Skip to main content

Molecular Imprinting for Selective Sensing of Explosives, Warfare Agents, and Toxins

  • Conference paper
  • First Online:

Abstract

The explosive, warfare agent, and toxin worldwide threats are important hazardous determinants for a safe living environment. The need for better methods of determinations of these compounds generates a strong demand for sensitive, selective, and fast sensing systems. Typically, biorecognition receptors, like enzymes or antibodies, are used to devise biosensors for selective determinations of these compounds. However, these biosensors suffer from several deficiencies. Therefore, synthetic receptors, and particularly those using the concept of molecular ­imprinting, are more and more often being devised as alternatives of the bioreceptors. Among them, the most popular now are molecularly imprinted materials. The present chapter critically evaluates achievements in the development of chemosensing using the imprinting idea for selective determination of biohazardous compounds. Different methods of preparation of synthetic imprinted recognition receptors are scrutinized and various platforms of analytical signal transduction are assessed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AAm:

acrylamide

ACN:

acetonitrile

ACCN:

EGDMA/1,1´-azobis(cyclohexane carbonitrile)

AgNP:

silver nanoparticle

AIBN:

azobis isobutyronitrile

APBA:

3-aminophenylboronic acid

APh:

2-aminophenol

APTMS:

3-aminopropyl trimethoxysilane

2-AThPh:

2-aminothiophenol

4-AThPh:

4-aminothiophenol

ATRS:

attenuated total reflectance spectroscopy

AuNP:

gold nanoparticle

BTEB:

bis(trimethoxysilylethyl)benzene

BWA:

biological warfare agent

CP:

conducting polymer

CV:

cyclic voltammetry

DMF:

N,N-dimethylformamide

DPV:

differential pulse voltammetry

ECP:

electronically conducting polymer

EGDMA:

ethylene glycol dimethacrylate

ELISA:

enzyme-linked immunosorbent assay

GA:

glutaraldehyde

GCE:

glassy carbon electrode

HEPES:

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

HMPA:

hexamethylphosphoramide

IA:

itaconic acid

ITMS:

iodotrimethylsilane

ITO:

indium-tin oxide

IOW:

integrated optical waveguide

LBL:

layer-by-layer (transfer)

LOD:

limit of detection

LSV:

linear sweep voltammetry

MA:

methacrylic acid

MIECP:

molecularly imprinted electronically conducting polymer

MIP:

molecularly imprinted polymer

MIPAPBA:

molecularly imprinted poly(aminophenylboronic acid)

MIPEDOT:

molecularly imprinted poly ethylenedioxythiophene

MIPPy:

molecularly imprinted polypyrrole

NIP:

non-imprinted polymer

NOPE:

2-nitrophenyloctyl ether

OTS:

octadecylsiloxane

PANI:

polyaniline

PBS:

phosphate buffer saline

PM:

piezoelectric microgravimetry

PPV:

poly(4-phenylene vinylene)

PVC:

poly(vinyl chloride)

Py:

pyrrole

SAM:

self-assembled monolayer

SCE:

saturated calomel electrode

SDS:

sodium dodecyl sulfate

SERS:

surface enhanced Raman scattering

SPE:

solid phase extraction

SPME:

solid phase microextraction

SPR:

surface plasmon resonance

SWV:

square wave voltammetry

TEOS:

tetraethoxysilane

TMSEPyr:

2-(trimethoxysilylethyl)pyridine

G :

Gibbs free energy

H :

enthalpy

KMIP-A:

stability constant of a complex of the analyte A and the molecular cavity of MIP

S :

entropy

q :

resonance angle

References

  1. Janata J (1989) Principles of chemical sensors. Plenum Press, New York

    Google Scholar 

  2. Pietrzyk-Le A, D’Souza F, Kutner W (2011) Supramolecular self-assembly governed molecularly imprinted polymers for selective chemical sensing. In: Schneider HJ (ed) Supramolecular chemistry for 21st century technology. Taylor & Francis/CRC Press, London/Boca Raton, pp 105–128 (in press)

    Google Scholar 

  3. Feás X, Seijas JA, Vázquez-Tato MP, Regal P, Cepeda A, Fente C (2009) Syntheses of molecularly imprinted polymers: molecular recognition of cyproheptadine using original print molecules and azatadine as dummy templates. Anal Chim Acta 631:237–244

    Article  Google Scholar 

  4. Haupt K (2003) Imprinted polymers-tailor-made mimics of antibodies and receptors. Chem Commun 171–178

    Google Scholar 

  5. Cutivet A, Schembri C, Kovensky J, Haupt K (2009) Molecularly imprinted microgels as enzyme inhibitors. J Am Chem Soc 131:14699–14702

    Article  CAS  Google Scholar 

  6. Mosbach K (1994) Molecular imprinting. Trends Biochem Sci 19:9–14

    Article  CAS  Google Scholar 

  7. Turiel E, Martin-Esteban A (2004) Molecularly imprinted polymers: towards highly selective stationary phases in liquid chromatography and capillary electrophoresis. Anal Bioanal Chem 378:1876–1886

    Article  CAS  Google Scholar 

  8. Tamayo FG, Turiel E, Martín-Esteban A (2007) Molecularly imprinted polymers for solid-phase extraction and solid-phase microextraction: recent developments and future trends. J Chromatogr A 1152:32–40

    Article  CAS  Google Scholar 

  9. Turiel E, Esteban AM (2010) Molecularly imprinted polymers for sample preparation: a review. Anal Chim Acta 668:87–99

    Article  CAS  Google Scholar 

  10. McCluskey A, Holdsworth CI, Bowyer MC (2007) Molecularly imprinted polymers (MIPs): sensing, an explosive new opportunity? Org Biomol Chem 5:3233–3244

    Article  CAS  Google Scholar 

  11. Vidyasankar S, Arnold FH (1995) Molecular imprinting: selective materials for separations, sensors and catalysis. Curr Opin Biotechnol 6:218–224

    Article  CAS  Google Scholar 

  12. Ansell RJ, Kriz D, Mosbach K (1996) Molecularly imprinted polymers for bioanalysis: chromatography, binding assays and biomimetic sensors. Curr Opin Biotechnol 7:89–94

    Article  CAS  Google Scholar 

  13. Holthoff EL, Bright FV (2007) Molecularly templated materials in chemical sensing. Anal Chim Acta 594:147–161

    Article  CAS  Google Scholar 

  14. Shimizu KD, Stephenson CJ (2010) Molecularly imprinted polymer sensor arrays. Curr Opin Chem Biol 14:743–750

    Article  CAS  Google Scholar 

  15. Hedborg E, Winquist F, Lundstrom I, Andersson LI, Mosbach K (1993) Some studies of molecularly-imprinted polymer membranes in combination with field-effect devices. Sens Actuators A 37–38:796–799

    Google Scholar 

  16. Wulff G (1982) Selective binding to polymers via covalent bonds—the construction of chiral cavities as specific receptor-sites. Pure Appl Chem 54:2093–2102

    Article  Google Scholar 

  17. Wulff G, Biffis A (2001) In: Sellergren B (ed) Molecularly imprinted polymers: man-made mimics of antibodies and their applications in analytical chemistry, techniques and instrumentation in analytical chemistry, vol 23. Elsevier, Amsterdam, pp 71–111

    Chapter  Google Scholar 

  18. Sellergren B (1989) Molecular imprinting by noncovalent interactions—tailor-made chiral stationary phases of high selectivity and sample load-capacity. Chirality 1:63–68

    Article  CAS  Google Scholar 

  19. Sellergren B (1997) Noncovalent molecular imprinting: antibody-like molecular recognition in polymeric network materials. Trends Anal Chem 16:310–320

    Article  CAS  Google Scholar 

  20. Mosbach K, Haupt K (1998) Some new developments and challenges in non-covalent molecular imprinting technology. J Mol Recognit 11:62–68

    Article  CAS  Google Scholar 

  21. Umpleby RJ, Bode M, Shimizu KD (2000) Measurement of the continuous distribution of binding sites in molecularly imprinted polymers. Analyst 125:1261–1265

    Article  CAS  Google Scholar 

  22. Cormack PAG, Elorza AZ (2004) Molecularly imprinted polymers: synthesis and characterisation. J Chromatogr B 804:173–182

    Article  CAS  Google Scholar 

  23. Pietrzyk A, Kutner W, Chitta R, Zandler ME, D’Souza F, Sannicolo F, Mussini PR (2009) A melamine-templated molecularly imprinted polymer (MIP) film as the recognition element of the selective piezomicrogravimetric chemosensor. Anal Chem 81:10061–10070

    Article  CAS  Google Scholar 

  24. Pietrzyk A, Suriyanarayanan S, Kutner W, Chitta R, D’Souza F (2009) Selective histamine piezoelectric chemosensor using a molecularly imprinted polymer of bis(bithiophene) derivatives. Anal Chem 81:2633–2643

    Article  CAS  Google Scholar 

  25. Pietrzyk A, Suriyanarayanan S, Kutner W, Chitta R, Zandler ME, D’Souza F (2010) Molecularly imprinted polymer (MIP) based piezoelectric microgravimetry chemosensor for selective determination of adenine. Biosens Bioelectron 25:2522–2529

    Article  CAS  Google Scholar 

  26. Pietrzyk A, Suriyanarayanan S, Kutner W, Maligaspe E, Zandler ME, D’Souza F (2010) Molecularly imprinted poly[bis(2,2'-bithienyl)methane] film with built-in molecular recognition sites for a piezoelectric microgravimetry chemosensor for selective determination of dopamine. Bioelectrochemistry 80:62–72

    Article  CAS  Google Scholar 

  27. Pernites R, Ponnapati R, Felipe MJ, Advincula R (2011) Electropolymerization molecularly imprinted polymer (E-MIP) SPR sensing of drug molecules: pre-polymerization complexed terthiophene and carbazole electroactive monomers. Biosens Bioelectron 26:2766–2771

    Article  CAS  Google Scholar 

  28. Alexander C, Andersson HS, Andersson LI, Ansell RJ, Kirsch N, Nicholls IA, O’Mahony J, Whitcombe MJ (2006) Molecular imprinting science and technology: a surveyof the literature for the years up to and including. J Mol Recognit 19:106–180

    Article  CAS  Google Scholar 

  29. Malitesta C, Palmisano F, Torsi L, Zambonin PG (1990) Glucose fast-response amperometric sensor based on glucose oxidase immobilized in an electropolymerized poly(o-phenylenediamine) film. Anal Chem 62:2735–2740

    Article  CAS  Google Scholar 

  30. Diaz-Garcia ME, Laıno RB (2005) Molecular imprinting in sol-gel materials: recent developments and applications. Microchim Acta 149:19–36

    Article  CAS  Google Scholar 

  31. Olwill A, Hughes H, O’Riordain M, McLoughlin P (2004) The use of molecularly imprinted sol–gels in pharmaceutical separations. Biosens Bioelectron 20:1045–1050

    Article  CAS  Google Scholar 

  32. Guerreiro JRL, Freitas V, Sales MGF (2011) New sensing materials of molecularly-imprinted polymers for the selective recognition of chlortetracycline. Microchem J 97:173–181

    Article  CAS  Google Scholar 

  33. Huang J, Zhang X, Lin Q, He X, Xing X, Huai H, Lian W, Zhuc H (2011) Electrochemical sensor based on imprinted sol–gel and nanomaterials for sensitive determination of bisphenol A. Food Control 22:786–791

    Article  CAS  Google Scholar 

  34. Piletsky SA, Piletskaya EV, Sergeyeva TA, Panasyuk TL, El’skaya AV (1999) Molecularly imprinted self-assembled films with specificity to cholesterol. Sens Actuators B 60:216–220

    Article  Google Scholar 

  35. Chou LCS, Liu C-C (2005) Development of a molecular imprinting thick film electrochemical sensor for cholesterol detection. Sens Actuators B 110:204–208

    Article  Google Scholar 

  36. Suriyanarayanan S, Cywinski PJ, Moro AJ, Mohr GJ, Kutner W (2011) Chemosensors based on molecularly imprinted polymers. Top Cur Chem. doi: 10.1007/128_2010_92 (in press)

    Google Scholar 

  37. Blanco-Lopez MC, Gutierrez-Fernandez S, Lobo-Castanon MJ, Miranda-Ordieres AJ, Tuñón-Blanco P (2004) Electrochemical sensing with electrodes modified with molecularly imprinted polymer films. Anal Bioanal Chem 378:1922–1928

    Article  CAS  Google Scholar 

  38. Díaz-Díaz G, Blanco-López MC, Lobo-Castañón MJ, Miranda-Ordieres AJ, Tuñón-Blanco P (2011) Preparation and characterization of a molecularly imprinted microgel for electrochemical sensing of 2,4,6-trichlorophenol. Electroanalysis 23:201–208

    Article  Google Scholar 

  39. Percival CJ, Stanley S, Braithwaite A, Newton MI, McHale G (2002) Molecular imprinted polymer coated QCM for the detection of nandrolone. Analyst 127:1024–1026

    Article  CAS  Google Scholar 

  40. Blanco-Lopez MC, Lobo-Castanon MJ, Miranda-Ordieres AJ, Tunon-Blanco P (2003) Voltammetric sensor for vanillylmandelic acid based on molecularly imprinted polymer-modified electrodes. Biosens Bioelectron 18:353–362

    Article  CAS  Google Scholar 

  41. Alizadeh T, Zare M, Ganjali MR, Norouzi P, Tavana B (2010) A new molecularly imprinted polymer (MIP)-based electrochemical sensor for monitoring 2,4,6-trinitrotoluene (TNT) in natural waters and soil samples. Biosens Bioelectron 25:1166–1172

    Article  CAS  Google Scholar 

  42. Riskin M, Tel-Vered R, Bourenko T, Granot E, Willner I (2008) Imprinting of molecular recognition sites through electropolymerization of functionalized Au nanoparticles: development of an electrochemical TNT sensor based on π-donor-acceptor interactions. J Am Chem Soc 130:9726–9733

    Article  CAS  Google Scholar 

  43. Bunte G, Hurttlen Ju, Pontius H, Hartlieb K, Krause H (2007) Gas phase detection of explosives such as 2,4,6-trinitrotoluene by molecularly imprinted polymers. Anal Chim Acta 591:49–56

    Article  CAS  Google Scholar 

  44. Bunte G, Heil M, Roseling D, Hurttlen J, Pontius H, Krause H (2009) Trace detection of explosives vapours by molecularly imprinted polymers for security measures. Propellants Explos Pyrotech 34:245–251

    Article  CAS  Google Scholar 

  45. Walker NR, Linman MJ, Timmers MM, Dean SL, Burkett CM, Lloyd JA, Keelor JD, Baughman BM, Edmiston PL (2007) Selective detection of gas-phase TNT by integrated optical waveguide spectrometry using molecularly imprinted sol–gel sensing films. Anal Chim Acta 593:82–91

    Article  CAS  Google Scholar 

  46. Edmiston PL, Campbell DP, Gottfried DS, Baughman J, Timmers MM (2010) Detection of vapor phase trinitrotoluene in the parts-per-trillion range using waveguide interferometry. Sens Actuators B 143:574–582

    Article  Google Scholar 

  47. Holthoff EL, Stratis-Cullum DN, Hankus ME (2011) A Nanosensor for TNT detection based on molecularly imprinted polymers and surface enhanced raman scattering. Sensors 11:2700–2714

    Article  CAS  Google Scholar 

  48. Li J, Kendig CE, Nesterov EE (2007) Chemosensory performance of molecularly imprinted fluorescent conjugated polymer materials. J Am Chem Soc 129:15911–15918

    Article  CAS  Google Scholar 

  49. Stringer RC, Gangopadhyay S, Grant SA (2010) Detection of nitroaromatic explosives using a fluorescent-labeled imprinted polymer. Anal Chem 82:4015–4019

    Article  CAS  Google Scholar 

  50. Yang L, Ma L, Chen G, Liu J, Tian Z-Q (2010) Ultrasensitive SERS detection of TNT by imprinting molecular recognition using a new type of stable substrate. Chem Eur J 16:12683–12693

    Article  CAS  Google Scholar 

  51. Hankus ME, Li HG, Gibson GJ, Cullum BM (2006) Surface-enhanced Raman scattering-based nanoprobe for high-resolution, non-scanning chemical imaging. Anal Chem 78:7535–7546

    Article  CAS  Google Scholar 

  52. Sylvia JM, Janni JA, Klein JD, Spencer KM (2000) Surface-enhanced Raman detection of 2,4-dinitrotoluene impurity vapor as a marker to detect landmines. Anal Chem 72:5834–5840

    Article  CAS  Google Scholar 

  53. Saloni J, Lipkowski P, Dasary SSR, Anjaneyulu Y, Yu H, Hill G (2011) Theoretical study of molecular interactions of TNT, acrylic acid, and ethylene glycol dimethacrylate – elements of molecularly imprinted polymer modeling process. Polymer 52:1206–1216

    Article  CAS  Google Scholar 

  54. Nie D, Jiang D, Zhang D, Liang Y, Xue Y, Zhou T, Jin L, Shi G (2011) Two-dimensional molecular imprinting approach for the electrochemical detection of trinitrotoluene. Sens Actuators B 156:43–49

    Article  Google Scholar 

  55. Guan G, Liu R, Wu M, Li Z, Liu B, Wang Z, Gao D, Zhang Z (2009) Protein-building molecular recognition sites by layer-by-layer molecular imprinting on colloidal particles. Analyst 134:1880–1886

    Article  CAS  Google Scholar 

  56. Riskin M, Tel-Vered R, Lioubashevski O, Willner I (2009) Ultrasensitive surface plasmon resonance detection of trinitrotoluene by a bis-aniline-cross-linked Au nanoparticles composite. J Am Chem Soc 131:7368–7378

    Article  CAS  Google Scholar 

  57. Riskin M, Tel-Vered R, Willner I (2010) Imprinted Au-nanoparticle composites for the ultrasensitive surface plasmon resonance detection of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Adv Mater 22:1387–1391

    CAS  Google Scholar 

  58. Riskin M, Ben-Amram Y, Tel-Vered R, Chegel V, Almog J, Willner I (2011) Molecularly imprinted Au nanoparticles composites on Au surfaces for the surface plasmon resonance detection of pentaerythritol tetranitrate, nitroglycerin, and ethylene glycol dinitrate. Anal Chem 83:3082–3088

    Article  CAS  Google Scholar 

  59. Jing T, Xia H, Niu J, Zhou Y, Dai Q, Hao Q, Zhou Y, Mei S (2011) Determination of trace 2,4-dinitrophenol in surface water samples based on hydrophilic molecularly imprinted polymers/nickel fiber electrode. Biosens Bioelectron 26:4450–4456

    Article  CAS  Google Scholar 

  60. Titirici MM, Sellergren B (2006) Thin molecularly imprinted polymer films via reversible addition−fragmentation chain transfer polymerization. Chem Mater 18:1773–1779

    Article  CAS  Google Scholar 

  61. Tititici MM, Hall AJ, Sellergren B (2002) Hierarchically imprinted stationary phases: mesoporous polymer beads containing surface-confined binding sites for adenine. Chem Mater 14:21–23

    Article  Google Scholar 

  62. Sellergren B, Ruckert B, Hall AJ (2002) Layer-by-layer grafting of molecularly imprinted polymers via iniferter modified supports. Adv Mater 14:1204–1208

    Article  CAS  Google Scholar 

  63. Sulitzky C, Ruckert B, Hall AJ, Lanza F, Unger K, Sellergren B (2002) Grafting of molecularly imprinted polymer films on silica supports containing surface-bound free radical initiators. Macromolecules 35:79–91

    Article  CAS  Google Scholar 

  64. Gao D, Zhang Z, Wu M, Xie C, Guan G, Wang D (2007) A surface functional monomer-directing strategy for highly dense imprinting of TNT at surface of silica nanoparticles. J Am Chem Soc 129:7859–7866

    Article  CAS  Google Scholar 

  65. Xie C, Liu B, Wang Z, Gao D, Guan G, Zhang Z (2008) Molecular imprinting at walls of silica nanotubes for TNT recognition. Anal Chem 80:437–443

    Article  CAS  Google Scholar 

  66. Rose A, Zhu Z, Madigan CF, Swager TM, Bulovic V (2005) Sensitivity gains in chemosensing by lasing action in organic polymers. Nature 434:876–879

    Article  CAS  Google Scholar 

  67. Moratti SC (1998) In: Skotheim TA, Elsenbaumer RL, Reynolds JR (eds) Handbook of conducting polymers, 2nd edn. Marcel Dekker, New York, pp 343–361

    Google Scholar 

  68. Liang Y, Gu L, Liu X, Yang Q, Kajiura H, Li Y, Zhou T, Shi G (2011) Composites of polyaniline nanofibers and molecularly imprinted polymers for recognition of nitroaromatic compounds. Chem Eur J 17:5989–5997

    Article  CAS  Google Scholar 

  69. Tu AT (2000) Natural and selected synthetic toxins, American Chemical Society, Washington DC, Chapter 20

    Google Scholar 

  70. Trapp R (1985) SIPRI Chemical & biological warfare studies 3 The detoxification and natural degradation of chemical warfare agents. Taylor & Francis, Philadelphia, p 104

    Google Scholar 

  71. Compton JAF (1987) Military chemical and biological agents chemical and toxicological properties. The Telford Press, Caldwell, p 458

    Google Scholar 

  72. Hirsjarvi P, Miettinen JK, Paasivirta J (eds) (1980) Identification of degradation products of potential organophosphorus warfare agents, an approach for the standardization of techniques and reference data. Ministry of Foreign Affairs of Finland, Helsinki, pp 3–10, 18–30

    Google Scholar 

  73. Zhou Y, Yu B, Shiu E, Levon K (2004) Potentiometric sensing of chemical warfare agents: surface imprinted polymer integrated with an indium tin oxide electrode. Anal Chem 76:2689–2693

    Article  CAS  Google Scholar 

  74. Prathish KP, Prasad K, Rao TP, Suryanarayana MVS (2007) Molecularly imprinted polymer-based potentiometric sensor for degradation product of chemical warfare agents Part I. Methylphosphonic acid. Talanta 71:1976–1980

    Article  CAS  Google Scholar 

  75. Jenkins AL, Uy OM, Murray GM (1999) Polymer-based lanthanide luminescent sensor for detection of the hydrolysis product of the nerve agent soman in water. Anal Chem 71:373–378

    Article  CAS  Google Scholar 

  76. Jenkins AL, Uy OM, Murray GM (1997) Polymer based lanthanide luminescent sensors for the detection of nerve agents. Anal Commun 34:221–224

    Article  CAS  Google Scholar 

  77. Vishnuvardhan V, Prathish KP, Naidu GRK, Rao TP (2007) Fabrication and topographical analysis of non-covalently imprinted polymer inclusion membranes for the selective sensing of pinacolyl methylphosphonate-A simulant of Soman. Electrochim Acta 52:6922–6928

    Article  CAS  Google Scholar 

  78. Sharabi D, Paz Y (2010) Preferential photodegradation of contaminants by molecular imprinting on titanium dioxide. Appl Cata B Environ 95:169–178

    Article  CAS  Google Scholar 

  79. Prathish KP, Vishnuvardhan V, Rao TP (2009) Rational design of in situ monolithic imprinted polymer membranes for the potentiometric sensing of diethyl chlorophosphate – a chemical warfare agent simulant. Electroanalysis 21:1048–1056

    Article  CAS  Google Scholar 

  80. Prelusky DB, Rotter BA, Rotter RG (1994) In: Miller JD, Trenholm HL (eds) Mycotoxins in grain, compounds other than aflatoxins. Eagan Press, St. Paul, p 359

    Google Scholar 

  81. Visconti A, Minervini F, Lucifero G, Gambatesa V (1991) Cytotoxic and immunotoxic effects of Fusarium mycotoxins using a rapid colorimetric bioassay. Mycopathologia 113:181–186

    Article  CAS  Google Scholar 

  82. Ihara T, Sugamata M, Sekijima M, Okumura H, Yoshino N, Ueno Y (1997) Apoptotic cellular damage in mice after t-2 toxin-induced acute toxicosis. Nat Toxins 5:141–145

    Article  CAS  Google Scholar 

  83. Gupta G, Bhaskar ASB, Tripathi BK, Pandey P, Boopathi M, Rao PVL, Singh B, Vijayaraghavan R (2011) Supersensitive detection of T-2 toxin by the in situ synthesized π-conjugated molecularly imprinted nanopatterns. An in situ investigation by surface plasmon resonance combined with electrochemistry. Biosens Bioelectron 26:2534–2540

    CAS  Google Scholar 

  84. Lulka MF, Iqbal SS, Chambers JP, Valdes ER, Thompson RG, Goode MT, Valdes JJ (2000) Molecular imprinting of ricin and its A and B chains to organic silanes: fluorescence detection. Mater Sci Eng C 11:101–105

    Article  Google Scholar 

  85. Chianella I, Piletsky SA, Tothill IE, Chen B, Turner APF (2003) MIP-based solid phase extraction cartridges combined with MIP based sensors for the detection of microcystin-LR. Biosens Bioelectron 18:119–127

    Article  CAS  Google Scholar 

  86. Queirós RB, Silva SO, Noronha JP, Frazão O, Jorge P, Aguilar G, Marques PVS, Sales MGF (2011) Microcystin-LR detection in water by the Fabry–Pérot interferometer using an optical fibre coated with a sol–gel imprinted sensing membrane. Biosens Bioelectron 26:3932–3937

    Article  Google Scholar 

  87. Pfohl-Leszkowicz A, Manderville RA (2007) Ochratoxin A: an overview on toxicity and carcinogenicity in animals and humans. Mol Nutr Food Res 51:61–99

    Article  CAS  Google Scholar 

  88. Yu JCC, Lai EPC (2005) Interaction of ochratoxin A with molecularly imprinted polypyrrole film on surface plasmon resonance sensor. React Funct Polym 63:171–176

    Article  CAS  Google Scholar 

  89. Piletska E, Karim K, Coker R, Piletsky S (2010) Development of the custom polymeric materials specific for aflatoxin B1 and ochratoxin A for application with the ToxiQuant T1 sensor tool. J Chromatogr A 1217:2543–2547

    Article  CAS  Google Scholar 

  90. Navarro-Villoslada F, Urraca JL, Moreno-Bondi MC, Orellana G (2007) Zearalenone sensing with molecularly imprinted polymers and tailored fluorescent probes. Sens Actuators B 121:67–73

    Article  Google Scholar 

  91. Choi S-W, Chang H-J, Lee N, Kim J-H, Chun HS (2009) Detection of mycoestrogen zearalenone by a molecularly imprinted polypyrrole-based surface plasmon resonance (SPR) sensor. J Agric Food Chem 57:1113–1118

    Article  CAS  Google Scholar 

  92. Falconer IR, Beresford AM, Runnegar MTC (1983) Evidence of liver damage by toxin from a bloom of the blue-green algae, Microcystis aeruginosa. Med J Aust 1:511–514

    CAS  Google Scholar 

  93. Lotierzo M, Henry OYF, Piletsky S, Tothill I, Cullen D, Kania M, Hock B, Turner APF (2004) Surface plasmon resonance sensor for domoic acid based on grafted imprinted polymer. Biosens Bioelectron 20:145–152

    Article  CAS  Google Scholar 

  94. Smith RG, D’Souza N, Nicklin S (2008) A review of biosensors and biologically-inspired systems for explosives detection. Analyst 133:571–584

    Article  CAS  Google Scholar 

  95. Shriver-Lake LC, Breslin KA, Charles PT, Conrad DW, Golden JP, Ligler FS (1995) Detection of TNT in water using an evanescent wave fiber-optic biosensor. Anal Chem 67:2431–2435

    Article  CAS  Google Scholar 

Download references

Acknowledgments

PSS and WK thank the European Regional Development Fund (Project ERDF, POIG.01.01.02-00-008/08 2007–2013, to WK). The work of WK was partially realized within the International PhD Projects Programme of the Foundation for Polish Science, co-financed from European Regional Development Fund within Innovative Economy Operational Program “Grants for innovation”. FD is thankful to the National Science Foundation for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wlodzimierz Kutner or Francis D’Souza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this paper

Cite this paper

Sharma, P.S., Kutner, W., D’Souza, F. (2012). Molecular Imprinting for Selective Sensing of Explosives, Warfare Agents, and Toxins. In: Nikolelis, D. (eds) Portable Chemical Sensors. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2872-1_4

Download citation

Publish with us

Policies and ethics