Skip to main content

Mechanosensory Calcium Signaling

  • Chapter
  • First Online:
Calcium Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 740))

Abstract

Mechanotransduction describes the cellular process by which mechanical stimuli are translated into intracellular adaptive responses through biochemical signals. Current research has begun to focus on the once-forgotten organelle, the primary cilia, in this mechanotransduction process. Primary cilia are found on almost every cell type, with a functional role in transducing mechanical and extracellular signals towards intracellular responses through the ciliary extension into the extracellular space. In this regard, the modulation of intracellular calcium signaling by various mechanical stimuli has generated an assortment of attractive models to understand this mechanotransduction process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nauli SM, Williams JM, Akopov SE, Zhang L, Pearce WJ (2001) Developmental changes in ryanodine- and IP(3)-sensitive Ca(2+) pools in ovine basilar artery. Am J Physiol Cell Physiol 281:C1785–C1796

    PubMed  CAS  Google Scholar 

  2. Fregeau MO, Regimbald-Dumas Y, Guillemette G (2011) Positive regulation of inositol 1,4,5-trisphosphate-induced Ca2+ release by mammalian target of rapamycin (mTOR) in RINm5F cells. J Cell Biochem 112:723–733

    Article  PubMed  CAS  Google Scholar 

  3. Puri S, Magenheimer BS, Maser RL, Ryan EM, Zien CA, Walker DD, Wallace DP, Hempson SJ, Calvet JP (2004) Polycystin-1 activates the calcineurin/NFAT (nuclear factor of activated T-cells) signaling pathway. J Biol Chem 279:55455–55464

    Article  PubMed  CAS  Google Scholar 

  4. Wegierski T, Steffl D, Kopp C, Tauber R, Buchholz B, Nitschke R, Kuehn EW, Walz G, Kottgen M (2009) TRPP2 channels regulate apoptosis through the Ca2+ concentration in the endoplasmic reticulum. EMBO J 28:490–499

    Article  PubMed  CAS  Google Scholar 

  5. Mo M, Eskin SG, Schilling WP (1991) Flow-induced changes in Ca2+ signaling of vascular endothelial cells: effect of shear stress and ATP. Am J Physiol 260:H1698–H1707

    PubMed  CAS  Google Scholar 

  6. AbouAlaiwi WA, Lo ST, Nauli SM (2009) Primary cilia: highly sophisticated biological sensors. Sensors 9:7003–7020

    Article  CAS  Google Scholar 

  7. Kolb RJ, Nauli SM (2008) Ciliary dysfunction in polycystic kidney disease: an emerging model with polarizing potential. Front Biosci 13:4451–4466

    Article  PubMed  CAS  Google Scholar 

  8. Nauli SM, Zhou J (2004) Polycystins and mechanosensation in renal and nodal cilia. Bioessays 26:844–856

    Article  PubMed  CAS  Google Scholar 

  9. Liu B, Lu S, Zheng S, Jiang Z, Wang Y (2011) Two distinct phases of calcium signalling under flow. Cardiovasc Res 91(1):124–133

    Article  PubMed  CAS  Google Scholar 

  10. Sharma R, Yellowley CE, Civelek M, Ainslie K, Hodgson L, Tarbell JM, Donahue HJ (2002) Intracellular calcium changes in rat aortic smooth muscle cells in response to fluid flow. Ann Biomed Eng 30:371–378

    Article  PubMed  Google Scholar 

  11. Camello-Almaraz C, Gomez-Pinilla PJ, Pozo MJ, Camello PJ (2006) Mitochondrial reactive oxygen species and Ca2+ signaling. Am J Physiol Cell Physiol 291:C1082–C1088

    Article  PubMed  CAS  Google Scholar 

  12. Borisova L, Wray S, Eisner DA, Burdyga T (2009) How structure, Ca signals, and cellular communications underlie function in precapillary arterioles. Circ Res 105:803–810

    Article  PubMed  CAS  Google Scholar 

  13. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    Article  PubMed  CAS  Google Scholar 

  14. Rebecchi MJ, Pentyala SN (2000) Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol Rev 80:1291–1335

    PubMed  CAS  Google Scholar 

  15. Rhee SG (2001) Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem 70:281–312

    Article  PubMed  CAS  Google Scholar 

  16. Kwan HY, Leung PC, Huang Y, Yao X (2003) Depletion of intracellular Ca2+ stores sensitizes the flow-induced Ca2+ influx in rat endothelial cells. Circ Res 92:286–292

    Article  PubMed  CAS  Google Scholar 

  17. Schwarz G, Callewaert G, Droogmans G, Nilius B (1992) Shear stress-induced calcium transients in endothelial cells from human umbilical cord veins. J Physiol 458:527–538

    PubMed  CAS  Google Scholar 

  18. Nilius B, Droogmans G (2001) Ion channels and their functional role in vascular endothelium. Physiol Rev 81:1415–1459

    PubMed  CAS  Google Scholar 

  19. Oike M, Droogmans G, Nilius B (1994) Mechanosensitive Ca2+ transients in endothelial cells from human umbilical vein. Proc Natl Acad Sci USA 91:2940–2944

    Article  PubMed  CAS  Google Scholar 

  20. Deschner J, Hofman CR, Piesco NP, Agarwal S (2003) Signal transduction by mechanical strain in chondrocytes. Curr Opin Clin Nutr Metab Care 6:289–293

    PubMed  CAS  Google Scholar 

  21. Basson MD (2003) Paradigms for mechanical signal transduction in the intestinal epithelium. Category: molecular, cell, and developmental biology. Digestion 68:217–225

    Article  PubMed  Google Scholar 

  22. Ruwhof C, van der Laarse A (2000) Mechanical stress-induced cardiac hypertrophy: mechanisms and signal transduction pathways. Cardiovasc Res 47:23–37

    Article  PubMed  CAS  Google Scholar 

  23. Nauli SM, Haymour HS, AbouAlaiwi WA, Lo ST, Nauli AM (2011) Primary cilia are mechanosensory organelles in vestibular tissues. In: Mechanosensitivity and Mechanotransduction.. ISBN 978-990-481-9880-9881

    Google Scholar 

  24. Resnick A, Hopfer U (2007) Force-response considerations in ciliary mechanosensation. Biophys J 93:1380–1390

    Article  PubMed  CAS  Google Scholar 

  25. AbouAlaiwi WA, Takahashi M, Mell BR, Jones TJ, Ratnam S, Kolb RJ, Nauli SM (2009) Ciliary polycystin-2 is a mechanosensitive calcium channel involved in nitric oxide signaling cascades. Circ Res 104:860–869

    Article  PubMed  CAS  Google Scholar 

  26. Nauli SM, Kawanabe Y, Kaminski JJ, Pearce WJ, Ingber DE, Zhou J (2008) Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1. Circulation 117:1161–1171

    Article  PubMed  CAS  Google Scholar 

  27. Iomini C, Tejada K, Mo W, Vaananen H, Piperno G (2004) Primary cilia of human endothelial cells disassemble under laminar shear stress. J Cell Biol 164:811–817

    Article  PubMed  CAS  Google Scholar 

  28. Van der Heiden K, Groenendijk BC, Hierck BP, Hogers B, Koerten HK, Mommaas AM, Gittenberger-de Groot AC, Poelmann RE (2006) Monocilia on chicken embryonic endocardium in low shear stress areas. Dev Dyn 235:19–28

    Article  PubMed  CAS  Google Scholar 

  29. Van der Heiden K, Hierck BP, Krams R, de Crom R, Cheng C, Baiker M, Pourquie MJ, Alkemade FE, DeRuiter MC, Gittenberger-de Groot AC, Poelmann RE (2008) Endothelial primary cilia in areas of disturbed flow are at the base of atherosclerosis. Atherosclerosis 196:542–550

    Article  PubMed  CAS  Google Scholar 

  30. Ratnam S, Nauli SM (2010) Hypertension in autosomal dominant polycystic kidney disease: a clinical and basic science perspective. Int J Nephrol Urol 2:294–308

    Google Scholar 

  31. Weinbaum S, Tarbell JM, Damiano ER (2007) The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng 9:121–167

    Article  PubMed  CAS  Google Scholar 

  32. Yao Y, Rabodzey A, Dewey CF Jr (2007) Glycocalyx modulates the motility and proliferative response of vascular endothelium to fluid shear stress. Am J Physiol Heart Circ Physiol 293:H1023–H1030

    Article  PubMed  CAS  Google Scholar 

  33. Jensen CG, Poole CA, McGlashan SR, Marko M, Issa ZI, Vujcich KV, Bowser SS (2004) Ultrastructural, tomographic and confocal imaging of the chondrocyte primary cilium in situ. Cell Biol Int 28:101–110

    Article  PubMed  CAS  Google Scholar 

  34. Poole CA, Flint MH, Beaumont BW (1985) Analysis of the morphology and function of primary cilia in connective tissues: a cellular cybernetic probe? Cell Motil 5:175–193

    Article  PubMed  CAS  Google Scholar 

  35. Alenghat FJ, Nauli SM, Kolb R, Zhou J, Ingber DE (2004) Global cytoskeletal control of mechanotransduction in kidney epithelial cells. Exp Cell Res 301:23–30

    Article  PubMed  CAS  Google Scholar 

  36. Resnick A (2010) Use of optical tweezers to probe epithelial mechanosensation. J Biomed Opt 15:015005

    Article  PubMed  Google Scholar 

  37. Boehlke C, Kotsis F, Patel V, Braeg S, Voelker H, Bredt S, Beyer T, Janusch H, Hamann C, Godel M, Muller K, Herbst M, Hornung M, Doerken M, Kottgen M, Nitschke R, Igarashi P, Walz G, Kuehn EW (2010) Primary cilia regulate mTORC1 activity and cell size through Lkb1. Nat Cell Biol 12:1115–1122

    Article  PubMed  CAS  Google Scholar 

  38. Schneider L, Clement CA, Teilmann SC, Pazour GJ, Hoffmann EK, Satir P, Christensen ST (2005) PDGFRalphaalpha signaling is regulated through the primary cilium in fibroblasts. Curr Biol 15:1861–1866

    Article  PubMed  CAS  Google Scholar 

  39. Knight MM, McGlashan SR, Garcia M, Jensen CG, Poole CA (2009) Articular chondrocytes express connexin 43 hemichannels and P2 receptors – a putative mechanoreceptor complex involving the primary cilium? J Anat 214:275–283

    Article  PubMed  CAS  Google Scholar 

  40. Praetorius HA, Spring KR (2001) Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol 184:71–79

    Article  PubMed  CAS  Google Scholar 

  41. Schwartz EA, Leonard ML, Bizios R, Bowser SS (1997) Analysis and modeling of the primary cilium bending response to fluid shear. Am J Physiol 272:F132–F138

    PubMed  CAS  Google Scholar 

  42. Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33:129–137

    Article  PubMed  CAS  Google Scholar 

  43. Nauli SM, Rossetti S, Kolb RJ, Alenghat FJ, Consugar MB, Harris PC, Ingber DE, Loghman-Adham M, Zhou J (2006) Loss of polycystin-1 in human cyst-lining epithelia leads to ciliary dysfunction. J Am Soc Nephrol 17:1015–1025

    Article  PubMed  CAS  Google Scholar 

  44. Abdul-Majeed S, Nauli SM (2011) Calcium-mediated mechanisms of cystic expansion. Biochim Biophys Acta 1812(10):1281–1290

    PubMed  CAS  Google Scholar 

  45. Yoder BK, Hou X, Guay-Woodford LM (2002) The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J Am Soc Nephrol 13:2508–2516

    Article  PubMed  CAS  Google Scholar 

  46. Badano JL, Mitsuma N, Beales PL, Katsanis N (2006) The ciliopathies: an emerging class of human genetic disorders. Annu Rev Genomics Hum Genet 7:125–148

    Article  PubMed  CAS  Google Scholar 

  47. Hanaoka K, Qian F, Boletta A, Bhunia AK, Piontek K, Tsiokas L, Sukhatme VP, Guggino WB, Germino GG (2000) Co-assembly of polycystin-1 and -2 produces unique cation-permeable currents. Nature 408:990–994

    Article  PubMed  CAS  Google Scholar 

  48. Newby LJ, Streets AJ, Zhao Y, Harris PC, Ward CJ, Ong AC (2002) Identification, characterization, and localization of a novel kidney polycystin-1-polycystin-2 complex. J Biol Chem 277:20763–20773

    Article  PubMed  CAS  Google Scholar 

  49. Tsiokas L, Kim E, Arnould T, Sukhatme VP, Walz G (1997) Homo- and heterodimeric interactions between the gene products of PKD1 and PKD2. Proc Natl Acad Sci USA 94:6965–6970

    Article  PubMed  CAS  Google Scholar 

  50. Xu C, Shmukler BE, Nishimura K, Kaczmarek E, Rossetti S, Harris PC, Wandinger-Ness A, Bacallao RL, Alper SL (2009) Attenuated, flow-induced ATP release contributes to absence of flow-sensitive, purinergic Cai2+ signaling in human ADPKD cyst epithelial cells. Am J Physiol Renal Physiol 296:F1464–F1476

    Article  PubMed  CAS  Google Scholar 

  51. Cai Y, Maeda Y, Cedzich A, Torres VE, Wu G, Hayashi T, Mochizuki T, Park JH, Witzgall R, Somlo S (1999) Identification and characterization of polycystin-2, the PKD2 gene product. J Biol Chem 274:28557–28565

    Article  PubMed  CAS  Google Scholar 

  52. Chen XZ, Segal Y, Basora N, Guo L, Peng JB, Babakhanlou H, Vassilev PM, Brown EM, Hediger MA, Zhou J (2001) Transport function of the naturally occurring pathogenic polycystin-2 mutant, R742X. Biochem Biophys Res Commun 282:1251–1256

    Article  PubMed  CAS  Google Scholar 

  53. Koulen P, Cai Y, Geng L, Maeda Y, Nishimura S, Witzgall R, Ehrlich BE, Somlo S (2002) Polycystin-2 is an intracellular calcium release channel. Nat Cell Biol 4:191–197

    Article  PubMed  CAS  Google Scholar 

  54. O’Toole CM, Arnoult C, Darszon A, Steinhardt RA, Florman HM (2000) Ca(2+) entry through store-operated channels in mouse sperm is initiated by egg ZP3 and drives the acrosome reaction. Mol Biol Cell 11:1571–1584

    PubMed  Google Scholar 

  55. Tsiokas L (2009) Function and regulation of TRPP2 at the plasma membrane. Am J Physiol Renal Physiol 297:F1–F9

    Article  PubMed  CAS  Google Scholar 

  56. Qian F, Germino FJ, Cai Y, Zhang X, Somlo S, Germino GG (1997) PKD1 interacts with PKD2 through a probable coiled-coil domain. Nat Genet 16:179–183

    Article  PubMed  CAS  Google Scholar 

  57. Tsiokas L, Arnould T, Zhu C, Kim E, Walz G, Sukhatme VP (1999) Specific association of the gene product of PKD2 with the TRPC1 channel. Proc Natl Acad Sci USA 96:3934–3939

    Article  PubMed  CAS  Google Scholar 

  58. Chachisvilis M, Zhang YL, Frangos JA (2006) G protein-coupled receptors sense fluid shear stress in endothelial cells. Proc Natl Acad Sci USA 103:15463–15468

    Article  PubMed  CAS  Google Scholar 

  59. Putney JW Jr (1990) Receptor-regulated calcium entry. Pharmacol Ther 48:427–434

    Article  PubMed  CAS  Google Scholar 

  60. Leung PC, Cheng KT, Liu C, Cheung WT, Kwan HY, Lau KL, Huang Y, Yao X (2006) Mechanism of non-capacitative Ca2+ influx in response to bradykinin in vascular endothelial cells. J Vasc Res 43:367–376

    Article  PubMed  CAS  Google Scholar 

  61. Li YS, Haga JH, Chien S (2005) Molecular basis of the effects of shear stress on vascular endothelial cells. J Biomech 38:1949–1971

    Article  PubMed  Google Scholar 

  62. Praetorius HA, Spring KR (2003) The renal cell primary cilium functions as a flow sensor. Curr Opin Nephrol Hypertens 12:517–520

    Article  PubMed  Google Scholar 

  63. Muller JM, Chilian WM, Davis MJ (1997) Integrin signaling transduces shear stress – dependent vasodilation of coronary arterioles. Circ Res 80:320–326

    PubMed  CAS  Google Scholar 

  64. Lelievre S, Weaver VM, Bissell MJ (1996) Extracellular matrix signaling from the cellular membrane skeleton to the nuclear skeleton: a model of gene regulation. Recent Prog Horm Res 51:417–432

    PubMed  CAS  Google Scholar 

  65. Thodeti CK, Matthews B, Ravi A, Mammoto A, Ghosh K, Bracha AL, Ingber DE (2009) TRPV4 channels mediate cyclic strain-induced endothelial cell reorientation through integrin-to-integrin signaling. Circ Res 104:1123–1130

    Article  PubMed  CAS  Google Scholar 

  66. Wilson PD, Geng L, Li X, Burrow CR (1999) The PKD1 gene product, “polycystin-1,” is a tyrosine-phosphorylated protein that colocalizes with alpha2beta1-integrin in focal clusters in adherent renal epithelia. Lab Invest 79:1311–1323

    PubMed  CAS  Google Scholar 

  67. Geng L, Burrow CR, Li HP, Wilson PD (2000) Modification of the composition of polycystin-1 multiprotein complexes by calcium and tyrosine phosphorylation. Biochim Biophys Acta 1535:21–35

    PubMed  CAS  Google Scholar 

  68. Gilmore AP, Romer LH (1996) Inhibition of focal adhesion kinase (FAK) signaling in focal adhesions decreases cell motility and proliferation. Mol Biol Cell 7:1209–1224

    PubMed  CAS  Google Scholar 

  69. Otey CA, Carpen O (2004) Alpha-actinin revisited: a fresh look at an old player. Cell Motil Cytoskeleton 58:104–111

    Article  PubMed  CAS  Google Scholar 

  70. Sun HQ, Yamamoto M, Mejillano M, Yin HL (1999) Gelsolin, a multifunctional actin regulatory protein. J Biol Chem 274:33179–33182

    Article  PubMed  CAS  Google Scholar 

  71. Doyle AD, Lee J (2005) Cyclic changes in keratocyte speed and traction stress arise from Ca2+-dependent regulation of cell adhesiveness. J Cell Sci 118:369–379

    Article  PubMed  CAS  Google Scholar 

  72. Brundage RA, Fogarty KE, Tuft RA, Fay FS (1991) Calcium gradients underlying polarization and chemotaxis of eosinophils. Science 254:703–706

    Article  PubMed  CAS  Google Scholar 

  73. Wei C, Wang X, Chen M, Ouyang K, Song LS, Cheng H (2009) Calcium flickers steer cell migration. Nature 457:901–905

    Article  PubMed  CAS  Google Scholar 

  74. Langille BL, Adamson SL (1981) Relationship between blood flow direction and endothelial cell orientation at arterial branch sites in rabbits and mice. Circ Res 48:481–488

    PubMed  CAS  Google Scholar 

  75. Barbee KA, Mundel T, Lal R, Davies PF (1995) Subcellular distribution of shear stress at the surface of flow-aligned and nonaligned endothelial monolayers. Am J Physiol 268:H1765–H1772

    PubMed  CAS  Google Scholar 

  76. Dewey CF Jr, Bussolari SR, Gimbrone MA Jr, Davies PF (1981) The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng 103:177–185

    Article  PubMed  Google Scholar 

  77. Fung YC, Liu SQ (1993) Elementary mechanics of the endothelium of blood vessels. J Biomech Eng 115:1–12

    Article  PubMed  CAS  Google Scholar 

  78. Liu SQ, Yen M, Fung YC (1994) On measuring the third dimension of cultured endothelial cells in shear flow. Proc Natl Acad Sci USA 91:8782–8786

    Article  PubMed  CAS  Google Scholar 

  79. McCue S, Noria S, Langille BL (2004) Shear-induced reorganization of endothelial cell cytoskeleton and adhesion complexes. Trends Cardiovasc Med 14:143–151

    Article  PubMed  CAS  Google Scholar 

  80. Noria S, Xu F, McCue S, Jones M, Gotlieb AI, Langille BL (2004) Assembly and reorientation of stress fibers drives morphological changes to endothelial cells exposed to shear stress. Am J Pathol 164:1211–1223

    Article  PubMed  Google Scholar 

  81. Melchior B, Frangos JA (2010) Shear-induced endothelial cell-cell junction inclination. Am J Physiol Cell Physiol 299:C621–C629

    Article  PubMed  CAS  Google Scholar 

  82. Brooks AR, Lelkes PI, Rubanyi GM (2004) Gene expression profiling of vascular endothelial cells exposed to fluid mechanical forces: relevance for focal susceptibility to atherosclerosis. Endothelium 11:45–57

    Article  PubMed  CAS  Google Scholar 

  83. Cunningham KS, Gotlieb AI (2005) The role of shear stress in the pathogenesis of atherosclerosis. Lab Invest 85:9–23

    Article  PubMed  CAS  Google Scholar 

  84. DePaola N, Gimbrone MA Jr, Davies PF, Dewey CF Jr (1992) Vascular endothelium responds to fluid shear stress gradients. Arterioscler Thromb 12:1254–1257

    Article  PubMed  CAS  Google Scholar 

  85. Tzima E (2006) Role of small GTPases in endothelial cytoskeletal dynamics and the shear stress response. Circ Res 98:176–185

    Article  PubMed  CAS  Google Scholar 

  86. Tzima E, Irani-Tehrani M, Kiosses WB, Dejana E, Schultz DA, Engelhardt B, Cao G, DeLisser H, Schwartz MA (2005) A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437:426–431

    Article  PubMed  CAS  Google Scholar 

  87. Hierck BP, Van der Heiden K, Alkemade FE, Van de Pas S, Van Thienen JV, Groenendijk BC, Bax WH, Van der Laarse A, Deruiter MC, Horrevoets AJ, Poelmann RE (2008) Primary cilia sensitize endothelial cells for fluid shear stress. Dev Dyn 237:725–735

    Article  PubMed  CAS  Google Scholar 

  88. Poelmann RE, Van der Heiden K, Gittenberger-de Groot AC, Hierck BP (2008) Deciphering the endothelial shear stress sensor. Circulation 117:1124–1126

    Article  PubMed  Google Scholar 

  89. Dekker RJ, van Soest S, Fontijn RD, Salamanca S, de Groot PG, VanBavel E, Pannekoek H, Horrevoets AJ (2002) Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Kruppel-like factor (KLF2). Blood 100:1689–1698

    Article  PubMed  CAS  Google Scholar 

  90. Dekker RJ, van Thienen JV, Rohlena J, de Jager SC, Elderkamp YW, Seppen J, de Vries CJ, Biessen EA, van Berkel TJ, Pannekoek H, Horrevoets AJ (2005) Endothelial KLF2 links local arterial shear stress levels to the expression of vascular tone-regulating genes. Am J Pathol 167:609–618

    Article  PubMed  CAS  Google Scholar 

  91. Wang N, Miao H, Li YS, Zhang P, Haga JH, Hu Y, Young A, Yuan S, Nguyen P, Wu CC, Chien S (2006) Shear stress regulation of Kruppel-like factor 2 expression is flow pattern-specific. Biochem Biophys Res Commun 341:1244–1251

    Article  PubMed  CAS  Google Scholar 

  92. Dai G, Kaazempur-Mofrad MR, Natarajan S, Zhang Y, Vaughn S, Blackman BR, Kamm RD, Garcia-Cardena G, Gimbrone MA Jr (2004) Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature. Proc Natl Acad Sci USA 101:14871–14876

    Article  PubMed  CAS  Google Scholar 

  93. Caille N, Thoumine O, Tardy Y, Meister JJ (2002) Contribution of the nucleus to the mechanical properties of endothelial cells. J Biomech 35:177–187

    Article  PubMed  Google Scholar 

  94. Sato M, Levesque MJ, Nerem RM (1987) Micropipette aspiration of cultured bovine aortic endothelial cells exposed to shear stress. Arteriosclerosis 7:276–286

    Article  PubMed  CAS  Google Scholar 

  95. Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127

    Article  PubMed  CAS  Google Scholar 

  96. Galbraith CG, Skalak R, Chien S (1998) Shear stress induces spatial reorganization of the endothelial cell cytoskeleton. Cell Motil Cytoskeleton 40:317–330

    Article  PubMed  CAS  Google Scholar 

  97. Maniotis AJ, Bojanowski K, Ingber DE (1997) Mechanical continuity and reversible chromosome disassembly within intact genomes removed from living cells. J Cell Biochem 65:114–130

    Article  PubMed  CAS  Google Scholar 

  98. Gimbrone MA Jr, Resnick N, Nagel T, Khachigian LM, Collins T, Topper JN (1997) Hemodynamics, endothelial gene expression, and atherogenesis. Ann N Y Acad Sci 811:1–10, discussion 10–11

    Article  PubMed  CAS  Google Scholar 

  99. Ingber DE, Folkman J (1989) Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J Cell Biol 109:317–330

    Article  PubMed  CAS  Google Scholar 

  100. Maniotis AJ, Chen CS, Ingber DE (1997) Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci USA 94:849–854

    Article  PubMed  CAS  Google Scholar 

  101. Ingber DE (1993) Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. J Cell Sci 104(Pt 3):613–627

    PubMed  Google Scholar 

  102. Evans E, Yeung A (1989) Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys J 56:151–160

    Article  PubMed  CAS  Google Scholar 

  103. Lauffenburger DA, Horwitz AF (1996) Cell migration: a physically integrated molecular process. Cell 84:359–369

    Article  PubMed  CAS  Google Scholar 

  104. Sheetz MP, Felsenfeld DP, Galbraith CG (1998) Cell migration: regulation of force on extracellular-matrix-integrin complexes. Trends Cell Biol 8:51–54

    Article  PubMed  CAS  Google Scholar 

  105. Li S, Butler P, Wang Y, Hu Y, Han DC, Usami S, Guan JL, Chien S (2002) The role of the dynamics of focal adhesion kinase in the mechanotaxis of endothelial cells. Proc Natl Acad Sci USA 99:3546–3551

    Article  PubMed  CAS  Google Scholar 

  106. Li S, Huang NF, Hsu S (2005) Mechanotransduction in endothelial cell migration. J Cell Biochem 96:1110–1126

    Article  PubMed  CAS  Google Scholar 

  107. Go YM, Park H, Maland MC, Darley-Usmar VM, Stoyanov B, Wetzker R, Jo H (1998) Phosphatidylinositol 3-kinase gamma mediates shear stress-dependent activation of JNK in endothelial cells. Am J Physiol 275:H1898–H1904

    PubMed  CAS  Google Scholar 

  108. Urbich C, Dernbach E, Reissner A, Vasa M, Zeiher AM, Dimmeler S (2002) Shear stress-induced endothelial cell migration involves integrin signaling via the fibronectin receptor subunits alpha(5) and beta(1). Arterioscler Thromb Vasc Biol 22:69–75

    Article  PubMed  CAS  Google Scholar 

  109. Malek AM, Izumo S (1996) Mechanism of endothelial cell shape change and cytoskeletal remodeling in response to fluid shear stress. J Cell Sci 109(Pt 4):713–726

    PubMed  CAS  Google Scholar 

  110. Miyazaki T, Ohata H, Yamamoto M, Momose K (2001) Spontaneous and flow-induced Ca2+ transients in retracted regions in endothelial cells. Biochem Biophys Res Commun 281:172–179

    Article  PubMed  CAS  Google Scholar 

  111. Yoshikawa N, Ariyoshi H, Ikeda M, Sakon M, Kawasaki T, Monden M (1997) Shear-stress causes polarized change in cytoplasmic calcium concentration in human umbilical vein endothelial cells (HUVECs). Cell Calcium 22:189–194

    Article  PubMed  CAS  Google Scholar 

  112. AbouAlaiwi WA, Ratnam S, Booth RL, Shah JV, Nauli SM (2011) Endothelial cells from humans and mice with polycystic kidney disease are characterized by polyploidy and chromosome segregation defects through survivin down-regulation. Hum Mol Genet 20:354–367

    Article  PubMed  CAS  Google Scholar 

  113. Egorova AD, Khedoe PP, Goumans MJ, Yoder BK, Nauli SM, Ten Dijke P, Poelmann RE, Hierck BP (2011) Lack of primary cilia primes shear-induced endothelial-to-mesenchymal transition. Circ Res 108(9):1093–1101

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Due to restricted space, we apologize to those whose work is not described in this review. Works from our laboratory that are cited in this review have been supported by grants from the National Institutes of Health (DK080640), and the NIH Recovery Act Funds. Authors are grateful to Charisse Montgomery for her editorial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surya M. Nauli Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Jones, T.J., Nauli, S.M. (2012). Mechanosensory Calcium Signaling. In: Islam, M. (eds) Calcium Signaling. Advances in Experimental Medicine and Biology, vol 740. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2888-2_46

Download citation

Publish with us

Policies and ethics