Skip to main content

Breakdown of Mass-Action Laws in Biochemical Computation

  • Chapter
  • First Online:
Computational Systems Neurobiology

Abstract

The objective of this chapter is to describe conditions where the classical laws of mass action and diffusion no longer apply to biological systems, particularly neurons and other types of cells. This type of phenomena typically takes place at the nano- to micro-scale levels. An increasing number of studies show that the classical diffusion process dominated by Brownian motion cannot be directly applied to cells. Instead, a process called anomalous diffusion seems to be fundamental to the propagation of biochemical signals. Anomalous diffusion implies an increase in the correlation of movement among the diffusing molecules, which is the basis of the deviation from classical diffusion phenomena. Such a process has important consequences not only on the diffusion of molecules inside cells but also on their reaction rates. We first describe structural causes of anomalous diffusion and stochastic simulation algorithms that can be used to computationally simulate its effects. We end the chapter by describing another cause of anomalous diffusion, molecular crowding, and speculations on the significance of these phenomena for neural function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander AJ, Zare RN (1998) Anatomy of elementary chemical reactions. J Chem Educ 75:1105–1118

    Article  CAS  Google Scholar 

  • Ander M, Beltrao P, Di Ventura B, Ferkinghoff-Borg J, Foglierini M, Kaplan A, Lemerle C, Tomas-Oliveira I, Serrano L (2004) SmartCell, a framework to simulate cellular processes that combines stochastic approximation with diffusion and localisation: analysis of simple networks. Syst Biol 1:129–138

    Article  CAS  Google Scholar 

  • Banks DS, Fradin C (2005) Anomalous diffusion of proteins due to molecular crowding. Biophys J 89:2960–2971

    Article  PubMed  CAS  Google Scholar 

  • ben-Avraham D, Havlin S (2000) Diffusion and reactions in fractals and disordered systems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bhalla US (2004) Signaling in small subcellular volumes. I. Stochastic and diffusion effects on individual pathways. Biophys J 87:733–744

    Article  PubMed  CAS  Google Scholar 

  • Bhalla US, Wils S (2010) Reaction–diffusion modeling. In: De Schutter E (ed) Computational modeling methods for neuroscientists. The MIT Press, Cambridge

    Google Scholar 

  • Campos D, Fedotov S, Mendez V (2008) Anomalous reaction-transport processes: the dynamics beyond the law of mass action. Phys Rev E Stat Nonlin Soft Matter Phys 77(6):061130

    Article  PubMed  Google Scholar 

  • Cao Y, Samuels DC (2009) Discrete stochastic simulation methods for chemically reacting systems. Methods Enzymol 454:115–140

    Article  PubMed  CAS  Google Scholar 

  • Chebotareva NA, Kurganov BI, Livanova NB (2004) Biochemical effects of molecular crowding. Biochemistry (Mosc) 69:1239–1251

    Article  CAS  Google Scholar 

  • Connors KA (1990) Chemical kinetics: the study of reaction rates in solution. VCH Publishers, New York

    Google Scholar 

  • Cornelisse LN, van Elburg RA, Meredith RM, Yuste R, Mansvelder HD (2007) High speed two-photon imaging of calcium dynamics in dendritic spines: consequences for spine calcium kinetics and buffer capacity. PLoS One 2:e1073

    Article  PubMed  Google Scholar 

  • Dagdug L, Berezhkovskii AM, Makhnovskii YA, Zitserman VY (2007) Transient diffusion in a tube with dead ends. J Chem Phys 127(22):224712-1–224712-9

    Article  Google Scholar 

  • Deverall MA, Gindl E, Sinner EK, Besir H, Ruehe J, Saxton MJ, Naumann CA (2005) Membrane lateral mobility obstructed by polymer-tethered lipids studied at the single molecule level. Biophys J 88:1875–1886

    Article  PubMed  CAS  Google Scholar 

  • Dix JA, Verkman AS (2008) Crowding effects on diffusion in solutions and cells. Annu Rev Biophys 37:247–263

    Article  PubMed  CAS  Google Scholar 

  • Ehlers MD, Heine M, Groc L, Lee MC, Choquet D (2007) Diffusional trapping of GluR1 AMPA receptors by input-specific synaptic activity. Neuron 54:447–460

    Article  PubMed  CAS  Google Scholar 

  • Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297:1183–1186

    Article  PubMed  CAS  Google Scholar 

  • Fedotov S, Mendez V (2008) Non-Markovian model for transport and reactions of particles in spiny dendrites. Phys Rev Lett 101:218102

    Article  PubMed  Google Scholar 

  • Fiala JC, Spacek J, Harris KM et al (2008) Dendrite structure. In: Stuart G (ed) Dendrites, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Frischknecht R, Heine M, Perrais D, Seidenbecher CI, Choquet D, Gundelfinger ED (2009) Brain extracellular matrix affects AMPA receptor lateral mobility and short-term synaptic plasticity. Nat Neurosci 12:897–904

    Article  PubMed  CAS  Google Scholar 

  • Fukano T, Hama H, Miyawaki A (2004) Similar diffusibility of membrane proteins across the axon-soma and dendrite-soma boundaries revealed by a novel FRAP technique. J Struct Biol 147:12–18

    Article  PubMed  CAS  Google Scholar 

  • Gillespie DT (1976) General method for numerically simulating stochastic time evolution of coupled chemical-reactions. J Comput Phys 22:403–434

    Article  CAS  Google Scholar 

  • Gillespie DT (1977) Exact stochastic simulation of coupled chemical-reactions. Abstr Pap Am Chem Soc 173:128–128

    Google Scholar 

  • Gillespie DT (1992) A rigorous derivation of the chemical master equation. Phys A 188: 404–425

    Article  CAS  Google Scholar 

  • Gillespie DT (2007) Stochastic simulation of chemical kinetics. Annu Rev Phys Chem 58: 35–55

    Article  PubMed  CAS  Google Scholar 

  • Guigas G, Weiss M (2008) Sampling the cell with anomalous diffusion – the discovery of slowness. Biophys J 94:90–94

    Article  PubMed  CAS  Google Scholar 

  • Guigas G, Kalla C, Weiss M (2007a) The degree of macromolecular crowding in the cytoplasm and nucleoplasm of mammalian cells is conserved. FEBS Lett 581:5094–5098

    Article  PubMed  CAS  Google Scholar 

  • Guigas G, Kalla C, Weiss M (2007b) Probing the nanoscale viscoelasticity of intracellular fluids in living cells. Biophys J 93:316–323

    Article  PubMed  CAS  Google Scholar 

  • Harris KM, Jensen FE, Tsao B (1992) Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. J Neurosci 12:2685–2705

    PubMed  CAS  Google Scholar 

  • Hattne J, Fange D, Elf J (2005) Stochastic reaction–diffusion simulation with MesoRD. Bioinformatics 21:2923–2924

    Article  PubMed  CAS  Google Scholar 

  • Holcman D, Schuss Z, Korkotian E (2004) Calcium dynamics in dendritic spines and spine motility. Biophys J 87:81–91

    Article  PubMed  CAS  Google Scholar 

  • Hrabetova S, Hrabe J, Nicholson C (2003) Dead-space microdomains hinder extracellular diffusion in rat neocortex during ischemia. J Neurosci 23:8351–8359

    PubMed  CAS  Google Scholar 

  • Ito M (2001) Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 81:1143–1195

    PubMed  CAS  Google Scholar 

  • Kholodenko BN (2003) Four-dimensional organization of protein kinase signaling cascades: the roles of diffusion, endocytosis and molecular motors. J Exp Biol 206:2073–2082

    Article  PubMed  CAS  Google Scholar 

  • Kuthan H (2001) Self-organisation and orderly processes by individual protein complexes in the bacterial cell. Prog Biophys Mol Biol 75:1–17

    Article  PubMed  CAS  Google Scholar 

  • Lacks DJ (2008) Tortuosity and anomalous diffusion in the neuromuscular junction. Phys Rev E Stat Nonlin Soft Matter Phys 77:041912

    Article  PubMed  Google Scholar 

  • Lendvai B, Stern EA, Chen B, Svoboda K (2000) Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature 404:876–881

    Article  PubMed  CAS  Google Scholar 

  • Lizana L, Bauer B, Orwar O (2008) Controlling the rates of biochemical reactions and signaling networks by shape and volume changes. Proc Natl Acad Sci U S A 105:4099–4104

    Article  PubMed  CAS  Google Scholar 

  • Maletic-Savatic M, Malinow R, Svoboda K (1999) Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 283:1923–1927

    Article  PubMed  CAS  Google Scholar 

  • Mazel T, Raymond R, Raymond-Stintz M, Jett S, Wilson BS (2009) Stochastic modeling of calcium in 3D geometry. Biophys J 96:1691–1706

    Article  PubMed  CAS  Google Scholar 

  • McQuarrie DA (1967) Stochastic approach to chemical kinetics. J Appl Probab 4:413–478

    Article  Google Scholar 

  • Minton AP (2006) How can biochemical reactions within cells differ from those in test tubes? J Cell Sci 119:2863–2869

    Article  PubMed  CAS  Google Scholar 

  • Naraghi M, Neher E (1997) Linearized buffered Ca2+ diffusion in microdomains and its implications for calculation of [Ca2+] at the mouth of a calcium channel. J neurosci 17: 6961–6973

    PubMed  CAS  Google Scholar 

  • Nicolau DV, Burrage K (2008) Stochastic simulation of chemical reactions in spatially complex media. Comput Math Appl 55:1007–1018

    Article  Google Scholar 

  • Petrini EM, Lu J, Cognet L, Lounis B, Ehlers MD, Choquet D (2009) Endocytic trafficking and recycling maintain a pool of mobile surface AMPA receptors required for synaptic potentiation. Neuron 63:92–105

    Article  PubMed  CAS  Google Scholar 

  • Record MT Jr, Courtenay ES, Cayley S, Guttman HJ (1998) Biophysical compensation mechanisms buffering E. coli protein-nucleic acid interactions against changing environments. Trends Biochem Sci 23:190–194

    Article  PubMed  CAS  Google Scholar 

  • Renner ML, Cognet L, Lounis B, Triller A, Choquet D (2009) The excitatory postsynaptic density is a size exclusion diffusion environment. Neuropharmacology 56:30–36

    Article  PubMed  CAS  Google Scholar 

  • Ritchie K, Shan XY, Kondo J, Iwasawa K, Fujiwara T, Kusumi A (2005) Detection of non-Brownian diffusion in the cell membrane in single molecule tracking. Biophys J 88:2266–2277

    Article  PubMed  CAS  Google Scholar 

  • Rocher AB, Kinson MS, Luebke JI (2008) Significant structural but not physiological changes in cortical neurons of 12-month-old Tg2576 mice. Neurobiol Dis 32:309–318

    Article  PubMed  CAS  Google Scholar 

  • Saffman PG, Delbruck M (1975) Brownian motion in biological membranes. Proc Natl Acad Sci U S A 72:3111–3113

    Article  PubMed  CAS  Google Scholar 

  • Santamaria F, Wils S, De Schutter E, Augustine GJ (2006) Anomalous diffusion in Purkinje cell dendrites caused by spines. Neuron 52:635–648

    Article  PubMed  CAS  Google Scholar 

  • Santamaria F, Gonzalez J, Augustine GJ, Raghavachari S (2010) Quantifying the effects of elastic collisions and non-covalent binding on glutamate receptor trafficking in the post-synaptic density. PLoS Comput Biol 6:e1000780

    Article  PubMed  Google Scholar 

  • Santamaria F, Wils S, De Schutter E, Augustine GJ (2011) The diffusional properties of dendrites depend on the density of dendritic spines. Eur J Neurosci 34:561–568.

    Article  PubMed  Google Scholar 

  • Saxton MJ (1994) Anomalous diffusion due to obstacles: a Monte Carlo study. Biophys J 66: 394–401

    Article  PubMed  CAS  Google Scholar 

  • Saxton MJ (2007) A biological interpretation of transient anomalous subdiffusion. I. Qualitative model. Biophys J 92:1178–1191

    Article  PubMed  CAS  Google Scholar 

  • Schmidt H, Stiefel KM, Racay P, Schwaller B, Eilers J (2003) Mutational analysis of dendritic Ca2+ kinetics in rodent Purkinje cells: role of parvalbumin and calbindin D28k. J Physiol 551(1):13–32

    Article  PubMed  CAS  Google Scholar 

  • Schmidt H, Arendt O, Brown EB, Schwaller B, Eilers J (2007a) Parvalbumin is freely mobile in axons, somata and nuclei of cerebellar Purkinje neurones. J Neurochem 100:727–735

    Article  PubMed  CAS  Google Scholar 

  • Schmidt H, Kunerth S, Wilms C, Strotmann R, Eilers J (2007b) Spino-dendritic cross-talk in rodent Purkinje neurons mediated by endogenous Ca2+ −binding proteins. J Physiol 581:619–629

    Article  PubMed  Google Scholar 

  • Schnell S, Turner TE (2004) Reaction kinetics in intracellular environments with macromolecular crowding: simulations and rate laws. Prog Biophys Mol Biol 85:235–260

    Article  PubMed  CAS  Google Scholar 

  • Sen PN, Schwartz LM, Mitra PP, Halperin BI (1994) Surface relaxation and the long-time diffusion coefficient in porous media: periodic geometries. Phys Rev B: Condens Matter 49:215–225

    Article  Google Scholar 

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    Article  PubMed  CAS  Google Scholar 

  • Tang Q, Edidin M (2003) Lowering the barriers to random walks on the cell surface. Biophys J 84:400–407

    Article  PubMed  CAS  Google Scholar 

  • Valiullin R, Skirda V (2001) Time dependent self-diffusion coefficient of molecules in porous media. J Chem Phys 114:452–458

    Article  CAS  Google Scholar 

  • Wagner J, Keizer J (1994) Effects of rapid buffers on Ca2+ diffusion and Ca2+ oscillations. Biophys J 67:447–456

    Article  PubMed  CAS  Google Scholar 

  • Wawrezinieck L, Rigneault H, Marguet D, Lenne PF (2005) Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization. Biophys J 89:4029–4042

    Article  PubMed  CAS  Google Scholar 

  • Weiss M, Elsner M, Kartberg F, Nilsson T (2004) Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells. Biophys J 87:3518–3524

    Article  PubMed  CAS  Google Scholar 

  • Wils S, De Schutter E (2009) STEPS: modeling and simulating complex reaction–diffusion systems with Python. Front Neuroinformatics 3:15

    Google Scholar 

  • Winckler B, Forscher P, Mellman I (1999) A diffusion barrier maintains distribution of membrane proteins in polarized neurons. Nature 397:698–701

    Article  PubMed  CAS  Google Scholar 

  • Zador A, Koch C (1994) Linearized models of calcium dynamics: formal equivalence to the cable equation. J Neurosci 14:4705–4715

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

FS was supported by NSF-HDR 0923339 and EF-1137897. GA and ADS were supported by OISTPC.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Santamaria, F., Antunes, G., De Schutter, E. (2012). Breakdown of Mass-Action Laws in Biochemical Computation. In: Le Novère, N. (eds) Computational Systems Neurobiology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3858-4_4

Download citation

Publish with us

Policies and ethics