass C, and (ii) to improve the C balance within the biosphere. In addition, there is a lack of modus operandi on developing science-policy, nexus to identify and implement appropriate policy interventions to promote adoption of land use and management practices leading to recarbonization of the biosphere. In addition to reducing the magnitude of anthropogenic sources (e.g., deforestation, peatland cultivation, drainage of wetlands, excessive tillage), it is also important to identify and enhance the capacity of land-based C sinks. Further, C sequestration in the terrestrial biosphere must compliment and not threaten or compete with other functions such as food production, water resources, nutrients and biodiversity. Priority biomes for recarbonization are peatlands, wetlands, degraded/desertified lands, and agroecosystems. Biomes with risks of positive feedback to climate change are permafrost and peatlands, and the soil organic carbon (SOC) pool. A global platform/instrument is needed to enhance soil-policy nexus, promote synergism and complimentary among organizations, addressing this issue of global significance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

C:

carbon

CCS:

Carbon Capture and Storage

CO2 :

carbon dioxide

DOC:

dissolved organic carbon

GCC:

global carbon cycle

GHGs:

greenhouse gases

LULCC:

land use/land cover change

CH4 :

methane

NPP:

net primary production

POC:

particulate organic carbon

SOC:

soil organic carbon

References

  • Ainsworth EA, Beier C, Calfapietra C et al (2008) Next generation of elevated [CO2] experiments with crops: a critical investment for feeding the future world. Plant Cell Environ 31:1317–1324

    Article  PubMed  CAS  Google Scholar 

  • Arneth A, Harrision SP, Zaehle S et al (2010) Terrestrial biogeochemical feedbacks in the climate system. Nat Geosci 3:525–532

    Article  CAS  Google Scholar 

  • Aufdenkampe AK, Mayorga E, Raymand PA et al (2011) Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front Ecol Enivorn 9(1):53–60. doi:10.1890/100014

    Article  Google Scholar 

  • Bianchi TS (2011) The role of terrestrially derived organic carbon in the coastal ocean: a changing paradigm and the priming effect. Proc Natl Acad Sci USA 108:19473–19481

    Article  PubMed  CAS  Google Scholar 

  • Borges AV (2005) Do we have enough pieces of the jigsaw to integrate CO(2) fluxes in the coastal ocean? Estuaries 28(1):3–27. doi:10.1007/BF02732750

    Article  CAS  Google Scholar 

  • Butman D, Raymond PA (2011) Significant efflux of carbon dioxide from streams and rivers in the United States. Nat Geosci 4:839–842

    Article  CAS  Google Scholar 

  • Canadell JG, Pataki D, Gifford R et al (2007) Saturation of the terrestrial C sinks, Chapter 6. In: Canadell JG, Pataki D, Pitelka L (eds) Terrestrial ecosystems in a changing world, The IGBP series. Springer, Berlin

    Chapter  Google Scholar 

  • Cole JJ, Prairie YT, Caraco NF et al (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10(1):171–184. doi:10.1007/s10021-006-9013-8

    Article  CAS  Google Scholar 

  • Crutzen PJ (2002) The Anthropocene. J Phys IV France 12: Pr 10–1 to Pr 10–5. doi:10.1051/jp4:20020447

    Google Scholar 

  • Crutzen PI, Stoermer EF (2000) The “Anthropocene”. IGBP Newsl 41:12

    Google Scholar 

  • Dean WE (1999) Magnitude and significance of carbon burial in lakes, reservoirs and northern peatlands. USGA Fact Sheet FS-058-99, Washington, DC

    Google Scholar 

  • Eglin T, Ciais P, Pias SL et al (2010) Historical and future perspectives of global soil carbon response to climate and land-use changes. Tellus 62B:700–718

    CAS  Google Scholar 

  • Flannigan MD, Krawchuk MA, de Groost WJ et al (2009) Implications of changing climate for global wild fire. Int J Wildland Fire 18:483–507

    Article  Google Scholar 

  • Foley JA, Costa MC, Deline C et al (2003) Green surprise? How terrestrial ecosystems could affect earth’s climate. Front Ecol Environ 1:38–44

    Google Scholar 

  • Friedlingstein P, Houghton RA, Marland G et al (2010) Update on CO2 emissions. Nat Geosci 3:811–812

    Article  CAS  Google Scholar 

  • Gedalof Z, Berg AA (2010) Tree ring evidence for limited direct CO2 fertilization of forests over the 20th century. Glob Biogeochem Cycle 24, GB3027. doi:10.1029/2009GB003699

    Google Scholar 

  • Giglio L, Randerson JT, van der Werf GR et al (2010) Assessing variability and long-term trends in burned area by merging multiple satellite fire products. Biogeosciences 7:1171–1186

    Article  Google Scholar 

  • Goldewijk KK, Neusen A, Van Drecht G et al (2011) The HYDE 3.1 spatially explicit database of human0induced global land-use change over the past 12,000 years. Glob Ecol Biogeogr 20:73–86

    Article  Google Scholar 

  • Hansen J, Sato M, Kharecha P et al (2008) Target atmospheric CO2: where should humanity aim? Open Atmos Sci 2:217–231

    Article  CAS  Google Scholar 

  • Hickler T, Smith B, Prentice IC et al (2008) CO2 fertilization in temperate FACE experiments not representative of boreal and tropical forests. Glob Change Biol 14:1531–1542

    Article  Google Scholar 

  • House JI, Prentice IC, Ramakutty N et al (2003) Reconciling apparent inconsistencies in estimates of terrestrial CO2 sources and sinks. Tellus 55B:345–363

    Article  Google Scholar 

  • Iyngarasan M, Ramanathan V (2011) Atmospheric brown clouds: and integrated approach for understanding and mitigating climate change and other environmental problems resulting from atmospheric pollution. ICAC News 45:20–23

    Google Scholar 

  • Jobbágy E, Jackson R (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436

    Article  Google Scholar 

  • Junk WJ, Bayley PB, Sparks RE (1989) The flood-pulse concept in river-floodplain system. In: Dodge DP (ed) Proceedings of the international large river symposium. Special publication. Can J Fisheries and Aquatic Science 106:110–127

    Google Scholar 

  • Karlen D, Lal R, Follett RF et al (2009) Crop residues: the rest of the story. Environ Sci Technol 43:8011–8015

    Article  PubMed  CAS  Google Scholar 

  • Lal R (2003) Soil erosion and the global C budget. Environ Int 29:437–450

    Article  PubMed  CAS  Google Scholar 

  • Lal R (2010) Managing soils and ecosystems for mitigating anthropogenic carbon emissions and advancing global food security. Bioscience 60:708–721

    Article  Google Scholar 

  • Le Quéré C, Raupach MR, Canadell JG et al (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci 2:831–836

    Article  Google Scholar 

  • Lee TD, Barrott SH, Reich PB (2011) Photosynthetic responses of 13 grassland species across 11 years of free-air CO2 enrichment is modest, consistent and independent of N supply. Glob Change Biol 17:2893–2904

    Article  Google Scholar 

  • Lenton TM (2010) The potential of land-based biological CO2 removal to lower future atmospheric CO2 concentration. Carbon Manage 1:145–160

    Article  CAS  Google Scholar 

  • Levine JS, Bobbe T, Ray N et al (1999) Wildland fires and environment. UNEP, Nairobi, Kenya. p 46 (ISBN: 92-807-1742-1)

    Google Scholar 

  • Lobell DB, Field CB (2008) Estimation of the CO2 fertilization effect using growth rate anomalies of CO2 and crop yields since 1961. Glob Change Biol 14:39–45

    Article  Google Scholar 

  • Macintosh A (2010) Keeping warming within the 2°C limits after Copenhagen. Energy Policy 38:2964–2975

    Article  Google Scholar 

  • McLaughlin CJ, Smith CA, Buddemeier RW et al (2003) Rivers, runoff, and reefs. Glob Planet Change 39(1–2):191–199. doi:10.1016/SO921-8181(03)00024-9

    Article  Google Scholar 

  • Midgley GF, Bknd WJ, Kapos V (2010) Terrestrial carbon stocks and biodiversity: key knowledge gaps and some policy implications. Curr Opin Environ Sustain 2:264–270

    Article  Google Scholar 

  • Norby RJ, Zak DR (2011) Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annu Rev Ecol Evol Syst 42:181–203

    Article  Google Scholar 

  • Obersteiner M, Böttcher H, Yamagata Y (2010) Terrestrial ecosystem management for climate change mitigation. Curr Opin Environ Sustain 2:271–276

    Article  Google Scholar 

  • Oelkers EH, Cole DR (2008) Carbon dioxide sequestration: a solution to a global problem. Elements 4:305–310

    Article  CAS  Google Scholar 

  • Pacala S, Socolow R (2004) Stabilization wedges: solving the climate problem for the next 50 years with the current technologies. Science 305:968–972

    Article  PubMed  CAS  Google Scholar 

  • Pataki DE, Carreiro MM, Cherrier J, Grulke NE, Jennings V, Pincete S, Pouyat RV, Whitlow TH, Zipperer WC (2011) Coupling biogeochemical cycles in urban environments: ecosystem services, green solutions, and misconceptions. Front Ecol Enivorn 9(1):27–36

    Google Scholar 

  • Peters GP, Marland G, Le Quéré C et al (2011) Rapid growth in CO2 emissions after the 2008–2009 global financial crisis. Nat Clim Change. doi:10.1038/nclimate1332

  • Pielke RA, Marland G, Betts RA et al (2002) The influence of land-use change and landscape dynamics on the climate system: relevance to climate-change policy beyond the radiative effect of greenhouse gases. Philos Trans R Soc Lond A 360:1705–1719

    Article  CAS  Google Scholar 

  • Pielke RA Sr, Potman A, Niyosi D et al (2011) Landuse/land cover changes and climate: modeling analysis and observational evidence. WIRE Clim Change 2:828–850

    Article  Google Scholar 

  • Rayner PJ (2010) The current state of carbon-cycle data assimilation. Curr Opin Environ Sustain 2:2890296

    Article  Google Scholar 

  • Robbins M (2011) Crops and carbon: paying farmers to combat climate change. Earthscan, New York

    Google Scholar 

  • Ruddiman WF (2003) The anthropogenic greenhouse era began thousands of years ago. Clim Change 61:261–293

    Article  CAS  Google Scholar 

  • Ruddiman WF (2006) On the Holocene CO2 rise: anthropogenic or natural? EOS Trans Am Geophys Union 87:352–353

    Article  Google Scholar 

  • Scholze M, Knorr W, Arnell NW (2006) A climate-change risks analysis for world ecosystems. Proc Natl Acad Sci USA 35:13116–13120

    Article  Google Scholar 

  • Schuur EAG, Bockheim J, Canadell JG et al (2008) Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. Bioscience 58:701–714. doi:10.1641/B580807

    Article  Google Scholar 

  • Seiler W, Crutzen PJ (1980) Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Clim Change 2:207–247

    Article  CAS  Google Scholar 

  • Serrano-Ortiz P, Roland M, Sanchez-Moral S et al (2010) Hidden, abiotic CO2 flows and gaseous reservoirs in the terrestrial carbon cycle: review and perspectives. Agric For Meteorol 150:321–329

    Article  Google Scholar 

  • Smith SV, Sleezer RO, Renwick WH et al (2005) Fates of eroded soil organic carbon. Ecol Appl 15:1929–1940

    Article  Google Scholar 

  • Stallard RF (1998) Terrestrial sedimentation and the carbon cycle: coupling weathering and erosion to carbon burial. Glob Biogeochem Cycle 12:231–257

    Article  CAS  Google Scholar 

  • Steinfeld H, Gerber P, Wassenaan T et al (2006) Livestock’s long show. FAO, Rome

    Google Scholar 

  • Tans PD, Fund IY, Takahasi T (1990) Observational constraints on the global atmospheric CO2 budget. Science 247:1431–1438

    Article  PubMed  CAS  Google Scholar 

  • Tarnocai C, Canadell JG, Schuur EAG et al (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Glob Biogeochem Cycle 23, GB2023. doi:10.1029/2008GB003327

    Google Scholar 

  • van der Werf GR, Randerson JT, Giglio L et al (2010) Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos Chem Phys 10:11707–11735

    Article  Google Scholar 

  • Van Oost K, Wuine TA, Glovers G et al (2007) The impact of agricultural soil erosion in the global C cycle. Science 318:626–629

    Article  PubMed  Google Scholar 

  • Wang Z, Govers G, Steegen A et al (2010) Catchment-scale carbon redistribution and delivery by water erosion in an intensively cultivated area. Geomorphology 124:65–74

    Article  Google Scholar 

  • Williams M (2000) Dark ages and dark areas: global deforestation in the deep past. J Hist Geogr 26:28–46

    Article  Google Scholar 

  • Woodwell GM, Mackenzie FT, Houghton RA et al (1998) Basic feedbacks in the warming of the earth. Clim Change 40:495–518

    Article  CAS  Google Scholar 

  • Wutzler T, Reichstein M (2007) Soils apart from equilibrium – consequences for soil carbon balance modelling. Biogeosciences 4:125–136

    Article  CAS  Google Scholar 

  • Yi C, Ricciuto D, Li R et al (2010) Climate control of terrestrial carbon exchange across biomes and continents. Environ Res Lett 5(034007)

    Google Scholar 

  • Zhang T, Barry RG, Knowles K et al (1999) Statistics and characteristics of permafrost and ground-ice distribution in the northern hemisphere. Polar Geogr 23:132–154

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rattan Lal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lal, R., Lorenz, K., Hüttl, R.F., Schneider, B.U., von Braun, J. (2012). Research and Development Priorities Towards Recarbonization of the Biosphere. In: Lal, R., Lorenz, K., Hüttl, R., Schneider, B., von Braun, J. (eds) Recarbonization of the Biosphere. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4159-1_25

Download citation

Publish with us

Policies and ethics