Skip to main content

Sec14 Like PITPs Couple Lipid Metabolism with Phosphoinositide Synthesis to Regulate Golgi Functionality

  • Chapter
  • First Online:
Phosphoinositides II: The Diverse Biological Functions

Part of the book series: Subcellular Biochemistry ((SCBI,volume 59))

Abstract

An interface coordinating lipid metabolism with proteins that regulate membrane trafficking is necessary to regulate Golgi morphology and dynamics. Such an interface facilitates the membrane deformations required for vesicularization, forms platforms for protein recruitment and assembly on appropriate sites on a membrane surface and provides lipid co-factors for optimal protein activity in the proper spatio-temporally regulated manner. Importantly, Sec14 and Sec14-like proteins are a unique superfamily of proteins that sense specific aspects of lipid metabolism, employing this information to potentiate phosphoinositide production. Therefore, Sec14 and Sec14 like proteins form central conduits to integrate multiple aspects of lipid metabolism with productive phosphoinositide signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anantharaman V, Aravind L (2002) The GOLD domain, a novel protein module involved in Golgi function and secretion. Genome Biol 3:0023

    Google Scholar 

  • Antonny B et al (1997) Activation of ADP-ribosylation factor 1 GTPase-activating protein by phosphatidylcholine-derived diacylglycerols. J Biol Chem 272:30848–30851

    Article  PubMed  CAS  Google Scholar 

  • Aravind L et al (1999) Sec14p-like domains in NF1 and Dbl-like proteins indicate lipid regulation of Ras and Rho signaling. Curr Biol 9:R195–R197

    Article  PubMed  CAS  Google Scholar 

  • Asp L et al (2009) Early stages of Golgi vesicle and tubule formation require diacylglycerol. Mol Biol Cell 20:780–790

    Article  PubMed  CAS  Google Scholar 

  • Balla A, Balla T (2006) Phosphatidylinositol 4-kinases: old enzymes with emerging functions. Trends Cell Biol 16:351–361

    Article  PubMed  CAS  Google Scholar 

  • Bankaitis VA et al (1990) An essential role for a phospholipid transfer protein in yeast Golgi function. Nature 347:561–562

    Article  PubMed  CAS  Google Scholar 

  • Bard F, Malhotra V (2006) The formation of TGN-to-plasma-membrane transport carriers. Annu Rev Cell Dev Biol 22:439–455

    Article  PubMed  CAS  Google Scholar 

  • Baron CL, Malhotra V (2002) Role of diacylglycerol in PKD recruitment to the TGN and protein transport to the plasma membrane. Science 295:325–328

    Article  PubMed  CAS  Google Scholar 

  • Bomar JM et al (2003) Mutations in a novel gene encoding a CRAL-TRIO domain cause human Cayman ataxia and ataxia/dystonia in the jittery mouse. Nat Genet 35:264–269

    Article  PubMed  CAS  Google Scholar 

  • Bossard C et al (2007) Dimeric PKD regulates membrane fission to form transport carriers at the TGN. J Cell Biol 179:1123–1131

    Article  PubMed  CAS  Google Scholar 

  • Burger KNJ (2000) Greasing membrane fusion and fission machineries. Traffic 1:605–613

    Article  PubMed  CAS  Google Scholar 

  • Caloca MJ et al (2003) Exchange factors of the RasGRP family mediate Ras activation in the Golgi. J Biol Chem 278:33465–33473

    Article  PubMed  CAS  Google Scholar 

  • Carlton JG, Cullen PJ (2005) Coincidence detection in phosphoinositide signaling. Trends Cell Biol 15:540–547

    Article  PubMed  CAS  Google Scholar 

  • Carmen-Lopez M et al (1994) A phosphatidylinositol/phosphatidylcholine transfer protein is required for differentiation of the dimorphic yeast Yarrowia lipolytica from the yeast to the mycelial form. J Cell Biol 124:113–127

    Article  Google Scholar 

  • Chantalat S et al (2004) The Arf activator Gea2p and the P-type ATPase Drs2p interact at the Golgi in Saccharomyces cerevisiae. J Cell Sci 117:711–722

    Article  PubMed  CAS  Google Scholar 

  • Chernomordik L et al (1995) Lipids in biological membrane fusion. J Membr Biol 146:1–14

    PubMed  CAS  Google Scholar 

  • Cichowski K, Jacks T (2001) NF1 tumor suppressor gene function: narrowing the GAP. Cell 104:593–604

    Article  PubMed  CAS  Google Scholar 

  • Cleves AE et al (1991) Mutations in the CDP-choline pathway for phospholipid biosynthesis bypass the requirement for an essential phospholipid transfer protein. Cell 64:789–800

    Article  PubMed  CAS  Google Scholar 

  • D’Angelo I et al (2006) A novel bipartite phospholipid-binding module in the neurofibromatosis type 1 protein. EMBO Rep 7:174–179

    Article  PubMed  Google Scholar 

  • Debant A et al (1996) The multidomain protein Trio binds the LAR transmembrane tyrosine phosphatase, contains a protein kinase domain, and has separate rac-specific and rho-specific guanine nucleotide exchange factor domains. Proc Natl Acad Sci U S A 93:5466–5471

    Article  PubMed  CAS  Google Scholar 

  • Dee CT, Moffat KG (2005) A novel family of mitochondrial proteins is represented by the Drosophila genes slmo, preli-like and real-time. Dev Genes Evol 215:248–254

    Article  PubMed  Google Scholar 

  • Demmel L et al (2008) The clathrin adaptor Gga2p is a phosphatidylinositol-4-phosphate effector at the Golgi exit. Mol Biol Cell 19:1991–2002

    Article  PubMed  CAS  Google Scholar 

  • Díaz Añel AM, Malhotra V (2005) PKCeta is required for β1γ2/β3γ2 and PKD mediated transport to the cell surface and the organization of the Golgi apparatus. J Cell Biol 169:83–91

    Article  PubMed  Google Scholar 

  • Fishman GA et al (2004) Vovel mutations in the cellular retinaldehyde-binding protein gene (RLBP1) associated with retinitis punctata albescens: evidence of interfamilial genetic heterogeneity and fundus changes in heterozygotes. Arch Opthamol 122:70–75

    Article  CAS  Google Scholar 

  • Gloor Y et al (2010) Interaction between Sec7p and Pik1p: the first clue for the regulation of a coincidence detection signal. Eur J Cell Biol 89:575–583

    Article  PubMed  CAS  Google Scholar 

  • Godi A et al (1999) ARF mediates recruitment of PtdIns 4-OH kinase beta and stimulates synthesis of PtdIns(4,5)P2 on the Golgi complex. Nat Cell Biol 1:280–287

    Article  PubMed  CAS  Google Scholar 

  • Golovleva I et al (2003) Disease causing mutations in the cellular retinaldehyde binding protein tighten and abolish ligand interactions. J Biol Chem 278:12397–12402

    Article  PubMed  CAS  Google Scholar 

  • Gotoda T et al (1995) Adult-onset spinocerebellar dysfunction caused by a mutation in the gene for alpha-tocopherol transfer protein. N Engl J Med 333:1313–1318

    Article  PubMed  CAS  Google Scholar 

  • de Graaf P et al (2004) Phosphatidylinositol 4-kinase beta is critical for functional association of rab11 with the Golgi complex. Mol Biol Cell 15:2038–2047

    Article  PubMed  CAS  Google Scholar 

  • Gu M et al (1992) Cloning and expression of a cytosolic megakaryocyte protein-tyrosine-phosphatase with sequence homology to retinaldehyde-binding protein and yeast SEC14p. Proc Natl Acad Sci U S A 89:2980–2984

    Article  PubMed  CAS  Google Scholar 

  • Habermehl D et al (2004) Recombinant SEC14-like proteins (TAP) possess GTPase activity. Biochem Biophys Res Commun 326:254–259

    Article  Google Scholar 

  • Hama H et al (1999) Direct involvement of phosphatidylinositol-4-phosphate in secretion in the yeast Saccharomyces cerevisiae. J Biol Chem 274:34294–34301

    Article  PubMed  CAS  Google Scholar 

  • Haynes LP et al (2005) Interaction of neuronal calcium sensor-1 (NCS-1) and ADP-ribosylation factor 1 allows bidirectional control of phosphatidylinositol-4-kinase beta and trans-Golgi network-plasma membrane traffic. J Biol Chem 280:6047–6054

    Article  PubMed  CAS  Google Scholar 

  • Hendricks KB et al (1999) Yeast homologue of neuronal frequenin is a regulator of phosphatidylinositol-4-OH kinase. Nat Cell Biol 1:234–241

    Article  PubMed  CAS  Google Scholar 

  • Hentati A et al (1996) Human alpha-tocopherol transfer protein: gene structure and mutations in familial vitamin E deficiency. Ann Neurol 39:295–300

    Article  PubMed  CAS  Google Scholar 

  • Kapranov P et al (2001) Nodule-specific regulation of phosphatidylinositol transfer protein expression in Lotus japonicus. Plant Cell 13:1369–1382

    PubMed  CAS  Google Scholar 

  • Kearns BG et al (1997) Essential role for diacylglycerol in protein transport from the yeast Golgi complex. Nature 387:101–105

    Article  PubMed  CAS  Google Scholar 

  • Kostenko EV et al (2004) The Sec14 homology domain regulates the cellular distribution and transforming activity of the Rho-specific guanine nucleotide exchange factor Dbs. J Biol Chem 280:2807–2817

    Article  PubMed  Google Scholar 

  • Lehel C et al (1995) Protein kinase C epsilon subcellular localization domains and proteolytic degradation sites. A model for protein kinase C conformational changes. J Biol Chem 270:19651–19658

    Article  PubMed  CAS  Google Scholar 

  • Li X et al (2002a) Analysis of oxysterol binding protein homologue Kes1p function in regulation of Sec14p-dependent protein transport from the yeast Golgi complex. J Cell Biol 157:63–77

    Article  CAS  Google Scholar 

  • Li X et al (2002b) Identification of a novel family of nonclassic yeast phosphatidylinositol transfer proteins whose function modulates phospholipase D activity and Sec14p-independent cell growth. Mol Biol Cell 11:1989–2005

    Google Scholar 

  • Liljedahl M et al (2001) Protein kinase D regulates the fission of cell surface destined transport carriers from the trans-Golgi network. Cell 104:409–420

    Article  PubMed  CAS  Google Scholar 

  • Litvak V et al (2005) Maintenance of the diacylglycerol level in the Golgi apparatus by the Nir2 protein is critical for Golgi secretory function. Nat Cell Biol 7:225–234

    Article  PubMed  CAS  Google Scholar 

  • Liu T et al (2005) Structural insights into the cellular retinaldehyde-binding protein (CRALBP). Proteins Struct Funct Bioinform 61:412–422

    Article  CAS  Google Scholar 

  • Maissel A et al (2006) PKCeta is localized in the Golgi, ER and nuclear envelope and translocates to the nuclear envelope upon PMA activation and serum-starvation: C1b domain and the pseudosubstrate containing fragmenttarget PKCeta to the Golgi and the nuclear envelope. Cell Signal 18:1127–1139

    Article  PubMed  CAS  Google Scholar 

  • Maw MA et al (1997) Mutation of the gene encoding cellular retinaldehyde-binding protein in autosomal recessive retinitis pigmentosa. Nat Genet 17:198–200

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin S, Murray D (2005) Plasma membrane phosphoinositide organization by protein electrostatics. Nature 438:605–611

    Article  PubMed  CAS  Google Scholar 

  • Meier R et al (2003) The molecular basis of vitamin E retention: structure of human alpha-tocopherol transfer protein. J Mol Biol 331:725–734

    Article  PubMed  CAS  Google Scholar 

  • Min KC et al (2003) Crystal structure of α-tocopherol transfer protein bound to its ligand: Implications for ataxia with vitamin E deficiency. Proc Natl Acad Sci U S A 100:14713–14718

    Article  PubMed  CAS  Google Scholar 

  • Mizuno-Yamasaki E et al (2010a) Phosphatidylinositol-4-phosphate controls both membrane recruitment and a regulatory switch of the Rab GEF Sec2. Dev Cell 18:828–840

    Article  CAS  Google Scholar 

  • Mizuno-Yamasaki E et al (2010b) Phosphatidylinositol 4-phosphate controls both membrane recruitment and a regulatory switch of the Rab GEF Sec2p. Dev Cell 18(5):828–840

    Article  CAS  Google Scholar 

  • Mousley CJ et al (2008) Trans-Golgi network and endosome dynamics connect ceramide homeostasis with regulation of the unfolded protein response and TOR signaling in yeast. Mol Biol Cell 19:4785–4803

    Article  PubMed  CAS  Google Scholar 

  • Muthusamy B-P et al (2009) Linking phospholipid flippases to vesicle-mediated transport. Biochim Biophys Acta 179:612–619

    Google Scholar 

  • Nakase Y et al (2001) The Schizosaccharomyces pombe spo20(+) gene encoding a homologue of Saccharomyces cerevisiae Sec14 plays an important role in forespore membrane formation. Mol Biol Cell 4:901–917

    Google Scholar 

  • Natarajan P et al (2004) Regulation of a golgi flippase by phosphoinositides and an Arf-GEF. Proc Natl Acad Sci U S A 101:10614–10619

    Article  PubMed  CAS  Google Scholar 

  • Ouachi K et al (1995) Ataxia with vitamin E deficiency is caused by mutations in the α-tocopherol transfer protein. Nat Genet 9:141–145

    Article  Google Scholar 

  • Peterman TK et al (2004) Patellin1, a novel Sec14-like protein, localizes to the cell plate and binds phosphoinositides. Plant Physiol 136:3080–3094

    Article  PubMed  CAS  Google Scholar 

  • Phillips SE et al (1999) Yeast Sec14p deficient in phosphatidylinositol transfer activity is functional in vivo. Mol Cell 4:187–197

    Article  PubMed  CAS  Google Scholar 

  • Polevoy G et al (2009) Dual roles for the Drosophila PI 4-kinase four wheel drive in localizing Rab11 during cytokinesis. J Cell Biol 187:847–858

    Article  PubMed  CAS  Google Scholar 

  • Preuss ML et al (2006) A role for the RabA4b effector protein PI-4Kbeta1 in polarized expansion of root hairs in Arabidopsis thaliana. J Cell Biol 172:261–268

    Article  Google Scholar 

  • Rivas MP et al (1999) Relationship between altered phospholipid metabolism, DAG, ‘bypass Sec14p’, and the inositol auxotrophy of yeast sac1 mutants. Mol Biol Cell 10:2235–2250

    PubMed  CAS  Google Scholar 

  • Routt SM et al (2005) Nonclassical PITPs activate phospholipase D via an Stt4p-dependent pathway and modulate function of late stages of the secretory pathway in vegetative yeast cells. Traffic 6:1157–1172

    Article  PubMed  CAS  Google Scholar 

  • Rudge SA et al (2004) Roles of phosphoinositides and of Spo14p (phospholipase D)-generated phosphatidic acid during yeast sporulation. Mol Biol Cell 15:207–218

    Article  PubMed  CAS  Google Scholar 

  • Ryan MM et al (2007) Conformational dynamics of the major yeast phosphatidylinositol transfer protein Sec14: Insights into the mechanisms of PL exchange and diseases of Sec14-like protein deficiencies. Mol Biol Cell 18:1928–1942

    Article  PubMed  CAS  Google Scholar 

  • Salama SR et al (1990) Cloning and characterization of the Kluyveromyces lactis SEC14: A gene whose product stimulates Golgi secretory function in S. cerevisiae. J Bacteriol 172:4510–4521

    PubMed  CAS  Google Scholar 

  • Schaaf G et al (2008) The functional anatomy of phospholipid binding and regulation of phosphoinositide homeostasis by proteins of the Sec14-superfamily. Mol Cell 29:191–206

    Article  PubMed  CAS  Google Scholar 

  • Schaaf G et al (2011) Resurrection of a functional phosphatidylinositol transfer protein from a pseudo-Sec14 scaffold by directed evolution. Mol Biol Cell 22(6):892–905

    Article  PubMed  CAS  Google Scholar 

  • Sciorra V et al (2005) Synthetic gene array analysis of the PtdIns 4-kinase Pik1p identifies components in a Golgi specific Ypt31/rab-GTPase signaling pathway. Mol Biol Cell 15:2038–2047

    Google Scholar 

  • Sha B et al (1998) Crystal structure of the Saccharomyces cerevisiae phosphatidylinositol transfer protein Sec14. Nature 391:506–510

    Article  PubMed  CAS  Google Scholar 

  • Shang X et al (2003) Concerted regulation of cell dynamics by BNIP-2 and Cdc42GAP homology/Sec14p-like, proline-rich, and GTPase-activating protein domains of a novel rhoGTPase-activating protein, BPGAP1. J Biol Chem 278:45903–45914

    Article  PubMed  CAS  Google Scholar 

  • Sirokmany G et al (2005) Sec14 homology domain targets p50RhoGAP to endosomes and provides a link between Rab- and Rho GTPases. J Biol Chem 281:6096–6105

    Article  PubMed  Google Scholar 

  • Skinner HB et al (1993) Phospholipid transfer activity is relevant to but not sufficient for the essential function of the yeast SEC14 gene product. EMBO J 12:4775–4784

    PubMed  CAS  Google Scholar 

  • Skinner HB et al (1995) Phosphatidylinositol transfer protein stimulates yeast Golgi secretory function by inhibiting choline-phosphate cytidylyltransferase activity. Proc Natl Acad Sci U S A 92:112–116

    Article  PubMed  CAS  Google Scholar 

  • Smirnova T et al (2007) Local polarity and hydrogen bonding inside the Sec14 PL-binding cavity: high-field multifrequency studies. Biophys J 92:3686–3695

    Article  PubMed  CAS  Google Scholar 

  • Stefan CJ, Manford AG, Baird D, Yamada-Hanff J, Mao Y, Emr SD (2011) Osh proteins regulate phosphoinositide metabolism at ER-plasma membrane contact sites. Cell 144:389–401

    Article  PubMed  CAS  Google Scholar 

  • Stenzel I et al (2008) The type B phosphatidylinositol-4-phosphate 5-kinase 3 is essential for root hair formation in Arabidopsis thaliana. Plant Cell 20:124–141

    Article  PubMed  CAS  Google Scholar 

  • Stocker A, Baumann U (2003) Supernatant protein factor in complex with RRR-alpha-tocopherylquinone: a link between oxidized vitamin E and cholesterol biosynthesis. J Mol Biol 332:759–765

    Article  PubMed  CAS  Google Scholar 

  • Strahl T, Thorner J (2007) Synthesis and function of membrane phosphoinositides in budding yeast, Saccharomyces cerevisiae. Biochim Biophys Acta 1771:353–404

    Article  PubMed  CAS  Google Scholar 

  • Szentpetery Z et al (2010) Acute manipulation of Golgi phosphoinositides to assess their importance in membrane trafficking and signaling. Proc Natl Acad Sci U S A 107:8225–8230

    Article  PubMed  CAS  Google Scholar 

  • Tcherkezian J, Lamarche-Vane N (2007) Current knowledge of the large RhoGAP family of proteins. Biol Cell 26:67–86

    Article  Google Scholar 

  • Ueda S et al (2004) Role of the Sec14-like domain of Dbl family exchange factors in the regulation of Rho family GTPases in different subcellular sites. Cell Signal 16:826–906

    Article  Google Scholar 

  • Vergés M et al (2006) The mammalian retromer regulates transcytosis of the polymeric immunoglobulin receptor. Nat Cell Biol 6:763–769

    Article  Google Scholar 

  • Vincent P et al (2005) A Sec14p-nodulin domain phosphatidylinositol transfer protein polarizes membrane growth of Arabidopsis thaliana root hairs. J Cell Biol 168:801–812

    Article  PubMed  CAS  Google Scholar 

  • Walch-Solimena C, Novick P (1999) The yeast phosphatidylinositol-4-OH kinase Pik1 regulates secretion at the Golgi. Nat Cell Biol 1:523–555

    Article  PubMed  CAS  Google Scholar 

  • Wang QJ et al (1999) Differential localization of protein kinase C delta by phorbol esters and related compounds using a fusion protein with green fluorescent protein. J Biol Chem 274:37233–37239

    Article  PubMed  CAS  Google Scholar 

  • Wang J et al (2003) Phosphatidylinositol-4-phosphate regulates targeting of clathrin adaptor AP-1 complexes to the Golgi. Cell 114:299–310

    Article  PubMed  CAS  Google Scholar 

  • Wang J et al (2007) PI4P promotes the recruitment of the GGA adaptor proteins to the trans-Golgi network and regulates their recognition of the ubiquitin sorting signal. Mol Biol Cell 18:2646–2655

    Article  PubMed  CAS  Google Scholar 

  • Welti S et al (2007) The sec14 homology module of neurofibromin binds cellular glycerophospholipids: mass spectrometry and structure of a lipid complex. J Mol Biol 366:551–562

    Article  PubMed  CAS  Google Scholar 

  • Wood CS et al (2009) PtdIns4P recognition by Vps74/GOLPH3 links PtdIns 4-kinase signaling to retrograde Golgi trafficking. J Cell Biol 187:967–975

    Article  PubMed  CAS  Google Scholar 

  • Wu WI et al (2000) A new gene involved in the transport-dependent metabolism of phosphatidylserine, PSTB2/PDR17, shares sequence similarity with the gene encoding the phosphatidylinositol/phosphatidylcholine transfer protein, SEC14. J Biol Chem 275:14446–14456

    Article  PubMed  CAS  Google Scholar 

  • Xie Z et al (1998) Phospholipase D activity is required for suppression of yeast phosphatidylinositol transfer protein defects. Proc Natl Acad Sci U S A 95:12346–12351

    Article  PubMed  CAS  Google Scholar 

  • Yanagisawa L et al (2002) Activity of specific lipid-regulated ARFGAPs is required for Sec14p-dependent Golgi secretory function in yeast. Mol Biol Cell 13:2193–2206

    Article  PubMed  CAS  Google Scholar 

  • Zhao X et al (2001) Interaction of neuronal calcium sensor-1 (NCS-1) with phosphatidylinositol-4-kinase beta stimulates lipid kinase activity and affects membrane trafficking in COS-7 cells. J Biol Chem 276:40183–40189

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl J. Mousley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Mousley, C.J., Davison, J.M., Bankaitis, V.A. (2012). Sec14 Like PITPs Couple Lipid Metabolism with Phosphoinositide Synthesis to Regulate Golgi Functionality. In: Balla, T., Wymann, M., York, J. (eds) Phosphoinositides II: The Diverse Biological Functions. Subcellular Biochemistry, vol 59. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3015-1_9

Download citation

Publish with us

Policies and ethics