Skip to main content

Physiology, Blooms and Prediction of Planktonic Cyanobacteria

  • Chapter
  • First Online:

Summary

This chapter addresses some of the challenges associated with trying to model population fluctuations, bloom formation and collapse of planktonic cyanobacteria. It is argued that improved modelling and prediction rely on a better understanding of the physiological responses of cyanobacteria to the physical and chemical characteristics of their environment. In addition there is a need to understand better the complex trophic interactions that influence population dynamics. The high variability of cyanobacterial populations represents a major challenge for models attempting to make predictions at the whole lake scale. Many of the physiological attributes described within specific models do not capture the dynamics of cyanobacteria, because of the extensive parameterisations required by the array of descriptive algorithms. The physiological attributes to be modelled include the ability to fix nitrogen, store both nitrogen and phosphorus, capture light across a range of wavelengths with specific accessory pigments, form colonies or filaments and regulate buoyancy through the balance between gas vacuoles and cellular constituents. Recruitment of populations from sediments may also be important in bloom formation, but is not considered in this chapter. Although there is a commonality in models of cyanobacteria and microalgae with their descriptions of photosynthesis, nutrient uptake, movement and grazing, there is a need to differentiate the cyanobacteria based on their key attributes, if their occurrence and succession are to be predicted separately from the microalgae. The challenge is to develop models that incorporate complex physiological processes, responsive to changes at a range of ecosystem scales, but without excessive calibration of the key underlying algorithms. One suggestion is to turn from the single limiting-factor modelling approach that creates a plethora of disjointed algorithms and develop bio-mechanistic representations of integrated cellular function that incorporate dynamic responses to multiple effectors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams DG, Duggan PS (1999) Tansley review No. 107. Heterocyst and akinete differentiation in cyanobacteria. New Phytol 144:3–33

    Article  Google Scholar 

  • Agawin NSR, Rabouille S, Veldhuis MJW, Servatius L, Hol S, van Overzee HMJ, Huisman J (2007) Competition and facilitation between unicellular nitrogen-fixing cyanobacteria and non-nitrogen-fixing phytoplankton species. Limnol Oceanogr 52:2233–2248

    Article  CAS  Google Scholar 

  • Ahn C-Y, Joung S-H, Park C-S, Kim H-S, Yoon B-D, Oh H-M (2008) Comparison of sampling and analytical methods for monitoring of cyanobacteria-dominated surface waters. Hydrobiologia 596:413–421

    Article  Google Scholar 

  • Allen MM (1984) Cyanobacterial cell inclusions. Annu Rev Microbiol 38:1–25

    Article  PubMed  CAS  Google Scholar 

  • Allison EM, Walsby AE (1981) The role of potassium in the control of turgor pressure in a gas-vacuolate blue-green alga. J Exp Bot 32:241–249

    Article  CAS  Google Scholar 

  • Alric J, Lavergne J, Rappaport F (2010) Redox and ATP control of photosynthetic cyclic electron flow in Chlamydomonas reinhardtii (I) aerobic conditions. Biochim Biophys Acta Bioenerg 1797:44–51

    Article  CAS  Google Scholar 

  • Andersen T (1997) Pelagic nutrient cycles. Herbivores as sources and sinks. Springer, Berlin/Heidelberg/New York, 280 pp

    Google Scholar 

  • Arhonditsis GB, Qian SS, Stow CA, Lamon EC, Reckhow KH (2007) Eutrophication risk assessment using Bayesian calibration of process-based models: application to a mesotropic lake. Ecol Model 208:215–229

    Article  Google Scholar 

  • Aurora R, Hihara Y, Singh AK, Pakrasi HB (2007) A network of genes regulated by light in cyanobacteria. OMICS J Integr Biol 11(2):166–185

    Article  CAS  Google Scholar 

  • Azevedo SMFO, Carmichael WW, Jochinsen EM, Rinehart KL, Lau S, Shaw G, Eaglesham GK (2002) Human intoxication by microcystins during renal dialysis treatment in Caruaru – Brazil. Toxicology 181–182:441–446

    Article  PubMed  Google Scholar 

  • Bailey S, Grossman A (2008) Photoprotection in cyanobacteria: regulation of light harvesting. Photochem Photobiol 84(6):1410–1420

    Article  PubMed  CAS  Google Scholar 

  • Baird ME, Emsley SM (1999) Towards a mechanistic model of plankton population dynamics. J Plankton Res 21:85–126

    Article  Google Scholar 

  • Baklouti M, Diaz F, Pinazo C, Faure V, Quéguiner B (2006) Investigation of mechanistic formulations depicting phytoplankton dynamics for models of marine pelagic ecosystems and description of a new model. Prog Oceanogr 71(1):1–33

    Article  Google Scholar 

  • Baumert HZ, Petzoldt T (2008) The role of temperature, cellular quota and nutrient concentrations for photosynthesis, growth and light-dark acclimation in phytoplankton. Limnologica 38:313–326

    Article  CAS  Google Scholar 

  • Beardall J, Burger-Wiersma T, Rijkeboer M, Sukenik A, Lemoalle J, Dubinsky Z, Fontvielle D (1994) Studies on enhanced post-illumination respiration in microalgae. J Plankton Res 16(10):1401–1410

    Article  Google Scholar 

  • Becker S (2010) Biotic factors in induced defense revisited: cell aggregate formation in the toxic cyanobacterium Microcystis aeruginosa PCC 7806 is triggered by spent Daphnia medium and disrupted cells. Hydrobiologia 644:159–168

    Article  CAS  Google Scholar 

  • Beckmann A, Hense I (2004) Torn between extremes: the ups and downs of phytoplankton. Ocean Dyn 54:581–592

    Article  Google Scholar 

  • Behrenfeld MJ, Halsey KH, Milligan AJ (2008) Evolved physiological responses of phytoplankton to their integrated growth environment. Philos Trans R Soc Lond B 363:2687–2703

    Article  CAS  Google Scholar 

  • Berger L, Speare R, Daszak P, Green DE, Cunningham AA, Goggin CL, Slocombe R, Ragan MA, Hyatt AD, McDonald KR, Hines HB, Lips KR, Marantelli G, Parkes H (1998) Chytridiomycosis causes amphibian mortality associated with population declines in the rainforests of Australia and Central America. Proc Natl Acad Sci USA 95:9031–9036

    Article  PubMed  CAS  Google Scholar 

  • Berman T (1997) Dissolved organic nitrogen utilization by an Aphani­zomenon bloom in Lake Kinneret. J Plankton Res 19:577–586

    Article  Google Scholar 

  • Berman-Frank I, Lundgren P, Falkowski P (2003) Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Res Microbiol 154:157–164

    Article  PubMed  CAS  Google Scholar 

  • Berman-Frank I, Bidle KD, Haramaty L, Falkowski PG (2004) The demise of the marine cyanobacterium, Trichodesmium spp., via an autocatalyzed cell death pathway. Limnol Oceanogr 49:997–1005

    Article  Google Scholar 

  • Berman-Frank I, Quigg A, Finkel ZV, Irwin AJ, Haramaty L (2007) Nitrogen-fixation strategies and Fe requirements in cyanobacteria. Limnol Oceanogr 52(5):2260–2269

    Article  Google Scholar 

  • Bhaya D, Schwarz R, Grossman AR (2000) Molecular responses to environmental stress. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria: their diversity in time and space. Kluwer Academic Publishers, Dordrecht, pp 397–442, 669 pp

    Google Scholar 

  • Bouchard JEN, Roy S, Campbell DA (2006) UVB effects on the photosystem II-D1 protein of phytoplankton and natural phytoplankton communities. Photochem Photobiol 82(4):936–951

    Article  PubMed  CAS  Google Scholar 

  • Bowen CC, Jensen TE (1965) Blue-green algae: fine structure of the gas vacuoles. Science 147:1460–1462

    Article  PubMed  CAS  Google Scholar 

  • Brookes JD, Carey CC (2011) Resilience to Blooms. Science 334:46–47

    Google Scholar 

  • Brookes JD, Ganf GG, Burch MD (1994) The separation of forms of Microcystis from Anabaena in mixed populations by the application of pressure. Aust J Mar Freshw Res 4:133–138

    Google Scholar 

  • Brookes JD, Ganf GG, Green D, Whittington J (1999) The influence of light and nutrients on buoyancy, filament aggregation and flotation of Anabaena circinalis. J Plankton Res 21:327–341

    Article  Google Scholar 

  • Brookes JD, Ganf GG, Oliver RL (2000) Heterogeneity of cyanobacterial gas vesicle volume and metabolic activity. J Plankton Res 22:1579–1589

    Article  CAS  Google Scholar 

  • Bruce LC, Hamilton DP, Imberger J, Gal G, Gophen M, Zohary T, Hambright KD (2006) A numerical simulation of the role of zooplankton in C, N and P cycling in Lake Kinneret, Israel. Ecol Model 193:412–436

    Article  Google Scholar 

  • Bruning K, Lingeman R, Ringelberg J (1992) Estimating the impact of fungal parasites on phytoplankton populations. Limnol Oceanogr 37:252–260

    Article  Google Scholar 

  • Brussaard CPD (2004) Viral control of phytoplankton populations – a review. J Eukaryot Microbiol 51:125–138

    Article  PubMed  Google Scholar 

  • Bryant DA (1991) Cyanobacterial phycobilisomes: progress toward complete structural and functional analysis via molecular genetics. In: Bogorad L, Vasil IK (eds) Cell culture and somatic cell genetics of plants, vol 7B. Academic, New York, pp 255–298

    Google Scholar 

  • Buranathanitt T, Cockrell DJ, John PH (1982) Some effects of Langmuir circulation on the quality of water resource systems. Ecol Model 15:49–74

    Article  Google Scholar 

  • Burger DF, Hamilton DP, Pilditch CA (2007) Modelling the relative importance of internal and external nutrient loads on water column nutrient concentrations and phytoplankton biomass in a shallow polymictic lake. Ecol Model 211:411–423

    Article  Google Scholar 

  • Burillo S, Luque I, Fuentes I, Contreras A (2004) Interactions between the nitrogen signal transduton protein PII and N-acetylglutamate kinase in organisms that perform oxygenic photosynthesis. J Bacteriol 186:3346–3354

    Article  PubMed  CAS  Google Scholar 

  • Canter HM, Lund JWG (1968) The importance of protozoa in controlling the abundance of planktonic algae in lakes. Proc Linn Soc Lond 179:203–219

    Article  Google Scholar 

  • Caperon J, Meyer J (1972) Nitrogen-limited growth of marine phytoplankton – I. Changes in population characteristics with steady-state growth rate. Deep Sea Res 19:601–618

    CAS  Google Scholar 

  • Carey CC, Ibelings BW, Hoffmann EP, Hamilton DP, Brookes JD (2012) Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate, Water Research doi:10.1016/j.watres.2011.12.016

    CAS  Google Scholar 

  • Carmichael WW (1992) Cyanobacteria secondary metabolites – the cyanotoxins. J Appl Bacteriol 72:445–459

    Article  PubMed  CAS  Google Scholar 

  • Carpenter SR (2008) Phosphorus control is critical to mitigating eutrophication. Proc Natl Acad Sci USA 105:11039–11040

    Article  PubMed  CAS  Google Scholar 

  • Chu Z, Jin X, Yang B, Quigru Z (2007) Buoyancy regulation of Microcystis flos-aquae during phosphorus-limited and nitrogen-limited growth. J Plankton Res 29:739–745

    Article  CAS  Google Scholar 

  • Codd GA (1995) Cyanobacterial toxins: occurrence, properties and biological significance. Water Sci Technol 32(4):149–156

    Article  CAS  Google Scholar 

  • Codd GA, Steffensen DA, Burch MD, Baker PD (1994) Toxic blooms of cyanobacteria in Lake Alexandrina, South Australia – learning from history. Aust J Mar Freshw Res 45:1–6

    Article  Google Scholar 

  • Coruzzi G, Last R (2000) Amino acids. In: Buchannan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists Textbook, Rockville, Chapter 8, pp 358–410

    Google Scholar 

  • Daft MJ, Stewart WDP (1971) Bacterial pathogens of freshwater blue-green algae. New Phytol 70:819–829

    Article  Google Scholar 

  • Damerval T, Castets A-M, Houmard J, Tandeau de Marsac N (1991) Gas vesicle synthesis in the cyanobacterium Pseudanabaena sp.: occurrence of a single photoregulated gene. Mol Microbiol 5:657–664

    Article  PubMed  CAS  Google Scholar 

  • Davey MC, Walsby AE (1985) The form resistance of sinking algal chains. Br Phycol J 20:243–248

    Article  Google Scholar 

  • Deng L, Hayes PK (2008) Evidence for cyanophages active against bloom-forming freshwater cyanobacteria. Freshw Biol 53:1240–1252

    Article  CAS  Google Scholar 

  • Donnelly TH, Grace MR, Hart BT (1997) Algal blooms in the Darling-Barwon River Australia. Water Air Soil Pollut 99:487–496

    CAS  Google Scholar 

  • Downing JA, Watson SB, McCauley E (2001) Predicting cyanobacteria dominance in lakes. Can J Fish Aquat Sci 58:1905–1908

    Article  Google Scholar 

  • Droop MR (1968) Vitamin B12 and marine ecology. IV. The kinetics of uptake, growth and inhibition in Monochrysis lutheri. J Mar Biol Assoc UK 48:689–733

    Article  CAS  Google Scholar 

  • Droop MR (1973) Some thoughts on nutrient limitation in algae. J Phycol 9:264–272

    CAS  Google Scholar 

  • Elliott JA, Thackeray SJ, Huntingford C, Jones RG (2005) Combining a regional climate model with a phytoplankton community model to predict future changes in phytoplankton in lakes. Freshw Biol 50:1404–1411

    Article  Google Scholar 

  • Elliott JA, Elliot JA, Thackeray SJ (2006) Testing the sensitivity of phytoplankton communities to changes in water temperature and nutrient load, in a temperate lake. Hydrobiologia 559:401–411

    Article  CAS  Google Scholar 

  • Elser JJ (1999) The pathway to noxious cyanobacteria blooms in lakes: the food web as the final turn. Freshw Biol 42:537–543

    Article  Google Scholar 

  • Falconer IR, Beresford AM, Runnegar MTC (1983) Evidence of liver damage by toxin from a bloom of the blue-green alga Microcystis aeruginosa. Med J Aust 1:511–514

    PubMed  CAS  Google Scholar 

  • Falkowski PG, Kolber K (1993) Estimation of phytoplankton photo­synthesis by active fluorescence. Int Counc Explor Sea Symp 197:92–103

    Google Scholar 

  • Falkowski P, La Roche J (1991) Acclimation to spectral growth irradiance in algae. J Phycol 25:8–14

    Article  Google Scholar 

  • Faithful CL, Burns CW (2006) Effects of salinity and source of inocula on germination of Anabaena akinetes from a tidally influenced lake. Freshwat Biol 51:705–716

    Article  Google Scholar 

  • Ferguson AJD (1997) The role of modelling in the control of toxic blue-green algae. Hydrobiologia 349:1–4

    Article  CAS  Google Scholar 

  • Ferris JM, Christian R (1991) Aquatic primary production in relation to microalgal responses to changing light: a review. Aquat Sci 53:187–217

    Article  Google Scholar 

  • Flores E, Herrero A (2005) Nitrogen assimilation and nitrogen control in cyanobacteria. Biochem Soc Trans 33:164–167

    Article  PubMed  CAS  Google Scholar 

  • Flynn KJ (2003a) Do we need complex mechanistic photoacclimation models for phytoplankton? Limnol Oceanogr 48(6):2243–2249

    Article  CAS  Google Scholar 

  • Flynn KJ (2003b) Modelling multi-nutrient interactions in phytoplankton; balancing simplicity and realism. Prog Oceanogr 56(2):249–279

    Article  Google Scholar 

  • Flynn KJ (2005) Castles built on sand: dysfunctionality in plankton models and the inadequacy of dialogue between biologists and modellers. J Plankton Res 27(12):1205–1210

    Article  CAS  Google Scholar 

  • Forchhammer K (2004) Global carbon/nitrogen control by PII signal transduction in cyanobacteria: from signals to targets. FEMS Microbiol Rev 28:319–333

    Article  PubMed  CAS  Google Scholar 

  • Forchhammer K (2008) PII signal transducers: novel functional and structural insights. Trends Microbiol 16(2):65–72

    Article  PubMed  CAS  Google Scholar 

  • Francis G (1878) Poisonous Australian lake. Nature (London) 18:11–12

    Article  Google Scholar 

  • Franklin DJ, Brussaard CPD, Berges JA (2006) What is the role and nature of programmed cell death in phytoplankton ecology. Eur J Phycol 41:1–14

    Article  Google Scholar 

  • Ganf GG, Oliver RL (1982) Vertical separation of light and available nutrients as a factor causing replacement of green algae by blue-green algae in the plankton of a stratified lake. J Ecol 70:829–844

    Article  Google Scholar 

  • Ganf GG, Oliver RL, Walsby AE (1989) Optical properties of gas-vacuolate cells and colonies of Microcystis in relation to light attenuation in a turbid, stratified reservoir (Mount Bold reservoir, South Australia). Aust J Mar Freshw Res 40:595–611

    Article  Google Scholar 

  • Garcia-Gonzalez M, Sivak MN, Guerrero MG, Preiss J, Lara C (1992) Depression of carbon flow to the glycogen pool induced by nitrogen assimilation in intact cells of Anacystis nidulans. Physiol Plant 86:360–364

    Article  CAS  Google Scholar 

  • Geider RJ, La Roche J (2002) Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. Eur J Phycol 37:1–17

    Article  Google Scholar 

  • Geider RJ, MacIntyre HL, Kana TM (1996) A dynamic model of photoadaptation in phytoplankton. Limnol Oceanogr 41:1–15

    Article  CAS  Google Scholar 

  • Geider RJ, MacIntyre HL, Kana TM (1998) A dynamic regulatory model of phytoplanktonic acclimation to light, nutrients, and temperature. Limnol Oceanogr 43:679–694

    Article  CAS  Google Scholar 

  • Ghadouani A, Pinel-Alloul B, Prepas EE (2003) Effects of experimentally induced cyanobacterial blooms on crustacean zooplankton communities. Freshw Biol 48:363–381

    Article  Google Scholar 

  • Gibson CE (1978) Carbohydrate content as an ecological tool in the study of planktonic blue-green algae. Verh Int Ver Theor Angew Limnol 20:630–635

    Google Scholar 

  • Glazer AN, Gindt YM, Chan CF, Sauer K (1994) Selective disruption of energy flow from phycobilisomes to photosystem I. Photosynth Res 40:167–173

    Article  CAS  Google Scholar 

  • Gons HJ, Hoogveld HL, Simis SGH, Tijdens M (2006) Dynamic modelling of viral impact on cyanobacterial populations in shallow lakes: implications of burst size. J Mar Biol Assoc UK 86:537–542

    Article  CAS  Google Scholar 

  • Gotham U, Rhee G-Y (1981) Comparative kinetic studies of nitrate-limited growth and nitrate uptake in phytoplankton in continuous culture. J Phycol 17:309–314

    Article  CAS  Google Scholar 

  • Grant NG, Walsby AE (1977) The contribution of photosynthate to turgor pressure rise in the planktonic blue-green alga Anabaena flos-aquae. J Exp Bot 28:409–415

    Article  CAS  Google Scholar 

  • Grossman A, Bhaya D, Apt K, Kehoe D (1995) Light-harvesting ­complexes in oxygenic photosynthesis: Diversity, control, and evolution. Ann Rev Genet 29:231–287

    Article  CAS  Google Scholar 

  • Guerrero MG, Lara C (1987) Assimilation of inorganic nitrogen. In: Fay P, Van Baalen C (eds) The cyanobacteria. Elsevier, Amsterdam, pp 163–186, 543 pp

    Google Scholar 

  • Guven B, Howard A (2006) A review and classification of the existing models of cyanobacteria. Prog Phys Geogr 30:1–24

    Google Scholar 

  • Hamilton GS, Fielding F, Chiffings AW, Hart BT, Johnstone RW, Mengersen K (2007) Investigating the use of a Bayesian Network to model the risk of Lyngbya majuscula bloom initiation in Deception Bay, Queensland, Australia. Hum Ecol Risk Assess 13:1271–1287

    Article  Google Scholar 

  • Han B-P, Virtanen M, Koponen J, Straskraba M (2000) Effect of photoinhibition on algal photosynthesis: a dynamic model. J Plankton Res 22:865–885

    Article  CAS  Google Scholar 

  • Harris GP (1986) Phytoplankton ecology. Structure, function and fluctation. Chapman & Hall, London, 384 pp

    Book  Google Scholar 

  • Harris GP (1994) Pattern, process and prediction in aquatic ecology. A limnological view of some general ecological problems. Freshw Biol 32:143–160

    Article  Google Scholar 

  • Hayes PK, Walsby AE (1986) The inverse correlation between width and strength of gas vesicles in cyanobacteria. Br Phycol J 21:191–197

    Article  Google Scholar 

  • Healey FP (1978) Physiological indicators of nutrient deficiency in algae. Mitt Int Ver Theor Limnol 21:34–41

    CAS  Google Scholar 

  • Healey FP (1982) Phosphate. In: Carr NG, Whitton BA (eds) The biology of cyanobacteria. Blackwell Scientific Publications, Oxford, pp 105–124, 676 pp

    Google Scholar 

  • Hecky RE, Kilham P (1988) Nutrient limitation of phytoplankton in freshwater and marine environments; a review of recent evidence on the effects of enrichment. Limnol Oceanogr 33:796–822

    Article  CAS  Google Scholar 

  • Hecky RE, Campbell P, Hendzel LL (1993) The stoichiometry of carbon, nitrogen and phosphorus in particulate matter of lakes and oceans. Limnol Oceanogr 38:709–724

    Article  CAS  Google Scholar 

  • Heinrich A, Maheswaran M, Ruppert U, Forchhammer K (2004) The Synechococcus elongatus PII signal transduction protein controls arginine synthesis by complex formation with N-acetyl-l-glutamate kinase. Mol Microbiol 52(5):1303–1314

    Article  PubMed  CAS  Google Scholar 

  • Hense I, Beckmann A (2006) Towards a model of cyanobacteria life cycle-effects of growing and resting stages on bloom formation of N2-fixing species. Ecol Model 195(3–4):205–218

    Article  Google Scholar 

  • Hense I, Burchard H (2009) Modelling cyanobacteria in shallow coastal seas. Ecol Model 221(2):238–244

    Article  Google Scholar 

  • Heraud P, Beardall J (2000) Changes in chlorophyll fluorescence during exposure of Dunaliella tertiolecta to UV radiation indicate a dynamic interaction between damage and repair processes. Photosynth Res 63:123–134

    Article  PubMed  CAS  Google Scholar 

  • Herrero A, Muro-Pastor AM, Flores E (2001) Nitrogen control in cyanobacteria. J Bacteriol 183:411–425

    Article  PubMed  CAS  Google Scholar 

  • Hodges BR, Imberger J (2001) Simple curvilinear method for numerical methods of open channels. J Hydraul Eng ASCE 127:949–958

    Article  Google Scholar 

  • Hodges BR, Imberger J, Saggio A, Winters KB (2000) Modelling basin-scale internal waves in a stratified lake. Limnol Oceanogr 45:1603–1620

    Article  Google Scholar 

  • Holl CM, Montoya JP (2005) Interactions between nitrate uptake and nitrogen fixation in continuous cultures of the marine diazotroph Trichodesmium (Cyanobacteria). J Phycol 41:1178–1183

    Article  CAS  Google Scholar 

  • Horne AJ, Galat DL (1985) Nitrogen fixation in an oligotrophic, saline desert lake: Pyramid Lake, Nevada. Limnol Oceanogr 30:1229–1239

    Article  CAS  Google Scholar 

  • Howard A, Irish AE, Reynolds CS (1996) A new simulation of cyanobacterial underwater movement (SCUM ’96). J Plankton Res 18:1375–1385

    Article  Google Scholar 

  • Howarth RG, Butler T, Lunde K, Swaney D, Chu CR (1993) Turbulence and planktonic nitrogen fixation: a mesocosm experiment. Limnol Oceanogr 38:1696–1711

    Article  Google Scholar 

  • Howarth RW, Chan F, Marino R (1999) Do top-down and bottom-up controls interact to exclude nitrogen-fixing cyanobacteria from the plankton of estuaries: explorations with a simulation model. Biogeochemistry 46:203–231

    CAS  Google Scholar 

  • Huisman J, Hulot FD (2005) Population dynamics of harmful cyanobacteria. Factors affecting species composition. In: Huisman J, Matthijs HCP, Visser PM (eds) Harmful cyanobacteria. Springer, Dordrecht, pp 143–176

    Chapter  Google Scholar 

  • Huisman J, Jonker RR, Zonneveld C, Weissing FJ (1999) Competition for light between phytoplankton species: experimental test of mechanistic theory. Ecology 80:211–222

    Article  Google Scholar 

  • Huisman J, Sharples J, Stroom J, Visser PM, Kardinaal WEA, Verspagen JMH, Sommeijer B (2004) Changes in turbulent mixing shift competition for light between phytoplankton species. Ecology 85:2960–2970

    Article  Google Scholar 

  • Humphries SE, Lyne VD (1988) Cyanophyte blooms: the role of cell buoyancy. Limnol Oceanogr 33:79–81

    Article  Google Scholar 

  • Hutchinson PA, Webster IT (1994) On the distribution of blue-green algae in lakes: Wind-tunnel tank experiments. Limnol Oceanogr 39:374–382

    Article  Google Scholar 

  • Ibelings BW, Maberly SC (1998) Photoinhibition and the availability of inorganic carbon restrict photosynthesis by surface blooms of cyanobacteria. Limnol Oceanogr 43:408–419

    Article  CAS  Google Scholar 

  • Ibelings BW, Marijke V, Los HFJ, van der Molen DT, Mooij WM (2003) Fuzzy modeling of cyanobacterial surface waterblooms: validation with NOAA-AVHRR satellite images. Ecol Appl 13:1456–1472

    Article  Google Scholar 

  • Imberger J, Hamblin JF (1982) Dynamics of lakes, reservoirs, and cooling ponds. Annu Rev Fluid Mech 14:153–187

    Article  Google Scholar 

  • Imberger J, Patterson JC (1981) A dynamic reservoir simulation model-DYRESM 5. In: Fischer HB (ed) Transport models for inland and coastal waters. Academic Press, New York, pp 310–361

    Article  Google Scholar 

  • Imberger J, Patterson JC (1990) Physical limnology. In: Hutchinson JW, Wu T (eds) Advances in applied mechanics, vol 27. Academic, Boston, pp 303–475

    Google Scholar 

  • Imboden D (2004) The motion of lake waters. In: O’Sullivan P, Reynolds CS (eds) The lakes handbook: limnology and limnetic ecology. Blackwell Science Ltd, Oxford, pp 115–152

    Google Scholar 

  • Izaguirre G, Hwang CJ, Krasner SW, McGuire MJ (1982) Geosmin and 2-methylisoborneol from cyanobacteria in three water supply systems. Appl Environ Microbiol 43:708–714

    PubMed  CAS  Google Scholar 

  • Jassby AD, Platt T (1976) Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr 21:540–547

    Article  CAS  Google Scholar 

  • Jöhnk KD, Huisman J, Sharples J, Sommeijer B, Visser PM (2008) Summer heatwaves promote blooms of harmful cyanobacteria. Glob Change Biol 14(3):495–512

    Article  Google Scholar 

  • Kagami M, de Bruin A, Ibelings BW, van Donk E (2007) Parasitic chytrids: their effects on phytoplankton communities and food-web dynamics. Hydrobiologia 578:113–129

    Article  Google Scholar 

  • Kehr JC, Zilliges Y, Springer A, Disney MD, Ratner DD, Bouchier C, Seeberger PH, Tandeau de Marsac D, Dittmann E (2006) A mannan binding lectin is involved in cell–cell attachment in a toxic strain of Microcystis aeruginosa. Mol Microbiol 59:893–906

    Article  PubMed  CAS  Google Scholar 

  • Kerfeld CA (2004) Structure and function of the water-soluble carotenoid-binding proteins of cyanobacteria. Photosynth Res 81(3):1573–1579

    Article  Google Scholar 

  • Kirk JTO (1983) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge, 401 pp

    Google Scholar 

  • Kirk JTO (1991) Volume scattering function, average cosines, and the underwater light field. Limnol Oceanogr 36:455–467

    Article  Google Scholar 

  • Kirk JTO, Oliver RL (1995) Optical closure in an ultraturbid lake. J Geophys Res 100:13221–13225

    Article  Google Scholar 

  • Klausmeier CA, Litchman E, Daufresne T, Levin SA (2004) Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature 429:171–174

    Article  PubMed  CAS  Google Scholar 

  • Klemer AR (1978) Nitrogen limitation of growth and gas vacuolation in Oscillatoria rubescens. Verh Int Ver Theor Angew Limnol 20:2293–2297

    Google Scholar 

  • Klemer AR (1991) Effects of nutritional status on cyanobacterial buoyancy, blooms and dominance with special reference to inorganic carbon. Can J Bot 69:1133–1138

    Article  CAS  Google Scholar 

  • Klemer AR, Feuillade J, Feuillade M (1982) Cyanobacterial blooms: carbon and nitrogen limitation have opposite effects on the buoyancy of Oscillatoria. Science 215:1629–1631

    Article  PubMed  CAS  Google Scholar 

  • Klemer AR, Hendzel LL, Findlay DL, Hedin RA, Mageau MT, Konopka A (1995) Carbon availability and the pattern of cyanobacterial dominance in enriched low-carbon lakes. J Phycol 31:735–744

    Article  Google Scholar 

  • Kolber Z, Falkowski PG (1993) Use of active fluorescence to estimate phytoplankton photosynthesis in situ. Limnol Oceanogr 38:1646–1665

    Article  CAS  Google Scholar 

  • Kolodny NH, Bauer D, Bryce K, Klucevsek K, Lane A, Medeiros L, Mercer W, Moin S, Park D, Petersen J, Wright J, Yuen C, Wolfson AJ, Allen M (2006) Effect of nitrogen source on cyanophycin synthesis in Synechocystis sp. strain PCC 6308. J Bacteriol 188:934–940

    Article  PubMed  CAS  Google Scholar 

  • Konopka A, Schnur M (1980) Effect of light intensity on macromolecular synthesis in cyanobacteria. Microb Ecol 6:291–301

    Article  CAS  Google Scholar 

  • Konopka A, Kromkamp J, Mur LR (1987a) Regulation of gas vesicle content and buoyancy in light or phosphate-limited cultures of Aphanizomenon flos-aquae (Cyanophyta). J Phycol 23:70–78

    CAS  Google Scholar 

  • Konopka A, Kromkamp JC, Mur LR (1987b) Buoyancy regulation in phosphate-limited cultures of Microcystis aeruginosa. FEMS Microbiol Ecol 45:135–142

    Article  CAS  Google Scholar 

  • Kosten S, Huszar VLM, Becares E, Costa LS, van Donk E, Hansson LA, Jeppesenk E, Kruk C, Lacerot G, Mazzeo N, De Meester L, Moss B, Lurling M, Noges T, Romo S, Scheffer M (2012) Warmer climates boost cyanobacterial dominance in shallow lakes. Glob Change Biol 18(1):118–126

    Google Scholar 

  • Kromkamp J (1987) Formation and functional significance of storage products in cyanobacteria. N Z J Mar Freshw Res 21:457–465

    Article  CAS  Google Scholar 

  • Kromkamp JC, Mur LR (1984) Buoyant density changes in the cyanobacterium Microcystis aeruginosa due to changes in the cellular carbohydrate content. FEMS Microbiol Lett 25:105–109

    Article  CAS  Google Scholar 

  • Kromkamp JC, Walsby AE (1990) A computer model of buoyancy and vertical migration in cyanobacteria. J Plankton Res 12:161–183

    Article  Google Scholar 

  • Kromkamp J, Konopka A, Mur LR (1986) Buoyancy regulation in a strain of Aphanizomenon flos-aquae (Cyanophyceae): the importance of carbohydrate accumulation and gas vesicle collapse. J Gen Microbiol 132:2113–2121

    CAS  Google Scholar 

  • Kromkamp J, Konopka A, Mur LR (1988) Buoyancy regulation in light-limited continuous cultures Microcystis aeruginosa. J Plankton Res 10:171–183

    Article  Google Scholar 

  • Kruk C, Huszar VM, Peeters ETHM, Bonilla S, Coasta L, Rling MLU, Reynolds CS, Scheffer M (2010) A morphological classification capturing functional variation in phytoplankton. Freshw Biol 55:614–627

    Article  Google Scholar 

  • Laanemets J, Lilover M-J, Raudsepp U, Autio R, Vahtera E, Lips I, Lips U (2006) A fuzzy logic model to describe the cyanobacteria Nodularia spumigena blooms in the Gulf of Finland, Baltic Sea. Hydrobiologia 554:31–45

    Article  Google Scholar 

  • Latifi A, Ruiz M, Zhang CC (2009) Oxidative stress in cyanobacteria. FEMS Microbiol Rev 33(2):258–278

    Article  PubMed  CAS  Google Scholar 

  • Levine SN, Lewis WM (1987) A numerical model of nitrogen fixation and its application to Lake Valencia, Venezuela. Freshw Biol 17:265–274

    Article  Google Scholar 

  • Lewis WM (1978a) Dynamics and succession of the phytoplankton in a tropical lake: Lake Lanao, Philippines. J Ecol 66:849–880

    Article  Google Scholar 

  • Lewis WM (1978b) Analysis of succession in a succession in a tropical phytoplankton community and a new measure of succession rate. Am Nat 112:401–418

    Article  Google Scholar 

  • Litchman E (2003) Competition and coexistence of phytoplankton under fluctuating light: experiments with two cyanobacteria. Aquat Microb Ecol 31:241–248

    Article  Google Scholar 

  • Liu Y, Xie P, Chen F, Wu X (2005) Effect of combinations of the toxic cyanobacterium Microcystis aeruginosa PCC7820 and the green alga Scenedesmus on the experimental population of Daphnia pulex. Bull Environ Contam Toxicol 74:1186–1191

    Article  PubMed  CAS  Google Scholar 

  • Llácer JL, Fita I, Rubio V (2008) Arginine and nitrogen storage. Curr Opin Struct Biol 18:673–681

    Article  PubMed  CAS  Google Scholar 

  • Los FJ (2009) Eco-hydrodynamic modelling of primary production in coastal waters and lakes using BLOOM. PhD thesis, Wageningen University, Wageningen. Available at http://edepot.wur.nl/1249

  • Los FJ, Villars MT, Van der Tol MWM (2008) A 3-dimensional primary production model (BLOOM/GEM) and its application to the southern North Sea (coupled physical-chemical-ecological model). J Mar Syst 74:259–274

    Article  Google Scholar 

  • Lund JWG, Reynolds CS (1982) The development and operation of large limnetic enclosures in Blelham Tarn, English Lake District, and their contribution to phytoplankton ecology. Prog Phycol Res 1:1–65

    Google Scholar 

  • Luo L, Hamilton D(P), Han B (2010) Estimation of total cloud cover from solar radiation observations at Lake Rotorua, New Zealand. Solar Energy 84(3):501–506

    Article  Google Scholar 

  • Luque I, Flores E, Herrero A (1994) Nitrate and nitrite transport in the cyanobacterium Synechococcus sp. PCC 7942 are mediated by the same permease. Biochim Biophys Acta 1184:296–298

    Article  CAS  Google Scholar 

  • Luque I, Vazquez-Bermudez MF, Paz-Yepes J, Flores E, Herrero A (2004) In vivo activity of the nitrogen control transcription factor NtcA is subjected to metabolic regulation in Synechococcus sp strain PCC 7942. Fems Microbiol Lett 236(1):47–52

    Google Scholar 

  • MacIntyre S (1993) Vertical mixing in a shallow, eutrophic lake: possible consequences for the light climate of phytoplankton. Limnol Oceanogr 38:798–817

    Article  Google Scholar 

  • MacIntyre HL, Kana TM, Anning T, Geider RJ (2002) Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. J Phycol 38(1):17–38

    Article  Google Scholar 

  • Mackerras AH, De Chazal NM, Smith GD (1990a) Transient accumulations of cyanophycin in Anabaena cylindrica and Synechocystis 6308. J Gen Microbiol 136:2057–2065

    Article  CAS  Google Scholar 

  • Mackerras AH, Youens BN, Weir RC, Smith GD (1990b) Is cyanophycin involved in the integration of nitrogen and carbon metabolism in the cyanobacteria Anabaena cylindrica and Gloeothece grown on light/dark circles? J Gen Microbiol 136:2049–2056

    Article  CAS  Google Scholar 

  • Maheswaran M, Ziegler K, Lokau W, Hagemann M, Forchhammer K (2006) PII-Regulated arginine synthesis controls accumulation of cyanophycin in Synechocystis sp. Strain PCC 6803. J Bacteriol 188(7):2730–2734

    Article  PubMed  CAS  Google Scholar 

  • Mann NH (2006) Phages of cyanobacteria. In: Calendar R (ed) The bacteriophages. Oxford University Press, New York, pp 517–532, 746 pp

    Google Scholar 

  • McNown JS, Malaika J (1950) Effects of particle shape of settling velocity on low Reynolds numbers. Trans Am Geophys Union 31:74–82

    Google Scholar 

  • Middelboe M, Jacquet S, Weinbauer M (2008) Viruses in freshwater ecosystems: an introduction to the exploration of viruses in new aquatic habitats. Freshw Biol 53:1069–1075

    Article  Google Scholar 

  • Mooji WM, Trolle D, Jeppesen E, Arhonditsis G, Belolipetsky PV, Chitamwebwa DBR, Degermendzhy AG, DeAngelis DL, De Senerpont Domis LN, Downing AS, Elliott JA, Fragoso CR Jr, Gaedke U, Genova SN, Gulati RD, Håkanson L, Hamilton DP, Hipsey MR, ‘t Hoen J, Hülsmann S, Los FJ, Makler-Pick V, Petzoldt T, Prokopkin IG, Rinke K, Schep SA, Tominaga K, Van Dam AA, Van Nes EH, Wells SA, Janse JH (2010) Challenges and opportunities for integrating lake ecosystem modelling approaches. Aquat Ecol 44(3):633–667

    Article  Google Scholar 

  • Mur LR (1983) Some aspects of the ecophysiology of cyanobacteria. Ann Microbiol 134B:61–72

    CAS  Google Scholar 

  • Murray AG (1995) Phytoplankton exudation: exploitation of the microbial loop as a defence against algal viruses. J Plankton Res 17:1079–1094

    Article  Google Scholar 

  • O’Brien KR, Meyer DL, Waite AM, Ivey GN, Hamilton DP (2004) Disaggregation of Microcystis aeruginosa colonies under turbulent mixing: laboratory experiments in a grid-stirred tank. Hydrobiologia 519:143–152

    Article  Google Scholar 

  • Oberhaus L, Briand JF, Leboulanger C, Jacquet S, Humbert JF (2007) Comparative effects of the quality and quantity of light and temperature on the growth of Planktothrix agardhii and P. rubescens. J Phycol 43(6):1191–1199

    Article  CAS  Google Scholar 

  • Ochoa de Alda JAG, Tapia MI, Fabrice F, Llama MJ, Serra JL (1996) Changes in nitrogen source modify distribution of excitation energy in the cyanobacterium Phormidium laminosum. Physiol Plant 97:69–78

    Article  CAS  Google Scholar 

  • Ohki K (1999) A possible role of temperate phage in the regula­tion of Trichodesmium biomass. Bull Inst Oceanogr (Monaco) 19:287–291

    Google Scholar 

  • Ohlendiek U, Stuhr A, Siegmund H (2000) Nitrogen fixation by diazo­trophic cyanobacteria in the Baltic Sea and transfer of the newly fixed nitrogen to picoplankton organisms. J Mar Syst 25:213–219

    Article  Google Scholar 

  • Okada M, Aiba S (1983a) Simulation of water bloom in a eutrophic lake. II: reassessment of buoyancy, gas vacuole and turgor pressure of Microcystis aeruginosa. Water Res 17:877–882

    Article  Google Scholar 

  • Okada M, Aiba S (1983b) Simulation of water-bloom in a eutrophic lake. III: modeling the vertical migration and growth of Microcystis aeruginosa. Water Res 17:883–893

    Article  Google Scholar 

  • Oliver R (1990) Optical properties of waters in the Murray-Darling Basin, south-eastern Australia. Aust J Mar Freshw Res 41:581–601

    Article  Google Scholar 

  • Oliver RL (1994) Floating and sinking in gas-vacuolate cyanobacteria. J Phycol 30:161–173

    Article  CAS  Google Scholar 

  • Oliver RL, Ganf GG (2000) Freshwater blooms. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria their diversity in time and space. Kluwer Academic Publishers, Dordrecht, pp 149–194, 669 pp

    Google Scholar 

  • Oliver RL, Walsby AE (1984) Direct evidence for the role of light-mediated gas vesicle collapse in the buoyancy regulation of Anabaena flos-aquae (cyanobacteria). Limnol Oceanogr 29:879–886

    Article  Google Scholar 

  • Oliver RL, Whittington J (1998) Using measurements of variable chlorophyll-a fluorescence to investigate the influence of water movement on the photochemistry of phytoplankton. In: Imberger J (ed) Physical processes in lakes and oceans, Coastal and Estuarine Studies, Vol 54,American Geophysical Union, Washington, DC, pp 517–534, 668pp

    Chapter  Google Scholar 

  • Oliver RL, Kinnear AJ, Ganf GG (1981) Measurements of cell density of three freshwater phytoplankters by density gradient centrifugation. Limnol Oceanogr 26:285–294

    Article  Google Scholar 

  • Oliver R, Whittington J, Lorenz Z, Webster I (2003) The influence of vertical mixing on the photoinhibition of variable chlorophyll a fluorescence and its inclusion in a model of phytoplankton photosynthesis. J Plankton Res 25(9):1107–1129

    Article  CAS  Google Scholar 

  • Ormerod JG (1992) Physiology of the photosynthetic prokaryotes. In: Mann NH, Carr NG (eds) Photosynthetic prokaryotes. Plenum Press, New York, pp 93–120

    Google Scholar 

  • Patterson JC, Hamilton DP, Ferris J (1994) Modelling of cyanobacterial blooms in the mixed layer of lakes and reservoirs. Aust J Mar Freshw Res 45:829–845

    Article  Google Scholar 

  • Pollard P, Young LM (2010) Lake viruses lyse cyanobacteria, Cylindrospermopsis raciborskii, enhances filamentous-host dispersal in Australia. Acta Oecol 36:114–119

    Article  Google Scholar 

  • Rabouille S, Staal M, Stal LJ, Soetaert K (2006) Modeling the dynamic regulation of nitrogen fixation in the cyanobacterium Trichodesmium sp. Appl Environ Microbiol 72(5):3217–3227

    Article  PubMed  CAS  Google Scholar 

  • Raven JA (2006) Aquatic viruses: the emerging story. J Mar Biol Assoc UK 86:449–451

    Article  CAS  Google Scholar 

  • Recknagel F, Cetin L, Zhang B (2008) Process-based simulation library SALMO-OO for lake ecosystems. Part 1: object-oriented implementation and validation. Ecol Inform 3:170–180

    Article  Google Scholar 

  • Reichwaldt ES, Stibor H (2005) The impact of diel vertical migration of Daphnia on phytoplankton dynamics. Oecologia 146:50–56

    Article  PubMed  Google Scholar 

  • Reynolds CS (1984) The ecology of freshwater phytoplankton. Cambridge Univ. Press, Cambridge, 384 pp

    Google Scholar 

  • Reynolds CS (1987) Cyanobacterial water blooms. In: Callow JA (ed) Advances in botanical research, vol 13. Academic, London, pp 67–143

    Google Scholar 

  • Reynolds CS (1990) Temporal scales of variability in pelagic environments and the response of phytoplankton. Freshw Biol 23:25–53

    Article  Google Scholar 

  • Reynolds CS (1993) Scales of disturbance and their roles in plankton ecology. Hydrobiologia 249:151–171

    Google Scholar 

  • Reynolds CS, Walsby AE (1975) Water blooms. Biol Rev 50:437–481

    Article  CAS  Google Scholar 

  • Reynolds CS, Wiseman SW, Clarke MJO (1984) Growth- and loss-rate responses of phytoplankton to intermittent artificial mixing and their potential application to the control of planktonic algal biomass. J Appl Ecol 21:11–39

    Article  Google Scholar 

  • Reynolds CS, Oliver RL, Walsby AE (1987) Cyanobacterial dominance: the role of buoyancy regulation in the billowing environment. N Z J Mar Freshw Res 2:379–390

    Article  Google Scholar 

  • Reynolds CS, Irish AE, Elliott JA (2001) The ecological basis for simulating phytoplankton responses to environmental change (PROTECH). Ecol Model 140(3):271–291

    Article  CAS  Google Scholar 

  • Richardson K, Beardell J, Raven JA (1983) Adaptation of unicellular algae to irradiance: an analysis of strategies. New Phycol 93:157–191

    Article  Google Scholar 

  • Riegman R, Mur LC (1984) Regulation of phosphate uptake kinetics in Oscillatoria agardhii. Arch Microbiol 139:28–32

    Article  CAS  Google Scholar 

  • Robson BJ, Hamilton DP (2004) Three-dimensional modelling of a Microcystis bloom event in the Swan River estuary. Ecol Model 174:203–222

    Article  CAS  Google Scholar 

  • Romans KM, Carpenter EJ, Bergman B (1994) Buoyancy regulation in the colonial diazotrophic cyanobacterium Trichodesmium tenue: ultrastructure and storage of carbohydrate, polyphosphate and nitrogen. J Phycol 30:935–942

    Article  Google Scholar 

  • Ross ON, Geider RJ (2009) New cell-based model of photosynthesis and photo-acclimation: accumulation and mobilisation of energy reserves in phytoplankton. Mar Ecol Prog Ser 383:53–71

    Article  CAS  Google Scholar 

  • Ross ON, Sharples J (2004) Recipe for 1-D Langrangian particle tracking models in space-varying diffusivity. Limnol Oceanogr Method 2:289–302

    Article  Google Scholar 

  • Ross C, Santiago-Vazquez L, Paul V (2006) Toxin release in response to oxidative stress and programmed cell death in the cyanobacterium Microcystis aeruginosa. Aquat Toxicol 78:66–73

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto M (1966) Primary production by phytoplankton community in some Japanese lakes and its dependence upon lake depth. Arch Hydrobiol 62:1–28

    Google Scholar 

  • Sathyendranath S, Platt T, Forget MH (2007) Oceanic primary production: comparison of models. Oceans 2007 – Europe international conference, Aberdeen, Scotland, IEEE

    Google Scholar 

  • Sauer J, Schreiber U, Schmid R,Volker U, Forchhammer K (2001). Nitrogen starvation-induced chlorosis in Synechococcus PCC 7942. Low-level photosynthesis as a mechanism of long-term survival. Plant Physiol 126:233 –243

    Google Scholar 

  • Scheffer M, Rinaldi S, Gragnani A, Mur LR, van Ness EH (1997) On the dominance of filamentous cyanobacteria in shallow, turbid lakes. Ecology 78:72–282

    Article  Google Scholar 

  • Schindler DW (1971) Carbon, nitrogen and phosphorus and the eutrophication of freshwater lakes. J Phycol 7:321–329

    CAS  Google Scholar 

  • Schindler DW, Hecky RE, Findlay DL, Stainton MP, Parker BR, Paterson MJ, Beaty KG, Lyng M, Kasian SEM (2008) Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. Proc Natl Acad Sci USA 105(32):11254–11258

    Article  PubMed  CAS  Google Scholar 

  • Schopf JW, Packer BM (1987) Early Archean (3.3 billion to 3.5 billion-year-old) microfossils from Warrawoona Group, Australia. Science 237:70–73

    Article  PubMed  CAS  Google Scholar 

  • Schreiber U, Endo T, Mi H, Asada K (1995) Quenching analysis of chlorophyll fluorescence by the saturation pulse method: particular aspects relating to the study of eukaryotic algae and cyanobacteria. Plant Cell Physiol 36:873–882

    CAS  Google Scholar 

  • Schwarz R, Forchhammer K (2005) Acclimation of unicellular cyanobacteria to macronutrient deficiency: emergence of a complex network of cellular responses. Microbiology 151:2503–2514

    Article  PubMed  CAS  Google Scholar 

  • Scott JT, McCarthy MJ (2010) Nitrogen fixation may not balance the nitrogen pool in lakes over timescales relevant to eutrophication management. Limnol Oceanogr 55(3):1265–1270

    Article  CAS  Google Scholar 

  • Sedmak B, Elersek T (2006) Microcystins induce morphological and physiological changes in selected representative phytoplanktons. Microb Ecol 51:508–515

    Article  PubMed  CAS  Google Scholar 

  • Segovia M, Haramaty L, Berges JA, Falkowski PG (2003) Cell death in the unicellular chlorophyte Dunaliella tertiolecta: an hypothesis on the evolution of apoptosis in higher plants and metazoans. Plant Physiol 132:99–105

    Article  PubMed  CAS  Google Scholar 

  • Shilo M (1970) Lysis of blue-green algae by myxobacter. J Bacteriol 104:453–461

    PubMed  CAS  Google Scholar 

  • Shilo M (1971) Biological agents that cause lysis of blue-green algae. Mitt Int Ver Theor Limnol 19:206–213

    Google Scholar 

  • Shuter B (1979) A model of physiological adaptation in unicellular algae. J Theor Biol 78(4):519–552

    Article  PubMed  CAS  Google Scholar 

  • Sigee DC, Selwyn A, Gallois P, Dean AP (2007) Patterns of cell death in freshwater colonial cyanobacteria during the late summer bloom. Phycologia 46:284–292

    Article  Google Scholar 

  • Simon RD (1987) Inclusion bodies in the cyanobacteria: cyanophycin, polyphosphate, polyhedral bodies. In: Fay P, van Baalen C (eds) The cyanobacteria. Elsevier, Amsterdam, pp 199–225

    Google Scholar 

  • Singh AK, Elvitigala T, Bhattacharyya-Pakrasi M, Aurora R, Ghosh B, Pakrasi HB (2008) Integration of carbon and nitrogen metabolism with energy production is crucial to light acclimation in the cyanobacterium Synechocystis. Plant Physiol 148(1):467–478

    Article  PubMed  CAS  Google Scholar 

  • Singh AK, Bhattacharyya-Pakrasi M, Elvitigala T, Ghosh B, Aurora R, Pakrasi HB (2009) A systems-level analysis of the effects of light quality on the metabolism of a cyanobacterium. Plant Physiol 151:1596–1608

    Article  PubMed  CAS  Google Scholar 

  • Smith VH (1983) Low nitrogen to phosphorus ratios favor dominance by blue-green in lake phytoplankton. Science 221:669–671

    Article  PubMed  CAS  Google Scholar 

  • Sommer U, Sommer F, Santer B, Zellner E, Jergens K, Jamieson C, Boersma M, Gocke K (2003) Daphnia versus copepod impact on summer phytoplankton: functional compensation at both trophic levels. Oecologia 135:639–647

    PubMed  Google Scholar 

  • Stal LJ (2009) Is the distribution of nitrogen-fixing cyanobacteria in the oceans related to temperature? Environ Microbiol 11:1632–1645

    Article  PubMed  CAS  Google Scholar 

  • Stal LJ, Walsby AE (1998) The daily integral of nitrogen fixation by planktonic cyanobacteria in the Baltic Sea. New Phytol 139:665–671

    Article  CAS  Google Scholar 

  • Stal LJ, Walsby AE (2000) Photosynthesis and nitrogen fixation in a cyanobacterial in the Baltic Sea. Eur J Phycol 35:97–108

    Article  Google Scholar 

  • Steinberg CEW, Hartmann HM (1988) Planktonic bloom-forming cyanobacteria and the eutrophication of lakes and rivers. Freshw Biol 20:279–287

    Article  Google Scholar 

  • Stomp M, Huisman J, de Jongh F, Veraart AJ, Gerla D, Rijkeboer M, Ibelings BW, Wollenzien UIA, Stal LJ (2004) Adaptive divergence in pigment composition promotes phytoplankton biodiversity. Nature 432(7013):104–107

    Article  PubMed  CAS  Google Scholar 

  • Stomp M, Huisman J, Stal LJ, Matthijs HCP (2007) Colorful niches of phototrophic microorganisms shaped by vibrations of the water molecule. ISME J 1(4):271–282

    PubMed  CAS  Google Scholar 

  • Stone S, Ganf G (1981) The influence of previous light history on the respiration of four species of freshwater phytoplankton. Arch Hydrobiol 91:435–462

    CAS  Google Scholar 

  • Takano K, Ishikawa Y, Mikami H, Igarashi S, Hino S, Yoshioka T (2008) Fungal infection for cyanobacterium Anabaena smithii by two chytrids in eutrophic region of large reservoir Lake Shumarinai, Hokkaido, Japan. Limnology 9:213–218

    Article  CAS  Google Scholar 

  • Tandeau de Marsac N, Houmard J (1993) Adaptation of cyanobacteria to environmental stimuli: new steps towards molecular mechanisms. FEMS Microbiol Rev 104:119–190

    Article  CAS  Google Scholar 

  • Tandeau de Marsac N, Lee HM, Hisbergues M, Castets AM, Bédu S (2001) Control of nitrogen and carbon metabolism in cyanobacteria. J Appl Phycol 13:287–394

    Article  CAS  Google Scholar 

  • Tapia MI, Ochoa de Alda JAG, Llama MJ, Serra JL (1996) Changes in intracellular amino acids and organic acids induced by nitrogen starvation and nitrate or ammonium resupply in the cyanobacterium Phormidium laminosum. Planta 198:526–531

    CAS  Google Scholar 

  • Thompson PA, Waite AM, McMahon K (2003) Dynamics of a cyanobacterial bloom in a hypereutrophic, stratified weir pool. Mar Freshw Res 54:27–37

    Article  Google Scholar 

  • Tilman D, Kilham SS, Kilham P (1982) Phytoplankton community ecology: the role of limiting nutrients. Annu Rev Ecol Syst 13:349–372

    Article  Google Scholar 

  • Trimbee AM, Prepas EE (1987) Evaluation of total phosphorus as a predictor of the relative biomass of blue-green algae with emphasis on Alberta lakes. Can J Fish Aquat Sci 14:1337–1342

    Google Scholar 

  • Trolle D, Hamilton DP, Pilditch CA, Duggan IC (2010) Predicting the effects of climate change on trophic status of three morphologically varying lakes: implications for lake restoration and management. Environ Model Softw 26:354–370

    Article  Google Scholar 

  • Tucker S, Pollard P (2005) Identification of cyanophage Ma-LBP and infection of the cyanobacterium Microcystis aeruginosa from an Australian subtropical lake by the virus. Appl Environ Microbiol 71:629–635

    Article  PubMed  CAS  Google Scholar 

  • Turpin DH (1991) Effects of inorganic N availability on algal photo­synthesis and carbon metabolism. J Phycol 27:14–20

    Article  CAS  Google Scholar 

  • Utkilen HC, Oliver RL, Walsby AE (1985) Buoyancy regulation in a red Ocillatoria unable to collapse gas vacuoles by turgor pressure. Arch Hydrobiol 102:319–329

    Google Scholar 

  • van Rijn J, Shilo M (1985) Carbohydrate fluctuations, gas vacuolation, and vertical migration of scum-forming cyanobacteria in fishponds. Limnol Oceanogr 30(6):1219–1228

    Article  Google Scholar 

  • Vázquez-Bermúdez MF, Herrero A, Flores E (2003) Carbon supply and 2-oxoglutarate effects on expression of nitrate reductase and nitrogen-regulated genes in Synechococcus sp. strain PCC 7942. FEMS Microbiol Lett 221(2):155–159

    Article  PubMed  CAS  Google Scholar 

  • Venkatesh MM, Maidment DR, Hodges BR (2005) Geospatial representation of river channels. J Hydrol Eng ASCE 10:243–251

    Article  Google Scholar 

  • Verspagen JMH, Snelder EOFM, Visser PM, Huisman J, Mur LR, Ibelings BW (2004) Recruitment of benthic Microcystis (Cyanophyceae) to the water column: internal buoyancy changes or resuspension? J Phycol 40:260–270

    Article  Google Scholar 

  • Vincent WF (2009) Cyanobacteria. In: Likens GE (ed) Encyclopedia of inland waters, vol 3. Elsevier, Oxford, pp 226–232

    Chapter  Google Scholar 

  • Visser PM, Ibelings BW, Mur LR (1994) Autumnal sedimentation of Microcystis spp. as result of an increase in carbohydrate ballast at reduced temperature. J Plankton Res 17:919–933

    Article  Google Scholar 

  • Visser PM, Ibelings BW, Van Der Veer B, Koedoods J, Mur LR (1996) Artificial mixing prevents nuisance blooms of the cyanobacterium Microcystis in Lake Nieuwe Meer, The Netherlands. Freshw Biol 36:435–450

    Article  Google Scholar 

  • Visser PM, Passarge J, Mur LR (1997) Modelling vertical migration of the cyanobacteria Microcystis. Hydrobiologia 349:99–109

    Article  Google Scholar 

  • Vollenweider RA (1968) Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to nitrogen and phosphorus as factors in eutrophication. Technical report DA 5/SCI/68.27. OECD, Paris, 250 pp

    Google Scholar 

  • Wallace BB, Hamilton DP (1999) The effect of variations in irradiance on buoyancy regulation in Microcystis aeruginosa. Limnol Oceanogr 44:273–281

    Article  Google Scholar 

  • Wallace BB, Hamilton DP (2000) Simulation of water-bloom formation in the cyanobacterium Microcystis aeruginosa. J Plankton Res 22(6):1127–1138

    Article  Google Scholar 

  • Wallace BB, Bailey MC, Hamilton DP (2000) Simulation of vertical position of buoyancy regulating Microcystis aeruginosa in a shallow eutrophic lake. Aquat Sci 62:320–333

    Article  Google Scholar 

  • Walsby AE (1971) The pressure relationships of gas vacuoles. Proc R Soc Lond B 178:301–326

    Article  Google Scholar 

  • Walsby AE (1985) The permeability of heterocysts to the gases nitrogen and oxygen. Proc R Soc Lond B 226:345–366

    Article  CAS  Google Scholar 

  • Walsby AE (1987) Mechanisms of buoyancy regulation by planktonic cyanobacteria with gas vesicles. In: Fay P, Van Baalen C (eds) The cyanobacteria. Elsevier Science Publishers, Amsterdam, pp 377–392, 543 pp

    Google Scholar 

  • Walsby AE (1994) Gas vesicles. Microbiol Rev 58:94–144

    PubMed  CAS  Google Scholar 

  • Walsby AE (2007) Cyanobacterial heterocysts: terminal pores proposed as sites of gas exchange. Trends Microbiol 15:340–349

    Article  PubMed  CAS  Google Scholar 

  • Walsby AE, Bleything A (1988) The dimensions of cyanobacterial gas vesicles in relation to their efficiency in providing buoyancy and withstanding pressure. J Gen Microbiol 134:2635–2645

    Google Scholar 

  • Walsby AE, Reynolds CS (1980) Sinking and floating. In: Morris I (ed) The physiological ecology of phytoplankton. Blackwell Scientific Publications, Oxford, pp 371–412

    Google Scholar 

  • Walsby AE, Reynolds CS, Oliver RL, Kromkamp J, Gibbs MM (1987) The role of buoyancy in the distribution of Anabaena sp. in Lake Rotongaio. N Z J Mar Freshw Res 21:525–526

    Article  Google Scholar 

  • Walsby AE, Reynolds CS, Oliver RL, Kromkamp J (1989) The role of gas vacuoles and carbohydrate content in the buoyancy and vertical distribution of Anabaena minutissima in Lake Rotongaio, New Zealand. Arch Hydrobiol Ergeb Limnol 32:1–25

    Google Scholar 

  • Walsby AE, Kinsman R, Ibelings BW, Reynolds CS (1991) Highly buoyant colonies of the cyanobacterium Anabaena lemmer­mannii form persistent surface waterblooms. Arch Hydobiol 121:261–280

    Google Scholar 

  • Walsby AE, Hayes PK, Boje R, Stal LJ (1997) The selective advantage of buoyancy provided by gas vesicles for planktonic cyanobacteria in the Baltic Sea. New Phytol 136:407–417

    Article  Google Scholar 

  • Walsby AE, Dubinsky Z, Kromkamp JC, Lehmann C, Schanz F (2001) The effects of diel changes in photosynthetic coefficients and depth of Planktothrix rubescens on the daily integral of photosynthesis in Lake Zürich. Aquat Sci 63:326–349

    Article  Google Scholar 

  • Webster IT, Hutchinson PA (1994) Effects of wind on the distribution of phytoplankton cells in lakes-revisited. Limnol Oceanogr 39:365–373

    Article  Google Scholar 

  • Wilhelm S, Matteson AR (2008) Freshwater and marine virioplankton: a brief overview of commonalities and differences. Freshw Biol 53:1076–1089

    Article  Google Scholar 

  • Wood SA, Prentice MJ, Smith K, Hamilton DP (2010) Low dissolved inorganic nitrogen and increased heterocyte frequency: precursors to Anabaena planktonica blooms in a temperate, eutrophic reservoir. J Plankton Res 32:1315–1325

    Article  CAS  Google Scholar 

  • Wyman M, Fay P (1986) Underwater light climate and the growth and pigmentation of planktonic blue-green algae (Cyanobacteria) I. the influence of light quality. Proc R Soc Lond B 227:381–393

    Article  Google Scholar 

  • Yang Z, Kong F, Shi X, Cao H (2006) Morphological response of Microcystis aeruginosa to grazing by different sorts of zooplankton. Hydrobiologia 563:225–230

    Article  Google Scholar 

  • Yang Z, Kong F, Shi X, Zhang M, Xing P, Cao H (2008) Changes in the morphology and polysaccharide content of Microcystis aeruginosa (Cyanobacteria) during flagellate grazing. J Phycol 44:716–720

    Article  Google Scholar 

  • Zevenboom W, Mur LR (1978) On nitrate uptake by Oscillatoria agardhii. Verh Int Ver Limnol 20:2302–2307

    Google Scholar 

  • Zhao J, Ramin M, Cheng V, Arhonditsis B (2008) Competition patterns among phytoplankton functional groups: how useful are the complex mathematical models? Acta Oecol 33(3):324–344

    Article  Google Scholar 

  • Zilliges Y, Kehr JC, Mikkat S, Bouchier C, Tandeau N, de Marsac T, Borner E, Dittmann E (2008) An extracellular glycoprotein is implicated in cell-cell contacts in the toxic cyanobacterium Microcystis aeruginosa PCC 7806. J Bacteriol 190:2871–2879

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work has been partially funded through the Foundation of Research, Science and Technology (Contract UOWX0505) and the University of Waikato Lakes Chair supported by Environment Bay of Plenty.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roderick L. Oliver .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Oliver, R.L., Hamilton, D.P., Brookes, J.D., Ganf, G.G. (2012). Physiology, Blooms and Prediction of Planktonic Cyanobacteria. In: Whitton, B. (eds) Ecology of Cyanobacteria II. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3855-3_6

Download citation

Publish with us

Policies and ethics