Skip to main content

Pyridine Nucleotide Metabolites and Calcium Release from Intracellular Stores

  • Chapter
  • First Online:
Book cover Calcium Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 740))

Abstract

Ca2+ signals are probably the most common intracellular signaling elements, controlling an extensive range of responses in virtually all cells. Many cellular stimuli, often acting at cell surface receptors, evoke Ca2+ signals by mobilizing Ca2+ from intracellular stores. Inositol trisphosphate (IP3) was the first messenger shown to link events at the plasma membrane to release of Ca2+ from the endoplasmic reticulum (ER), through activation of IP3-gated Ca2+ release channels (IP3 receptors). Subsequently, two additional Ca2+ mobilizing messengers were discovered, cADPR and NAADP. Both are metabolites of pyridine nucleotides, and may be produced by the same class of enzymes, ADP-ribosyl cyclases, such as CD38. Whilst cADPR mobilizes Ca2+ from the ER by activation of ryanodine receptors (RyRs), NAADP releases Ca2+ from acidic stores by a mechanism involving the activation of two pore channels (TPCs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ringer S (1882) Concerning the influence exerted by each of the constituents of the blood on the contraction of the ventricle. J Physiol 3:380–393

    PubMed  CAS  Google Scholar 

  2. Ashley CC, Ridgway EB (1968) Simultaneous recording of membrane potential, calcium transient and tension in single muscle fibers. Nature 219:1168–1169

    Article  PubMed  CAS  Google Scholar 

  3. Douglas WW, Poisner AM (1964) Stimulus-secretion coupling in a neurosecretory organ: the role of calcium in the release of vasopressin from the neurohypophysis. J Physiol 172:1–18

    PubMed  CAS  Google Scholar 

  4. Nielsen SP, Petersen OH (1972) Transport of calcium in the perfused submandibular gland of the cat. J Physiol 223:685–697

    PubMed  CAS  Google Scholar 

  5. Michell RH (1975) Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta 415:81–147

    PubMed  CAS  Google Scholar 

  6. Berridge MJ (1983) Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol. Biochem J 212:849–858

    PubMed  CAS  Google Scholar 

  7. Streb H, Irvine RF, Berridge MJ, Schulz I (1983) Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 306:67–69

    Article  PubMed  CAS  Google Scholar 

  8. Supattapone S, Worley PF, Baraban JM, Snyder SH (1988) Solubilization, purification, and characterization of an inositol trisphosphate receptor. J Biol Chem 263:1530–1534

    PubMed  CAS  Google Scholar 

  9. Maeda N, Niinobe M, Mikoshiba K (1990) A cerebellar Purkinje cell marker P400 protein is an inositol 1,4,5-trisphosphate (InsP3) receptor protein. Purification and characterization of InsP3 receptor complex. EMBO J 9:61–67

    PubMed  CAS  Google Scholar 

  10. Furuichi T, Yoshikawa S, Miyawaki A, Wada K, Maeda N, Mikoshiba K (1989) Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400. Nature 342:32–38

    Article  PubMed  CAS  Google Scholar 

  11. Mignery GA, Sudhof TC, Takei K, De Camilli P (1989) Putative receptor for inositol 1,4,5-trisphosphate similar to ryanodine receptor. Nature 342:192–195

    Article  PubMed  CAS  Google Scholar 

  12. Berridge MJ (1993) Inositol trisphosphate and calcium signalling. Nature 361:315–325

    Article  PubMed  CAS  Google Scholar 

  13. Whitaker MJ, Irvine RF (1984) lnositol (1,4,5) trisphosphate microinjection activates sea urchin eggs. Nature 312:636–639

    Article  CAS  Google Scholar 

  14. Clapper DL, Lee HC (1985) Inositol trisphosphate induces calcium release from nonmitochondrial stores i sea urchin egg homogenates. J Biol Chem 260:13947–13954

    PubMed  CAS  Google Scholar 

  15. Clapper DL, Walseth TF, Dargie PJ, Lee HC (1987) Pyridine nucleotide metabolites stimulate calcium release from sea urchin egg microsomes desensitized to inositol trisphosphate. J Biol Chem 262:9561–9568

    PubMed  CAS  Google Scholar 

  16. Lee HC, Walseth TF, Bratt GT, Hayes RN, Clapper DL (1989) Structural determination of a cyclic metabolite of NAD with intracellular calcium-mobilizing activity. J Biol Chem 264:1608–1615

    PubMed  CAS  Google Scholar 

  17. Lee HC, Aarhus R (1995) A derivative of NADP mobilizes calcium stores insensitive to inositol trisphosphate and cyclic ADP-ribose. J Biol Chem 270:2152–2157

    Article  PubMed  CAS  Google Scholar 

  18. Rusinko N, Lee HC (1989) Widespread occurrence in animal tissues of an enzyme catalyzing the conversion of NAD into a cyclic metabolite with intracellular calcium-mobilizing activity. J Biol Chem 264:11725–11731

    PubMed  CAS  Google Scholar 

  19. Hellmich MR, Strumwasser F (1991) Purification and characterization of a molluscan egg-specific NADase, a second-messenger enzyme. Cell Regul 2:193–202

    PubMed  CAS  Google Scholar 

  20. Glick DL, Hellmich MR, Beushausen S, Tempst P, Bayley H, Strumwasser F (1991) Primary structure of a molluscan egg-specific NADase, a second-messenger enzyme. Cell Regul 2:211–218

    PubMed  CAS  Google Scholar 

  21. Lee HC, Aarhus R (1991) ADP-ribosyl cyclase: an enzyme that cyclizes NAD+ into a calcium-mobilizing metabolite. Cell Regul 2:203–209

    PubMed  CAS  Google Scholar 

  22. Malavasi F, Deaglio S, Funaro A, Ferrero E, Horenstein AL, Ortolan E, Vaisitti T, Aydin S (2008) Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol Rev 88:841–886

    Article  PubMed  CAS  Google Scholar 

  23. Howard M, Grimaldi JC, Bazan JF, Lund FE, Santosargumedo L, Parkhouse RME, Walseth TF, Lee HC (1993) Formation and hydrolysis of cyclic ADP ribose catalyzed by lymphocyte antigen-CD38. Science 262:1056–1059

    Article  PubMed  CAS  Google Scholar 

  24. Aarhus R, Graeff RM, Dickey DM, Walseth TF, Lee HC (1995) ADP-ribosyl cyclase and CD38 catalyze the synthesis of a calcium- mobilizing metabolite from NADP. J Biol Chem 270:30327–30333

    Article  PubMed  CAS  Google Scholar 

  25. Graeff R, Liu Q, Kriksunov IA, Hao Q, Lee HC (2006) Acidic residues at the active sites of CD38 and ADP-ribosyl cyclase determine nicotinic acid adenine dinucleotide phosphate (NAADP) synthesis and hydrolysis activities. J Biol Chem 281:28951–28957

    Article  PubMed  CAS  Google Scholar 

  26. Berridge G, Cramer R, Galione A, Patel S (2002) Metabolism of the novel Ca2+-mobilizing messenger nicotinic acid-adenine dinucleotide phosphate via a 2’-specific Ca2+-dependent phosphatase. Biochem J 365:295–301

    Article  PubMed  CAS  Google Scholar 

  27. Lee HC (2000) Enzymatic functions and structures of CD38 and homologs. Chem Immunol 75:39–59

    Article  PubMed  CAS  Google Scholar 

  28. Galione A, Lee HC, Busa WB (1991) Ca2+-induced Ca2+ release in sea urchin egg homogenates: modulation by cyclic ADP-ribose. Science 253:1143–1146

    Article  PubMed  CAS  Google Scholar 

  29. Galione A, Churchill G (2000) Cyclic ADP-ribose as a calcium mobilizing messenger. Science STKE 1–6. www.stke.org/cgi/content/full/OC_sigtrans;2000/41/pe1

  30. Fill M, Copello JA (2002) Ryanodine receptor calcium release channels. Physiol Rev 82:893–922

    PubMed  CAS  Google Scholar 

  31. McPherson SM, McPherson PS, Mathews L, Campbell KP, Longo FJ (1992) Cortical localization of a calcium release channel in sea urchin eggs. J Cell Biol 116:1111–1121

    Article  PubMed  CAS  Google Scholar 

  32. Lokuta AJ, Darszon A, Beltran C, Valdivia HH (1998) Detection and functional characterization of ryanodine receptors from sea urchin eggs. J Physiol (Lond) 510:155–164

    Article  CAS  Google Scholar 

  33. Shiwa M, Murayama T, Ogawa Y (2002) Molecular cloning and characterization of ryanodine receptor from unfertilized sea urchin eggs. Am J Physiol Regul Integr Comp Physiol 282:R727–R737

    PubMed  CAS  Google Scholar 

  34. Taylor CW (1998) Inositol trisphosphate receptors: Ca2+-modulated intracellular Ca2+ channels. Biochim Biophys Acta 1436:19–33

    PubMed  CAS  Google Scholar 

  35. Roderick HL, Berridge MJ, Bootman MD (2003) Calcium-induced calcium release. Curr Biol 13:R425

    Article  PubMed  CAS  Google Scholar 

  36. Lee HC (1993) Potentiation of calcium- and caffeine-induced calcium release by cyclic ADP-ribose. J Biol Chem 268:293–299

    PubMed  CAS  Google Scholar 

  37. Lee HC, Aarhus R, Graeff RM (1995) Sensitization of calcium-induced calcium release by cyclic ADP-ribose and calmodulin. J Biol Chem 270:9060–9066

    Article  PubMed  CAS  Google Scholar 

  38. Zhu X, Ghanta J, Walker JW, Allen PD, Valdivia HH (2004) The calmodulin binding region of the skeletal ryanodine receptor acts as a self-modulatory domain. Cell Calcium 35:165–177

    Article  PubMed  CAS  Google Scholar 

  39. Thomas JM, Summerhill RJ, Fruen BR, Churchill GC, Galione A (2002) Calmodulin dissociation mediates desensitization of the cADPR-induced Ca2+ release mechanism. Curr Biol 12:2018–2022

    Article  PubMed  CAS  Google Scholar 

  40. Noguchi N, Takasawa S, Nata K, Tohgo A, Kato I, Ikehata F, Yonekura H, Okamoto H (1997) Cyclic ADP-ribose binds to FK506-binding protein 12.6 to release Ca2+ from islet microsomes. J Biol Chem 272:3133–3136

    Article  PubMed  CAS  Google Scholar 

  41. Tang WX, Chen YF, Zou AP, Campbell WB, Li PL (2002) Role of FKBP12.6 in cADPR-induced activation of reconstituted ryanodine receptors from arterial smooth muscle. Am J Physiol Heart Circ Physiol 282:H1304–H1310

    PubMed  CAS  Google Scholar 

  42. Wang YX, Zheng YM, Mei QB, Wang QS, Collier ML, Fleischer S, Xin HB, Kotlikoff M (2004) FKBP12.6 and cADPR regulation of Ca2+ release in smooth muscle cells. Am J Physiol Cell Physiol 286:C538–C546

    Article  PubMed  CAS  Google Scholar 

  43. Morita K, Kitayama T, Kitayama S, Dohi T (2006) Cyclic ADP-ribose requires FK506-binding protein to regulate intracellular Ca2+ dynamics and catecholamine release in acetylcholine-stimulated bovine adrenal chromaffin cells. J Pharmacol Sci 101:40–51

    Article  PubMed  CAS  Google Scholar 

  44. Zheng J, Wenzhi B, Miao L, Hao Y, Zhang X, Yin W, Pan J, Yuan Z, Song B, Ji G (2010) Ca2+ release induced by cADP-ribose is mediated by FKBP12.6 proteins in mouse bladder smooth muscle. Cell Calcium 47:449–457

    Article  PubMed  CAS  Google Scholar 

  45. Zhang X, Tallini YN, Chen Z, Gan L, Wei B, Doran R, Miao L, Xin HB, Kotlikoff MI, Ji G (2009) Dissociation of FKBP12.6 from ryanodine receptor type 2 is regulated by cyclic ADP-ribose but not beta-adrenergic stimulation in mouse cardiomyocytes. Cardiovasc Res 84:253–262

    Article  PubMed  CAS  Google Scholar 

  46. Copello JA, Qi Y, Jeyakumar LH, Ogunbunmi E, Fleischer S (2001) Lack of effect of cADP-ribose and NAADP on the activity of skeletal muscle and heart ryanodine receptors. Cell Calcium 30:269–284

    Article  PubMed  CAS  Google Scholar 

  47. Walseth TF, Lee HC (1993) Synthesis and characterization of antagonists of cyclic-ADP-ribose-induced Ca2+ release. Biochim Biophys Acta 1178:235–242

    Article  PubMed  CAS  Google Scholar 

  48. Sethi JK, Empson RM, Bailey VC, Potter BV, Galione A (1997) 7-Deaza-8-bromo-cyclic ADP-ribose, the first membrane-permeant, hydrolysis-resistant cyclic ADP-ribose antagonist. J Biol Chem 272:16358–16363

    Article  PubMed  CAS  Google Scholar 

  49. Guse AH, Lee HC (2008) NAADP: a universal Ca2+ trigger. Sci Signal 1:re10

    Article  PubMed  CAS  Google Scholar 

  50. Genazzani AA, Mezna M, Summerhill RJ, Galione A, Michelangeli F (1997) Kinetic properties of nicotinic acid adenine dinucleotide phosphate- induced Ca2+ release. J Biol Chem 272:7669–7675

    Article  PubMed  CAS  Google Scholar 

  51. Genazzani AA, Mezna M, Dickey DM, Michelangeli F, Walseth TF, Galione A (1997) Pharmacological properties of the Ca2+-release mechanism sensitive to NAADP in the sea urchin egg. Br J Pharmacol 121:1489–1495

    Article  PubMed  CAS  Google Scholar 

  52. Chini EN, Dousa TP (1996) Nicotinate-adenine dinucleotide phosphate-induced Ca2+-release does not behave as a Ca2+-induced Ca2+-release system. Biochem J 316:709–711

    PubMed  CAS  Google Scholar 

  53. Genazzani AA, Galione A (1996) Nicotinic acid-adenine dinucleotide phosphate mobilizes Ca2+ from a thapsigargin-insensitive pool. Biochem J 315:721–725

    PubMed  CAS  Google Scholar 

  54. Lee HC, Aarhus R (2000) Functional visualization of the separate but interacting calcium stores sensitive to NAADP and cyclic ADP-ribose. J Cell Sci 113:4413–4420

    PubMed  CAS  Google Scholar 

  55. Aarhus R, Dickey DM, Graeff RM, Gee KR, Walseth TF, Lee HC (1996) Activation and inactivation of Ca2+ release by NAADP+. J Biol Chem 271:8513–8516

    Article  PubMed  CAS  Google Scholar 

  56. Churchill GC, Galione A (2001) NAADP induces Ca2+ oscillations via a two-pool mechanism by priming IP3 – and cADPR-sensitive Ca2+ stores. EMBO J 20:2666–2671

    Article  PubMed  CAS  Google Scholar 

  57. Churchill GC, Okada Y, Thomas JM, Genazzani AA, Patel S, Galione A (2002) NAADP mobilizes Ca2+ from reserve granules, a lysosome-related organelle, in sea urchin eggs. Cell 111:703–708

    Article  PubMed  CAS  Google Scholar 

  58. Cancela JM, Churchill GC, Galione A (1999) Coordination of agonist-induced Ca2+-signalling patterns by NAADP in pancreatic acinar cells. Nature 398:74–76

    Article  PubMed  CAS  Google Scholar 

  59. Naylor E, Arredouani A, Vasudevan SR, Lewis AM, Parkesh R, Mizote A, Rosen D, Thomas JM, Izumi M, Ganesan A, Galione A, Churchill GC (2009) Identification of a chemical probe for NAADP by virtual screening. Nat Chem Biol 5:220–226

    Article  PubMed  CAS  Google Scholar 

  60. Patel S, Churchill GC, Galione A (2001) Coordination of Ca2+ signalling by NAADP. Trends Biochem Sci 26:482–489

    Article  PubMed  CAS  Google Scholar 

  61. Galione A, Morgan AJ, Arredouani A, Davis LC, Rietdorf K, Ruas M, Parrington J (2010) NAADP as an intracellular messenger regulating lysosomal calcium-release channels. Biochem Soc Trans 38:1424–1431

    Article  PubMed  CAS  Google Scholar 

  62. Jardin I, Lopez JJ, Pariente JA, Salido GM, Rosado JA (2008) Intracellular calcium release from human platelets: different messengers for multiple stores. Trends Cardiovasc Med 18:57–61

    Article  PubMed  CAS  Google Scholar 

  63. Lloyd-Evans E, Morgan AJ, He X, Smith DA, Elliot-Smith E, Sillence DJ, Churchill GC, Schuchman EH, Galione A, Platt FM (2008) Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nat Med 14:1247–1255

    Article  PubMed  CAS  Google Scholar 

  64. Bargal R, Avidan N, Ben-Asher E, Olender Z, Zeigler M, Frumkin A, Raas-Rothschild A, Glusman G, Lancet D, Bach G (2000) Identification of the gene causing mucolipidosis type IV. Nat Genet 26:118–123

    Article  PubMed  CAS  Google Scholar 

  65. Sun M, Goldin E, Stahl S, Falardeau JL, Kennedy JC, Acierno JS Jr, Bove C, Kaneski CR, Nagle J, Bromley MC, Colman M, Schiffmann R, Slaugenhaupt SA (2000) Mucolipidosis type IV is caused by mutations in a gene encoding a novel transient receptor potential channel. Hum Mol Genet 9:2471–2478

    Article  PubMed  CAS  Google Scholar 

  66. Bach G (2001) Mucolipidosis type IV. Mol Genet Metab 73:197–203

    Article  PubMed  CAS  Google Scholar 

  67. Galione A, Evans AM, Ma J, Parrington J, Arredouani A, Cheng X, Zhu MX (2009) The acid test: the discovery of two-pore channels (TPCs) as NAADP-gated endolysosomal Ca(2+) release channels. Pflugers Arch 458:869–876

    Article  PubMed  CAS  Google Scholar 

  68. Ishibashi K, Suzuki M, Imai M (2000) Molecular cloning of a novel form (two-repeat) protein related to voltage-gated sodium and calcium channels. Biochem Biophys Res Commun 270:370–376

    Article  PubMed  CAS  Google Scholar 

  69. Furuichi T, Cunningham KW, Muto S (2001) A putative two pore channel AtTPC1 mediates Ca2+ flux in Arabidopsis leaf cells. Plant Cell Physiol 42:900–905

    Article  PubMed  CAS  Google Scholar 

  70. Peiter E, Maathuis FJ, Mills LN, Knight H, Pelloux J, Hetherington AM, Sanders D (2005) The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement. Nature 434:404–408

    Article  PubMed  CAS  Google Scholar 

  71. Hedrich R, Marten I (2011) TPC1 – SV channels gain shape. Mol Plant 4:428–441

    Article  PubMed  CAS  Google Scholar 

  72. Calcraft PJ, Ruas M, Pan Z, Cheng X, Arredouani A, Hao X, Tang J, Rietdorf K, Teboul L, Chuang KT, Lin P, Xiao R, Wang C, Zhu Y, Lin Y, Wyatt CN, Parrington J, Ma J, Evans AM, Galione A, Zhu MX (2009) NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature 459:596–600

    Article  PubMed  CAS  Google Scholar 

  73. Zhang F, Li PL (2007) Reconstitution and characterization of a nicotinic acid adenine dinucleotide phosphate (NAADP)-sensitive Ca2+ release channel from liver lysosomes of rats. J Biol Chem 282:25259–25269

    Article  PubMed  CAS  Google Scholar 

  74. Zhang F, Jin S, Yi F, Li PL (2009) TRP-ML1 functions as a lysosomal NAADP-sensitive Ca2+ release channel in coronary arterial myocytes. J Cell Mol Med 13:3174–3185

    Article  PubMed  Google Scholar 

  75. Pryor PR, Reimann F, Gribble FM, Luzio JP (2006) Mucolipin-1 Is a lysosomal membrane protein required for intracellular lactosylceramide traffic. Traffic 7:1388–1398

    Article  PubMed  CAS  Google Scholar 

  76. Yamaguchi S, Jha A, Li Q, Soyombo AA, Dickinson GD, Churamani D, Brailoiu E, Patel S, Muallem S (2011) TRPML1 and two-pore channels are functionally independent organellar ion channels. J Biol Chem 286:22934–22942

    Article  PubMed  CAS  Google Scholar 

  77. Zong X, Schieder M, Cuny H, Fenske S, Gruner C, Rotzer K, Griesbeck O, Harz H, Biel M, Wahl-Schott C (2009) The two-pore channel TPCN2 mediates NAADP-dependent Ca2+-release from lysosomal stores. Pflugers Arch 458:891–899

    Article  PubMed  CAS  Google Scholar 

  78. Brailoiu E, Churamani D, Cai X, Schrlau MG, Brailoiu GC, Gao X, Hooper R, Boulware MJ, Dun NJ, Marchant JS, Patel S (2009) Essential requirement for two-pore channel 1 in NAADP-mediated calcium signaling. J Cell Biol 186:201–209

    Article  PubMed  CAS  Google Scholar 

  79. Kinnear NP, Boittin FX, Thomas JM, Galione A, Evans AM (2004) Lysosome-sarcoplasmic reticulum junctions. A trigger zone for calcium signaling by nicotinic acid adenine dinucleotide phosphate and endothelin-1. J Biol Chem 279:54319–54326

    Article  PubMed  CAS  Google Scholar 

  80. Kinnear NP, Wyatt CN, Clark JH, Calcraft PJ, Fleischer S, Jeyakumar LH, Nixon GF, Evans AM (2008) Lysosomes co-localize with ryanodine receptor subtype 3 to form a trigger zone for calcium signalling by NAADP in rat pulmonary arterial smooth muscle. Cell Calcium 44:190–201

    Article  PubMed  CAS  Google Scholar 

  81. Ogunbayo OA, Zhu Y, Rossi D, Sorrentino V, Ma J, Zhu MX, Evans AM (2011) Cyclic adenosine diphosphate ribose activates ryanodine receptors, whereas NAADP activates two-pore domain channels. J Biol Chem 286:9136–9140

    Article  PubMed  CAS  Google Scholar 

  82. Ruas M, Rietdorf K, Arredouani A, Davis LC, Lloyd-Evans E, Koegel H, Funnell TM, Morgan AJ, Ward JA, Watanabe K, Cheng X, Churchill GC, Zhu MX, Platt FM, Wessel GM, Parrington J, Galione A (2010) Purified TPC isoforms form naadp receptors with distinct roles for Ca2+ signaling and endolysosomal trafficking. Curr Biol 20:703–709

    Article  PubMed  CAS  Google Scholar 

  83. Brailoiu E, Hooper R, Cai X, Brailoiu GC, Keebler MV, Dun NJ, Marchant JS, Patel S (2010) An ancestral deuterostome family of two-pore channels mediates nicotinic acid adenine dinucleotide phosphate-dependent calcium release from acidic organelles. J Biol Chem 285: 2897–2901

    Article  PubMed  CAS  Google Scholar 

  84. Schieder M, Rotzer K, Bruggemann A, Biel M, Wahl-Schott CA (2010) Characterization of Two-pore channel 2 (TPCN2)-mediated Ca2+ currents in isolated lysosomes. J Biol Chem 285:21219–21222

    Article  PubMed  CAS  Google Scholar 

  85. Pitt SJ, Funnell TM, Sitsapesan M, Venturi E, Rietdorf K, Ruas M, Ganesan A, Gosain R, Churchill GC, Zhu MX, Parrington J, Galione A, Sitsapesan R (2010) TPC2 is a novel NAADP-sensitive Ca2+ release channel, operating as a dual sensor of luminal pH and Ca2+. J Biol Chem 285:35039–35046

    Article  PubMed  CAS  Google Scholar 

  86. Brailoiu E, Rahman T, Churamani D, Prole DL, Brailoiu GC, Hooper R, Taylor CW, Patel S (2010) An NAADP-gated two-pore channel targeted to the plasma membrane uncouples triggering from amplifying Ca2+ signals. J Biol Chem 285:38511–38516

    Article  PubMed  CAS  Google Scholar 

  87. Tugba Durlu-Kandilci N, Ruas M, Chuang KT, Brading A, Parrington J, Galione A (2010) TPC2 proteins mediate nicotinic acid adenine dinucleotide phosphate (NAADP)- and agonist-evoked contractions of smooth muscle. J Biol Chem 285:24925–24932

    Article  PubMed  CAS  Google Scholar 

  88. Aley PK, Mikolajczyk AM, Munz B, Churchill GC, Galione A, Berger F (2010) Nicotinic acid adenine dinucleotide phosphate regulates skeletal muscle differentiation via action at two-pore channels. Proc Natl Acad Sci USA 107:19927–19932

    Article  PubMed  CAS  Google Scholar 

  89. Gerasimenko JV, Maruyama Y, Yano K, Dolman NJ, Tepikin AV, Petersen OH, Gerasimenko OV (2003) NAADP mobilizes Ca2+ from a thapsigargin-sensitive store in the nuclear envelope by activating ryanodine receptors. J Cell Biol 163:271–282

    Article  PubMed  CAS  Google Scholar 

  90. Dammermann W, Guse AH (2005) Functional ryanodine receptor expression is required for NAADP-mediated local Ca2+ signaling in T-lymphocytes. J Biol Chem 280:21394–21399

    Article  PubMed  CAS  Google Scholar 

  91. Galione A (2011) NAADP receptors. Cold Spring Harb Perspect Biol 3:a004036

    Article  PubMed  CAS  Google Scholar 

  92. Churchill GC, O’Neill JS, Masgrau R, Patel S, Thomas JM, Genazzani AA, Galione A (2003) Sperm deliver a new second messenger: NAADP. Curr Biol 13:125–128

    Article  PubMed  CAS  Google Scholar 

  93. Moccia F, Lim D, Kyozuka K, Santella L (2004) NAADP triggers the fertilization potential in starfish oocytes. Cell Calcium 36:515–524

    Article  PubMed  CAS  Google Scholar 

  94. Brailoiu GC, Brailoiu E, Parkesh R, Galione A, Churchill GC, Patel S, Dun NJ (2009) NAADP-mediated channel ‘chatter’ in neurons of the rat medulla oblongata. Biochem J 419:91–97, 92 p following 97

    Google Scholar 

  95. Wilding M, Russo GL, Galione A, Marino M, Dale B (1998) ADP-ribose gates the fertilization channel in ascidian oocytes. Am J Physiol 275:C1277–C1283

    PubMed  CAS  Google Scholar 

  96. Sumoza-Toledo A, Penner R (2010) TRPM2: a multifunctional Ion channel for calcium signaling. J Physiol 589:1515–1525

    Article  PubMed  CAS  Google Scholar 

  97. Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P, Schmitz C, Stokes AJ, Zhu Q, Bessman MJ, Penner R, Kinet JP, Scharenberg AM (2001) ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411:595–599

    Article  PubMed  CAS  Google Scholar 

  98. Beck A, Kolisek M, Bagley LA, Fleig A, Penner R (2006) Nicotinic acid adenine dinucleotide phosphate and cyclic ADP-ribose regulate TRPM2 channels in T lymphocytes. FASEB J 20:962–964

    Article  PubMed  CAS  Google Scholar 

  99. Gasser A, Glassmeier G, Fliegert R, Langhorst MF, Meinke S, Hein D, Krueger S, Weber K, Heiner I, Oppenheimer N, Schwarz JR, Guse AH (2006) Activation of T cell calcium influx by the second messenger ADP-ribose. J Biol Chem 281:2489–2496

    Article  PubMed  CAS  Google Scholar 

  100. Lange I, Yamamoto S, Partida-Sanchez S, Mori Y, Fleig A, Penner R (2009) TRPM2 functions as a lysosomal Ca2+-release channel in beta cells. Sci Signal 2:ra23

    Article  PubMed  Google Scholar 

  101. Basile G, Taglialatela-Scafati O, Damonte G, Armirotti A, Bruzzone S, Guida L, Franco L, Usai C, Fattorusso E, De Flora A, Zocchi E (2005) ADP-ribosyl cyclases generate two unusual adenine homodinucleotides with cytotoxic activity on mammalian cells. Proc Natl Acad Sci USA 102:14509–14514

    Article  PubMed  CAS  Google Scholar 

  102. Sutherland E (1971) Studies on the mechanism of hormone action. Nobel Prize Lecture 1–17

    Google Scholar 

  103. Morgan AJ, Galione A (2008) Investigating cADPR and NAADP in intact and broken cell preparations. Methods 46:194–203

    Article  PubMed  CAS  Google Scholar 

  104. Lewis AM, Masgrau R, Vasudevan SR, Yamasaki M, O’Neill JS, Garnham C, James K, Macdonald A, Ziegler M, Galione A, Churchill GC (2007) Refinement of a radioreceptor binding assay for nicotinic acid adenine dinucleotide phosphate. Anal Biochem 371:26–36

    Article  PubMed  CAS  Google Scholar 

  105. Graeff R, Lee HC (2002) A novel cycling assay for cellular cADP-ribose with nanomolar sensitivity. Biochem J 361:379–384

    PubMed  CAS  Google Scholar 

  106. Graeff R, Lee HC (2002) A novel cycling assay for nicotinic acid-adenine dinucleotide phosphate with nanomolar sensitivity. Biochem J 367:163–168

    Article  PubMed  CAS  Google Scholar 

  107. Graeff RM, Walseth TF, Fryxell K, Branton WD, Lee HC (1994) Enzymatic synthesis and characterizations of cyclic GDP-ribose: a procedure for distinguishing enzymes with ADP-ribosyl cyclase activity. J Biol Chem 269:30260–30267

    PubMed  CAS  Google Scholar 

  108. Galione A, White A, Willmott N, Turner M, Potter BV, Watson SP (1993) cGMP mobilizes intracellular Ca2+ in sea urchin eggs by stimulating cyclic ADP-ribose synthesis [see comments]. Nature 365:456–459

    Article  PubMed  CAS  Google Scholar 

  109. Graeff RM, Franco L, De Flora A, Lee HC (1998) Cyclic GMP-dependent and -independent effects on the synthesis of the calcium messengers cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate. J Biol Chem 273:118–125

    Article  PubMed  CAS  Google Scholar 

  110. Kim BJ, Park KH, Yim CY, Takasawa S, Okamoto H, Im MJ, Kim UH (2008) Generation of nicotinic acid adenine dinucleotide phosphate and cyclic ADP-ribose by glucagon-like peptide-1 evokes Ca2+ signal that is essential for insulin secretion in mouse pancreatic islets. Diabetes 57:868–878

    Article  PubMed  CAS  Google Scholar 

  111. Wilson HL, Galione A (1998) Differential regulation of nicotinic acid-adenine dinucleotide phosphate and cADP-ribose production by cAMP and cGMP. Biochem J 331:837–843

    PubMed  CAS  Google Scholar 

  112. Yamasaki M, Thomas JM, Churchill GC, Garnham C, Lewis AM, Cancela JM, Patel S, Galione A (2005) Role of NAADP and cADPR in the induction and maintenance of agonist-evoked Ca2+ spiking in mouse pancreatic acinar cells. Curr Biol 15:874–878

    Article  PubMed  CAS  Google Scholar 

  113. Gasser A, Bruhn S, Guse AH (2006) Second messenger function of nicotinic acid adenine dinucleotide phosphate (NAADP) revealed by an improved enzymatic cycling assay. J Biol Chem 281:16906–16913

    Article  PubMed  CAS  Google Scholar 

  114. Dodd AN, Gardner MJ, Hotta CT, Hubbard KE, Dalchau N, Love J, Assie JM, Robertson FC, Jakobsen MK, Goncalves J, Sanders D, Webb AA (2007) The Arabidopsis circadian clock incorporates a cADPR-based feedback loop. Science 318:1789–1792

    Article  PubMed  CAS  Google Scholar 

  115. Kato I, Yamamoto Y, Fujimura M, Noguchi N, Takasawa S, Okamoto H (1999) CD38 disruption impairs glucose-induced increases in cyclic ADP-ribose, [Ca2+]i, and insulin secretion. J Biol Chem 274:1869–1872

    Article  PubMed  CAS  Google Scholar 

  116. Fukushi Y, Kato I, Takasawa S, Sasaki T, Ong BH, Sato M, Ohsaga A, Sato K, Shirato K, Okamoto H, Maruyama Y (2001) Identification of cyclic ADP-ribose-dependent mechanisms in pancreatic muscarinic Ca2+ signaling using CD38 knockout mice. J Biol Chem 276:649–655

    Article  PubMed  CAS  Google Scholar 

  117. Cosker F, Cheviron N, Yamasaki M, Menteyne A, Lund FE, Moutin MJ, Galione A, Cancela JM (2010) The ecto-enzyme CD38 is a nicotinic acid adenine dinucleotide phosphate (NAADP) synthase that couples receptor activation to Ca2+ mobilization from lysosomes in pancreatic acinar cells. J Biol Chem 285:38251–38259

    Article  PubMed  CAS  Google Scholar 

  118. Takahashi J, Kagaya Y, Kato I, Ohta J, Isoyama S, Miura M, Sugai Y, Hirose M, Wakayama Y, Ninomiya M, Watanabe J, Takasawa S, Okamoto H, Shirato K (2003) Deficit of CD38/cyclic ADP-ribose is differentially compensated in hearts by gender. Biochem Biophys Res Commun 312:434–440

    Article  PubMed  CAS  Google Scholar 

  119. Deshpande DA, White TA, Guedes AG, Milla C, Walseth TF, Lund FE, Kannan MS (2005) Altered airway responsiveness in CD38-deficient mice. Am J Respir Cell Mol Biol 32:149–156

    Article  PubMed  CAS  Google Scholar 

  120. Mitsui-Saito M, Kato I, Takasawa S, Okamoto H, Yanagisawa T (2003) CD38 gene disruption inhibits the contraction induced by alpha-adrenoceptor stimulation in mouse aorta. J Vet Med Sci 65:1325–1330

    Article  PubMed  CAS  Google Scholar 

  121. Partida-Sanchez S, Cockayne DA, Monard S, Jacobson EL, Oppenheimer N, Garvy B, Kusser K, Goodrich S, Howard M, Harmsen A, Randall TD, Lund FE (2001) Cyclic ADP-ribose production by CD38 regulates intracellular calcium release, extracellular calcium influx and chemotaxis in neutrophils and is required for bacterial clearance in vivo. Nat Med 7:1209–1216

    Article  PubMed  CAS  Google Scholar 

  122. Jin D, Liu HX, Hirai H, Torashima T, Nagai T, Lopatina O, Shnayder NA, Yamada K, Noda M, Seike T, Fujita K, Takasawa S, Yokoyama S, Koizumi K, Shiraishi Y, Tanaka S, Hashii M, Yoshihara T, Higashida K, Islam MS, Yamada N, Hayashi K, Noguchi N, Kato I, Okamoto H, Matsushima A, Salmina A, Munesue T, Shimizu N, Mochida S, Asano M, Higashida H (2007) CD38 is critical for social behaviour by regulating oxytocin secretion. Nature 446:41–45

    Article  PubMed  CAS  Google Scholar 

  123. Park KH, Kim BJ, Kang J, Nam TS, Lim JM, Kim HT, Park JK, Kim YG, Chae SW, Kim UH (2011) Ca2+ signaling tools acquired from prostasomes are required for progesterone-induced sperm motility. Sci Signal 4:ra31

    Article  PubMed  CAS  Google Scholar 

  124. Kim SY, Cho BH, Kim UH (2010) CD38-mediated Ca2+ signaling contributes to angiotensin II-induced activation of hepatic stellate cells: attenuation of hepatic fibrosis by CD38 ablation. J Biol Chem 285:576–582

    Article  PubMed  CAS  Google Scholar 

  125. Rah SY, Mushtaq M, Nam TS, Kim SH, Kim UH (2010) Generation of cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate by CD38 for Ca2+ signaling in interleukin-8-treated lymphokine-activated killer cells. J Biol Chem 285:21877–21887

    Article  PubMed  CAS  Google Scholar 

  126. Soares S, Thompson M, White T, Isbell A, Yamasaki M, Prakash Y, Lund F, Galione A, Chini EN (2006) NAADP as a second messenger: Neither CD38 nor the base-exchange reaction are necessary for the in vivo generation of the NAADP in myometrial cells. Am J Physiol Cell Physiol 292:C227–C239

    Article  PubMed  CAS  Google Scholar 

  127. De Flora A, Guida L, Franco L, Zocchi E (1997) The CD38/cyclic ADP-ribose system: a topological paradox. Int J Biochem Cell Biol 29:1149–1166

    Article  PubMed  Google Scholar 

  128. Davis LC, Morgan AJ, Ruas M, Wong JL, Graeff RM, Poustka AJ, Lee HC, Wessel GM, Parrington J, Galione A (2008) Ca2+ signaling occurs via second messenger release from intraorganelle synthesis sites. Curr Biol 18:1612–1618

    Article  PubMed  CAS  Google Scholar 

  129. Lee HC (2011) Cyclic ADP-ribose and NAADP: fraternal twin messengers for calcium ­signaling. Sci China Life Sci 54:699–711

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antony Galione .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Galione, A., Chuang, KT. (2012). Pyridine Nucleotide Metabolites and Calcium Release from Intracellular Stores. In: Islam, M. (eds) Calcium Signaling. Advances in Experimental Medicine and Biology, vol 740. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2888-2_13

Download citation

Publish with us

Policies and ethics