Skip to main content

Strategies for Inhibiting Protein Aggregation: Therapeutic Approaches to Protein-Aggregation Diseases

  • Chapter
  • First Online:
Non-fibrillar Amyloidogenic Protein Assemblies - Common Cytotoxins Underlying Degenerative Diseases

Abstract

Self-aggregation of proteins and peptides is at the root of many diseases, especially neurodegenerative diseases. These conditions include Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, type-2 diabetes mellitus, and transmissible spongiform encephalopathies, which are associated with self-aggregation of amyloid β-protein (Aβ), huntingtin, α-synuclein, islet amyloid polypeptide, and the prion protein, respectively. The list of diseases for which protein/peptide aggregation is the root cause is ever expanding. There does not appear to be a single biochemical mechanism by which proteins and peptides self-associate, or a single pathogenic mechanism to explain all protein-/peptide-aggregation diseases. Nevertheless, inhibition of protein self-aggregation remains a potential target for therapeutic intervention. Beyond therapy, inhibitors of protein self-aggregation can serve as tools to help us understand the mechanisms by which aggregation occurs and harms cells. In this chapter, we examine select examples of inhibitors of protein aggregation. We have divided aggregating proteins/peptides into two types: (1) Proteins that have an unstable tertiary structure, that unfold under cellular stress, or that fail to fold correctly during biosynthesis. This instability leads to persistence of unfolded domains that can act as a nidus for self-association. (2) Peptides or proteins (or protein domains) that cannot fold at all, or fold only in the presence of a bound ligand. Examples of the first group include transthyretin, the mammalian prion protein, and certain point-mutant forms of lysozyme or α1-antitrypsin. In general, self-aggregation of these proteins results from exposure of normally buried hydrophobic residues to aqueous media. Examples of the second group include Aβ, islet amyloid polypeptide, and calcitonin. Within the second group, we also include proteins that are “peptide-like” in having domains with no unique, stable tertiary fold, such as huntingtin and α-synuclein. The category of peptides and “peptide-like” proteins can be further subdivided into those containing unburied hydrophobic residues (e.g., Aβ), and those with strings of hydrogen-bonding polar residues (e.g., huntingtin and other polyglutamine proteins). To reduce the sheer volume of material in this field, we have chosen to focus mainly on one example of each type of aggregating protein or peptide, i.e., Aβ, as a peptide aggregating through the hydrophobic effect; huntingtin, as a peptide-like protein aggregating through side-chain and peptide backbone hydrogen bonding; and transthyretin, as a protein with an unstable tertiary fold. The mechanisms of self-aggregation serve as a guide for developing aggregation inhibitors. Inhibitors run the gamut of peptides, including natural and synthetic peptides, and those containing non-natural amino acids; proteins, both natural and engineered; and small molecules, including both natural and synthetic substances. The pursuit of aggregation inhibitors remains a prime goal in the search for treatments of protein aggregation diseases. In spite of some serious setbacks in clinical trials, the outlook remains bright—but the continuing task calls for equal measures of perseverance and theraeutic, as well as intellectual, modesty.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Unless otherwise specified, the term “aggregation” will be used as an abbreviation for self-­association or self-aggregation.

References

  • Abedini A, Raleigh DP (2009) A critical assessment of the role of helical intermediates in amyloid formation by natively unfolded proteins and polypeptides. Protein Eng Des Sel 22:453–459

    PubMed  CAS  Google Scholar 

  • Åberg V, Norman F, Chorell E, Westermark A, Olofsson A, Sauer-Eriksson AE, Almqvist F (2005) Microwave-assisted decarboxylation of bicyclic 2-pyridone scaffolds and identification of Aβ-peptide aggregation inhibitors. Org Biomol Chem 3:2817–2823

    PubMed  Google Scholar 

  • Adachi H, Kume A, Li M, Nakagomi Y, Niwa H, Do J, Sang C, Kobayashi Y, Doyu M, Sobue G (2001) Transgenic mice with an expanded CAG repeat controlled by the human AR promoter show polyglutamine nuclear inclusions and neuronal dysfunction without neuronal cell death. Hum Mol Genet 10:1039–1048

    PubMed  CAS  Google Scholar 

  • Adamski-Werner SL, Palaninathan SK, Sacchettini JC, Kelly JW (2004) Diflunisal analogues stabilize the native state of transthyretin. Potent inhibition of amyloidogenesis. J Med Chem 47:355–374

    PubMed  CAS  Google Scholar 

  • Adessi C, Frossard M, Boissard C, Fraga S, Bieler S, Ruckle T, Vilbois F, Robinson SM, Mutter M, Banks WA, Soto C (2003) Pharmacological profiles of peptide drug candidates for the treatment of Alzheimer’s disease. J Biol Chem 278:13905–13911

    PubMed  CAS  Google Scholar 

  • Adlard PA, Cherny RA, Finkelstein DI, Gautier E, Robb E, Cortes M, Volitakis I, Liu X, Smith JP, Perez K, Laughton K, Li Q-X, Charman SA, Nicolazzo JA, Wilkins S, Deleva K, Lynch T, Kok G, Ritchie CW, Tanzi RE, Cappai R, Masters CL, Barnham KJ, Bush AI (2008) Rapid restoration of cognition in Alzheimer’s transgenic mice with 8-hydroxyquinoline analogs is associated with decreased interstitial Aβ. Neuron 59:43–55

    PubMed  CAS  Google Scholar 

  • Aguzzi A, Baumann F, Bremer J (2008) The prion’s elusive reason for being. Annu Rev Neurosci 31:439–477

    PubMed  CAS  Google Scholar 

  • Aisen PS, Saumier D, Briand R, Laurin J, Gervais F, Tremblay P, Garceau D (2006) A phase II study targeting amyloid-β with 3-APS in mild-to-moderate Alzheimer disease. Neurology 67:1757–1763

    PubMed  CAS  Google Scholar 

  • Aisen PS, Gauthier S, Vellas B, Briand R, Saumier D, Laurin J, Garceau D (2007) Alzhemed: a potential treatment for Alzheimer’s disease. Curr Alzheimer Res 4:473–478

    PubMed  CAS  Google Scholar 

  • Akikusa S, Nakamura K, Watanabe K-I, Horikawa E, Konakahara T, Kodaka M, Okuno H (2003) Practical assay and molecular mechanism of aggregation inhibitors of β-amyloid. J Pept Res 61:1–6

    PubMed  CAS  Google Scholar 

  • Allison JR, Müller M, van Gunsteren WF (2010) A comparison of the different helices adopted by α- and β-peptides suggests different reasons for their stability. Protein Sci 19:2186–2195

    PubMed  CAS  Google Scholar 

  • Almeida MR, Macedo B, Cardoso I, Alves I, Valencia G, Arsequell G, Planas A, Saraiva MJ (2004) Selective binding to transthyretin and tetramer stabilization in serum from patients with familial amyloidotic polyneuropathy by an iodinated diflunisal derivative. Biochem J 381:351–356

    PubMed  CAS  Google Scholar 

  • Alvarez A, Alarcón R, Opazo C, Campos EO, Muñoz FJ, Calderón FH, Dajas F, Gentry MK, Doctor BP, De Mello FG, Inestrosa NC (1998) Stable complexes involving acetylcholinesterase and amyloid-β peptide change the biochemical properties of the enzyme and increase the neurotoxicity of Alzheimer’s fibrils. J Neurosci 18:3213–3223

    PubMed  CAS  Google Scholar 

  • Alzheimer A (1907) Über eine eigenartige Erkrankung der Hirnrinde. Allgemeine Zeitschrift für Psychiatrie 64:146–148

    Google Scholar 

  • Amijee H, Madine J, Middleton DA, Doig AJ (2009) Inhibitors of protein aggregation and toxicity. Biochem Soc Trans 37:692–696

    PubMed  CAS  Google Scholar 

  • Andley UP (2009) Effects of α-crystallin on lens cell function and cataract pathology. Curr Mol Med 9:887–892

    PubMed  CAS  Google Scholar 

  • Ando Y, Nakamura M, Kai H, Katsuragi S, Terazaki H, Nozawa T, Okuda T, Misumi S, Matsunaga N, Hata K, Tajiri T, Shoji S, Yamashita T, Haraoka K, Obayashi K, Matsumoto K, Ando M, Uchino M (2002) A novel localized amyloidosis associated with lactoferrin in the cornea. Lab Invest 82:757–766

    PubMed  CAS  Google Scholar 

  • Ando Y, Nakamura M, Araki S (2005) Transthyretin-related familial amyloidotic polyneuropathy. Arch Neurol 62:1057–1062

    PubMed  Google Scholar 

  • Andreasen N, Hesse C, Davidsson P, Minthon L, Wallin A, Winblad B, Vanderstichele H, Vanmechelen E, Blennow K (1999) Cerebrospinal fluid β-amyloid(1–42) in Alzheimer disease: differences between early- and late-onset Alzheimer disease and stability during the course of disease. Arch Neurol 56:673–680

    PubMed  CAS  Google Scholar 

  • Andreola A, Bellotti V, Giorgetti S, Mangione P, Obici L, Stoppini M, Torres J, Monzani E, Merlini G, Sunde M (2003) Conformational switching and fibrillogenesis in the amyloidogenic fragment of apolipoprotein A-I. J Biol Chem 278:2444–2451

    PubMed  CAS  Google Scholar 

  • Andreu JM, Timasheff SN (1986) The measurement of cooperative protein self-assembly by turbidity and other techniques. Methods Enzymol 130:47–59

    PubMed  CAS  Google Scholar 

  • Andrews ME, Inayathullah NM, Jayakumar R, Malar EJ (2009) Conformational polymorphism and cellular toxicity of IAPP and βAP domains. J Struct Biol 166:116–125

    PubMed  CAS  Google Scholar 

  • Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230

    PubMed  CAS  Google Scholar 

  • Aquinas T (1265–1274) Summa Theologica I-II, Q93, a1, ad 1

    Google Scholar 

  • Arakawa T, Tsumoto K (2003) The effects of arginine on refolding of aggregated proteins: not facilitate refolding, but suppress aggregation. Biochem Biophys Res Commun 304:148–152

    PubMed  CAS  Google Scholar 

  • Arakawa T, Bhat R, Timasheff SN (1990) Why preferential hydration does not always stabilize the native structure of globular proteins. Biochemistry 29:1924–1931

    PubMed  CAS  Google Scholar 

  • Aravinda S, Shamala N, Roy RS, Balaram P (2003) Non-protein amino acids in peptide design. Proc Indian Acad Sci (Chem Sci) 115:373–400

    CAS  Google Scholar 

  • Arbel M, Solomon B (2007) Immunotherapy for Alzheimer’s disease: attacking amyloid-β from the inside. Trends Immunol 28:511–513

    PubMed  CAS  Google Scholar 

  • Ariga T, McDonald MP, Yu RK (2008) Role of ganglioside metabolism in the pathogenesis of Alzheimer’s disease—a review. J Lipid Res 49:1157–1175

    PubMed  CAS  Google Scholar 

  • Arispe N, Pollard HB, Rojas E (1993) Giant multilevel cation channels formed by Alzheimer disease amyloid β-protein in bilayer membranes. Proc Natl Acad Sci USA 90:10573–10577

    PubMed  CAS  Google Scholar 

  • Arispe N, Pollard HB, Rojas E (1996) Zn2+ interaction with Alzheimer amyloid-β protein calcium channels. Proc Natl Acad Sci USA 93:1710–1715

    PubMed  CAS  Google Scholar 

  • Armand P, Kirshenbaum K, Falicov A, Dunbrack RL Jr, Dill KA, Zuckermann RN, Cohen FE (1997) Chiral N-substituted glycines can form stable helical conformations. Fold Des 2:369–375

    PubMed  CAS  Google Scholar 

  • Arnold CS, Johnson GV, Cole RN, Dong DL, Lee M, Hart GW (1996) The microtubule-associated protein tau is extensively modified with O-linked N-acetylglucosamine. J Biol Chem 271:28741–28744

    PubMed  CAS  Google Scholar 

  • Atwood CS, Moir RD, Huang X, Scarpa RC, Bacarra NM, Romano DM, Hartshorn MA, Tanzi RE, Bush AI (1998) Dramatic aggregation of Alzheimer Aβ by Cu(II) is induced by conditions representing physiological acidosis. J Biol Chem 273:12817–12826

    PubMed  CAS  Google Scholar 

  • Atwood CS, Huang X, Khatri A, Scarpa RC, Kim YS, Moir RD, Tanzi RE, Roher AE, Bush AI (2000a) Copper catalyzed oxidation of Alzheimer Aβ. Cell Mol Biol (Noisy-le-Grand) 46:777–783

    CAS  Google Scholar 

  • Atwood CS, Scarpa RC, Huang X, Moir RD, Jones WD, Fairlie DP, Tanzi RE, Bush AI (2000b) Characterization of copper interactions with Alzheimer amyloid β peptides: identification of an attomolar-affinity copper binding site on amyloid β1–42. J Neurochem 75:1219–1233

    PubMed  CAS  Google Scholar 

  • Atwood CS, Perry G, Zeng H, Kato Y, Jones WD, Ling KQ, Huang X, Moir RD, Wang D, Sayre LM, Smith MA, Chen SG, Bush AI (2004) Copper mediates dityrosine cross-linking of Alzheimer’s amyloid-β. Biochemistry 43:560–568

    PubMed  CAS  Google Scholar 

  • Auluck PK, Caraveo G, Lindquist S (2010) α-Synuclein: membrane interactions and toxicity in Parkinson’s disease. Annu Rev Cell Dev Biol 26:211–233

    PubMed  CAS  Google Scholar 

  • Austen BM, Paleologou KE, Ali SAE, Qureshi MM, Allsop D, El-Agna OMA (2008) Designing peptide inhibitors for oligomerization and toxicity of Alzheimer’s β-amyloid peptide. Biochemistry 47:1984–1992

    PubMed  CAS  Google Scholar 

  • Bagriantsev S, Liebman SW (2004) Specificity of prion assembly in vivo. [PSI +] and [PIN +] form separate structures in yeast. J Biol Chem 279:51042–51048

    PubMed  CAS  Google Scholar 

  • Balbach JJ, Ishii Y, Antzutkin ON, Leapman RD, Rizzo NW, Dyda F, Reed J, Tycko R (2000) Amyloid fibril formation by Aβ16–22, a seven-residue fragment of the Alzheimer’s β-amyloid peptide, and structural characterization by solid state NMR. Biochemistry 39:13748–13759

    PubMed  CAS  Google Scholar 

  • Balbach JJ, Petkova AT, Oyler NA, Antzutkin ON, Gordon DJ, Meredith SC, Tycko R (2002) Supramolecular structure in full-length Alzheimer’s β-amyloid fibrils: evidence for a parallel β-sheet organization from solid-state nuclear magnetic resonance. Biophys J 83:1205–1219

    PubMed  CAS  Google Scholar 

  • Balch WE, Morimoto RI, Dillin A, Kelly JW (2008) Adapting proteostasis for disease intervention. Science 319:916–919

    PubMed  CAS  Google Scholar 

  • Ballatore C, Lee VM, Trojanowski JQ (2007) Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci 8:663–672

    PubMed  CAS  Google Scholar 

  • Bard F, Barbour R, Cannon C, Carretto R, Fox M, Games D, Guido T, Hoenow K, Hu K, Johnson-Wood K, Khan K, Kholodenko D, Lee C, Lee M, Motter R, Nguyen M, Reed A, Schenk D, Tang P, Vasquez N, Seubert P, Yednock T (2003) Epitope and isotype specificities of antibodies to β-amyloid for protection against Alzheimer’s disease-like neuropathology. Proc Natl Acad Sci USA 100:2023–2028

    PubMed  CAS  Google Scholar 

  • Barmada SJ, Finkbeiner S (2010) Pathogenic TARDBP mutations in amyotrophic lateral sclerosis and frontotemporal dementia: disease-associated pathways. Rev Neurosci 21:251–272

    PubMed  CAS  Google Scholar 

  • Bartolini M, Bertucci C, Cavrini V, Andrisano V (2003) β-Amyloid aggregation induced by human acetylcholinesterase: inhibition studies. Biochem Pharmacol 65:407–416

    PubMed  CAS  Google Scholar 

  • Bastianetto S, Ramassamy C, Doré S, Christen Y, Poirier J, Quirion R (2000) The Ginkgo biloba extract (EGb 761) protects hippocampal neurons against cell death induced by β-amyloid. Eur J Neurosci 12:1882–1890

    PubMed  CAS  Google Scholar 

  • Bateman RJ, Siemers ER, Mawuenyega KG, Wen G, Browning KR, Sigurdson WC, Yarasheski KE, Friedrich SW, Demattos RB, May PC, Paul SM, Holtzman DM (2009) A γ-secretase inhibitor decreases amyloid-β production in the central nervous system. Ann Neurol 66:48–54

    PubMed  CAS  Google Scholar 

  • Baum L, Lam CW, Cheung SK, Kwok T, Lui V, Tsoh J, Lam L, Leung V, Hui E, Ng C, Woo J, Chiu HF, Goggins WB, Zee BC, Cheng KF, Fong CY, Wong A, Mok H, Chow MS, Ho PC, Ip SP, Ho CS, Yu XW, Lai CY, Chan MH, Szeto S, Chan IH, Mok V (2008) Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease. J Clin Psychopharmacol 28:110–113

    PubMed  Google Scholar 

  • Baures PW, Peterson SA, Kelly JW (1998) Discovering transthyretin amyloid fibril inhibitors by limited screening. Bioorg Med Chem 6:1389–1401

    PubMed  CAS  Google Scholar 

  • Baures PW, Oza VB, Peterson SA, Kelly JW (1999) Synthesis and evaluation of inhibitors of transthyretin amyloid formation based on the nonsteroidal anti-inflammatory drug flufenamic acid. Bioorg Med Chem 7:1339–1347

    PubMed  CAS  Google Scholar 

  • Baxa U, Wickner RB, Steven AC, Anderson DE, Marekov LN, Yau WM, Tycko R (2007) Characterization of β-sheet structure in Ure2p1–89 yeast prion fibrils by solid-state nuclear magnetic resonance. Biochemistry 46:13149–13162

    PubMed  CAS  Google Scholar 

  • Bayer AJ, Bullock R, Jones RW, Wilkinson D, Paterson KR, Jenkins L, Millais SB, Donoghue S (2005) Evaluation of the safety and immunogenicity of synthetic Aβ42 (AN1792) in patients with AD. Neurology 64:94–101

    PubMed  CAS  Google Scholar 

  • Bayro MJ, Maly T, Birkett NR, Macphee CE, Dobson CM, Griffin RG (2010) High-resolution MAS NMR analysis of PI3-SH3 amyloid fibrils: backbone conformation and implications for protofilament assembly and structure. Biochemistry 49:7474–7484

    PubMed  CAS  Google Scholar 

  • Bednar MM (2009) Anti-amyloid antibody drugs in clinical testing for Alzheimer’s disease. IDrugs 12:566–575

    PubMed  CAS  Google Scholar 

  • Beligere GS, Dawson PE (2000) Design, synthesis and characterization of 4-ester CI2, a model for backbone hydrogen bonding in protein α-helices. J Am Chem Soc 122:12079–12082

    CAS  Google Scholar 

  • Bellotti V, Mangione P, Merlini G (2000) Immunoglobulin light chain amyloidosis—the archetype of structural and pathogenic variability. J Struct Biol 130:280–289

    PubMed  CAS  Google Scholar 

  • Belluti F, Rampa A, Piazzi L, Bisi A, Gobbi S, Bartolini M, Andrisano V, Cavalli A, Recanatini M, Valenti P (2005) Cholinesterase inhibitors: xanthostigmine derivatives blocking the acetylcholinesterase-induced β-amyloid aggregation. J Med Chem 48:4444–4456

    PubMed  CAS  Google Scholar 

  • Bence NF, Sampat RM, Kopito RR (2001) Impairment of the ubiquitin–proteasome system by protein aggregation. Science 292:1552–1555

    PubMed  CAS  Google Scholar 

  • Bennett MC, Bishop JF, Leng Y, Chock PB, Chase TN, Mouradian MM (1999) Degradation of α-synuclein by proteasome. J Biol Chem 274:33855–33858

    PubMed  CAS  Google Scholar 

  • Bensimon G, Lacomblez L, Meininger V (1994) A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. N Engl J Med 330:585–591

    PubMed  CAS  Google Scholar 

  • Benson MD, Liepnieks J, Uemichi T, Wheeler G, Correa R (1993) Hereditary renal amyloidosis associated with a mutant fibrinogen α-chain. Nat Genet 3:252–255

    PubMed  CAS  Google Scholar 

  • Benson MD, Liepnieks JJ, Yazaki M, Yamashita T, Hamidi AK, Guenther B, Kluve-Beckerman B (2001) A new human hereditary amyloidosis: the result of a stop-codon mutation in the apolipoprotein AII gene. Genomics 72:272–277

    PubMed  CAS  Google Scholar 

  • Benzinger TL, Gregory DM, Burkoth TS, Miller-Auer H, Lynn DG, Botto RE, Meredith SC (1998) Propagating structure of Alzheimer’s β-amyloid(10–35) is parallel β-sheet with residues in exact register. Proc Natl Acad Sci USA 95:13407–13412

    PubMed  CAS  Google Scholar 

  • Benzinger TL, Gregory DM, Burkoth TS, Miller-Auer H, Lynn DG, Botto RE, Meredith SC (2000) Two-dimensional structure of β-amyloid(10–35) fibrils. Biochemistry 39:3491–3499

    PubMed  CAS  Google Scholar 

  • Bergström J, Murphy C, Eulitz M, Weiss DT, Westermark GT, Solomon A, Westermark P (2001) Codeposition of apolipoprotein A-IV and transthyretin in senile systemic (ATTR) amyloidosis. Biochem Biophys Res Commun 285:903–908

    PubMed  Google Scholar 

  • Bergström J, Murphy CL, Weiss DT, Solomon A, Sletten K, Hellman U, Westermark P (2004) Two different types of amyloid deposits—apolipoprotein A-IV and transthyretin—in a patient with systemic amyloidosis. Lab Invest 84:981–988

    PubMed  Google Scholar 

  • Bero AW, Yan P, Roh JH, Cirrito JR, Stewart FR, Raichle ME, Lee JM, Holtzman DM (2011) Neuronal activity regulates the regional vulnerability to amyloid-β deposition. Nat Neurosci 14:750–756

    PubMed  CAS  Google Scholar 

  • Bersch B, Koehl P, Nakatani Y, Ourisson G, Milon A (1993) 1H nuclear magnetic resonance determination of the membrane-bound conformation of senktide, a highly selective neurokinin B agonist. J Biomol NMR 3:443–461

    PubMed  CAS  Google Scholar 

  • Betarbet R, Canet-Aviles RM, Sherer TB, Mastroberardino PG, McLendon C, Kim JH, Lund S, Na HM, Taylor G, Bence NF, Kopito R, Seo BB, Yagi T, Yagi A, Klinefelter G, Cookson MR, Greenamyre JT (2006) Intersecting pathways to neurodegeneration in Parkinson’s disease: effects of the pesticide rotenone on DJ-1, α-synuclein, and the ubiquitin–proteasome system. Neurobiol Dis 22:404–420

    PubMed  CAS  Google Scholar 

  • Bezprozvanny I (2009) Calcium signaling and neurodegenerative diseases. Trends Mol Med 15:89–100

    PubMed  CAS  Google Scholar 

  • Bhatnagar S, Rao GS, Singh TP (1995) The role of dehydro-alanine in the design of peptides. Biosystems 34:143–148

    PubMed  CAS  Google Scholar 

  • Bhattacharyya AM, Thakur AK, Wetzel R (2005) Polyglutamine aggregation nucleation: thermodynamics of a highly unfavorable protein folding reaction. Proc Natl Acad Sci USA 102:15400–15405

    PubMed  CAS  Google Scholar 

  • Bibl M, Mollenhauer B, Esselmann H, Schneider M, Lewczuk P, Welge V, Gross M, Falkai P, Kornhuber J, Wiltfang J (2008) Cerebrospinal fluid neurochemical phenotypes in vascular dementias: original data and mini-review. Dement Geriatr Cogn Disord 25:256–265

    PubMed  Google Scholar 

  • Bilen J, Bonini NM (2007) Genome-wide screen for modifiers of ataxin-3 neurodegeneration in Drosophila. PLoS Genet 3:1950–1964

    PubMed  CAS  Google Scholar 

  • Bisaglia M, Schievano E, Caporale A, Peggion E, Mammi S (2006) The 11-mer repeats of human α-synuclein in vesicle interactions and lipid composition discrimination: a cooperative role. Biopolymers 84:310–316

    PubMed  CAS  Google Scholar 

  • Bitan G, Kirkitadze MD, Lomakin A, Vollers SS, Benedek GB, Teplow DB (2003) Amyloid β-protein (Aβ) assembly: Aβ40 and Aβ42 oligomerize through distinct pathways. Proc Natl Acad Sci USA 100:330–335

    PubMed  CAS  Google Scholar 

  • Blake CC, Geisow MJ, Oatley SJ, Rerat B, Rerat C (1978) Structure of prealbumin: secondary, tertiary and quaternary interactions determined by Fourier refinement at 1.8 Å. J Mol Biol 121:339–356

    PubMed  CAS  Google Scholar 

  • Blow DM, Chayen NE, Lloyd LF, Saridakis E (1994) Control of nucleation of protein crystals. Protein Sci 3:1638–1643

    PubMed  CAS  Google Scholar 

  • Boche D, Nicoll JA (2008) The role of the immune system in clearance of Aβ from the brain. Brain Pathol 18:267–278

    PubMed  Google Scholar 

  • Boldogha I, Kruzel ML (2008) Colostrinin: an oxidative stress modulator for prevention and treatment of age-related disorders. J Alzheimers Dis 13:303–321

    Google Scholar 

  • Bolognesi ML, Bartolini M, Cavalli A, Andrisano V, Rosini M, Minarini A, Melchiorre C (2004) Design, synthesis, and biological evaluation of conformationally restricted rivastigmine analogues. J Med Chem 47:5945–5952

    PubMed  CAS  Google Scholar 

  • Bolognesi ML, Cavalli A, Valgimigli L, Bartolini M, Rosini M, Andrisano V, Recanatini M, Melchiorre C (2007) Multi-target-directed drug design strategy: from a dual binding site acetylcholinesterase inhibitor to a trifunctional compound against Alzheimer’s disease. J Med Chem 50:6446–6449

    PubMed  CAS  Google Scholar 

  • Booth DR, Sunde M, Bellotti V, Robinson CV, Hutchinson WL, Fraser PE, Hawkins PN, Dobson CM, Radford SE, Blake CC, Pepys MB (1997) Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis. Nature 385:787–793

    PubMed  CAS  Google Scholar 

  • Bose M, Gestwicki JE, Devasthali V, Crabtree GR, Graef IA (2005) Molecular mechanisms of neurodegeneration. Biochem Soc Trans 33:543–547

    PubMed  CAS  Google Scholar 

  • Bourhim M, Kruzel M, Srikrishnan T, Nicotera T (2007) Linear quantitation of Aβ aggregation using Thioflavin T: reduction in fibril formation by colostrinin. J Neurosci Methods 160:264–268

    PubMed  CAS  Google Scholar 

  • Bradley ME, Edskes HK, Hong JY, Wickner RB, Liebman SW (2002) Interactions among prions and prion “strains” in yeast. Proc Natl Acad Sci USA 99(Suppl 4):16392–16399

    PubMed  CAS  Google Scholar 

  • Brais B (2003) Oculopharyngeal muscular dystrophy: a late-onset polyalanine disease. Cytogenet Genome Res 100:252–260

    PubMed  CAS  Google Scholar 

  • Brais B (2009) Oculopharyngeal muscular dystrophy: a polyalanine myopathy. Curr Neurol Neurosci Rep 9:76–82

    PubMed  CAS  Google Scholar 

  • Brais B, Rouleau GA, Bouchard JP, Fardeau M, Tomé FM (1999) Oculopharyngeal muscular dystrophy. Semin Neurol 19:59–66

    PubMed  CAS  Google Scholar 

  • Bramson HN, Thomas NE, Kaiser ET (1985) The use of N-methylated peptides and depsipeptides to probe the binding of heptapeptide substrates to cAMP-dependent protein kinase. J Biol Chem 260:15452–15457

    PubMed  CAS  Google Scholar 

  • Brandt R, Leger J, Lee G (1995) Interaction of tau with the neural plasma membrane mediated by tau’s amino-terminal projection domain. J Cell Biol 131:1327–1340

    PubMed  CAS  Google Scholar 

  • Braun BC, Glickman M, Kraft R, Dahlmann B, Kloetzel PM, Finley D, Schmidt M (1999) The base of the proteasome regulatory particle exhibits chaperone-like activity. Nat Cell Biol 1:221–226

    PubMed  CAS  Google Scholar 

  • Brody DL, Holtzman DM (2008) Active and passive immunotherapy for neurodegenerative disorders. Annu Rev Neurosci 31:175–193

    PubMed  CAS  Google Scholar 

  • Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007) Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 3:186–191

    PubMed  Google Scholar 

  • Brown NJ, Wu CW, Seurynck-Servoss SL, Barron AE (2008) Effects of hydrophobic helix length and side chain chemistry on biomimicry in peptoid analogues of SP-C. Biochemistry 47:1808–1818

    PubMed  CAS  Google Scholar 

  • Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, Hu LS, Cheng HL, Jedrychowski MP, Gygi SP, Sinclair DA, Alt FW, Greenberg ME (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303:2011–2015

    PubMed  CAS  Google Scholar 

  • Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, Taddei N, Ramponi G, Dobson CM, Stefani M (2002) Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416:507–511

    PubMed  CAS  Google Scholar 

  • Buchner J, Rudolph R (1991) Renaturation, purification and characterization of recombinant Fab-fragments produced in Escherichia coli. Bio/Technology 9:157–162

    PubMed  CAS  Google Scholar 

  • Buratti E, Baralle FE (2009) The molecular links between TDP-43 dysfunction and neurodegeneration. Adv Genet 66:1–34

    PubMed  CAS  Google Scholar 

  • Burkoth TS, Benzinger TLS, Jones DNM, Hallenga K, Meredith SC, Lynn DG (1998) C-terminal PEG blocks the irreversible step in β-amyloid(10–35) fibrillogenesis. J Am Chem Soc 120:7655

    CAS  Google Scholar 

  • Bush AI, Pettingell WH, Multhaup G, d Paradis M, Vonsattel JP, Gusella JF, Beyreuther K, Masters CL, Tanzi RE (1994a) Rapid induction of Alzheimer Aβ amyloid formation by zinc. Science 265:1464–1467

    PubMed  CAS  Google Scholar 

  • Bush AI, Pettingell WH Jr, Paradis MD, Tanzi RE (1994b) Modulation of Aβ adhesiveness and secretase site cleavage by zinc. J Biol Chem 269:12152–12158

    PubMed  CAS  Google Scholar 

  • Bussell R Jr, Eliezer D (2001) Residual structure and dynamics in Parkinson’s disease-associated mutants of α-synuclein. J Biol Chem 276:45996–46003

    PubMed  CAS  Google Scholar 

  • Bussell R Jr, Eliezer D (2003) A structural and functional role for 11-mer repeats in α-synuclein and other exchangeable lipid binding proteins. J Mol Biol 329:763–778

    PubMed  CAS  Google Scholar 

  • Byström R, Aisenbrey C, Borowik T, Bokvist M, Lindström F, Sani MA, Olofsson A, Gröbner G (2008) Disordered proteins: biological membranes as two-dimensional aggregation matrices. Cell Biochem Biophys 52:175–189

    PubMed  Google Scholar 

  • Cacace MG, Landau EM, Ramsden JJ (1997) The Hofmeister series: salt and solvent effects on interfacial phenomena. Q Rev Biophys 30:241–277

    PubMed  CAS  Google Scholar 

  • Camps P, Formosa X, Galdeano C, Muñoz-Torrero D, Ramírez L, Gómez E, Isambert N, Lavilla R, Badia A, Clos MV, Bartolini M, Mancini F, Andrisano V, Arce MP, Rodríguez-Franco MI, Huertas O, Dafni T, Luque FJ (2009) Pyrano[3,2-c]quinoline-6-chlorotacrine hybrids as a novel family of acetylcholinesterase- and β-amyloid-directed anti-Alzheimer compounds. J Med Chem 52:5365–5379

    PubMed  CAS  Google Scholar 

  • Cannon MJ, Williams AD, Wetzel R, Myszka DG (2004) Kinetic analysis of β-amyloid fibril elongation. Anal Biochem 328:67–75

    PubMed  CAS  Google Scholar 

  • Cardoso I, Almeida MR, Ferreira N, Arsequell G, Valencia G, Saraiva MJ (2007) Comparative in vitro and ex vivo activities of selected inhibitors of transthyretin aggregation: relevance in drug design. Biochem J 408:131–138

    PubMed  CAS  Google Scholar 

  • Castano EM, Roher AE, Esh CL, Kokjohn TA, Beach T (2006) Comparative proteomics of cerebrospinal fluid in neuropathologically-confirmed Alzheimer’s disease and nondemented elderly subjects. Neurol Res 28:155–163

    PubMed  CAS  Google Scholar 

  • Castellani RJ, Smith MA, Perry G, Friedland RP (2004) Cerebral amyloid angiopathy: major contributor or decorative response to Alzheimer’s disease pathogenesis. Neurobiol Aging 25:599–602

    PubMed  CAS  Google Scholar 

  • Castellani RJ, Rolston RK, Smith MA (2010) Alzheimer disease. Dis Mon 56:484–546

    PubMed  Google Scholar 

  • Cattaneo E, Zuccato C, Tartari M (2005) Normal huntingtin function: an alternative approach to Huntington’s disease. Nat Rev Neurosci 6:919–930

    PubMed  CAS  Google Scholar 

  • Catto M, Aliano R, Carotti A, Cellamare S, Palluotto S, Purgatorio R, De Stradis A, Campagna F (2010) Design, synthesis and biological evaluation of indane-2-arylhydrazinylmethylene-1,3-diones and indol-2-aryldiazenylmethylene-3-ones as β-amyloid aggregation inhibitors. Eur J Med Chem 45:1359–1366

    PubMed  CAS  Google Scholar 

  • Caughey B, Lansbury PT (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 26:267–298

    PubMed  CAS  Google Scholar 

  • Cha JH (2007) Transcriptional signatures in Huntington’s disease. Prog Neurobiol 83:228–248

    PubMed  CAS  Google Scholar 

  • Chabry J, Caughey B, Chesebro B (1998) Specific inhibition of in vitro formation of protease-resistant prion protein by synthetic peptides. J Biol Chem 273:13203–13207

    PubMed  CAS  Google Scholar 

  • Chafekar SM, Malda H, Merkx M, Meijer EW, Viertl D, Lashuel HA, Baas F, Scheper W (2007) Branched KLVFF tetramers strongly potentiate inhibition of β-amyloid aggregation. Chembiochem 8:1857–1864

    PubMed  CAS  Google Scholar 

  • Chalifour RJ, McLaughlin RW, Lavoie L, Morissette C, Tremblay N, Boulé M, Sarazin P, Stéa D, Lacombe D, Tremblay P, Gervais F (2003) Stereoselective interactions of peptide inhibitors with the β-amyloid peptide. J Biol Chem 278:34874–34881

    PubMed  CAS  Google Scholar 

  • Chan JC, Oyler NA, Yau WM, Tycko R (2005) Parallel β-sheets and polar zippers in amyloid fibrils formed by residues 10–39 of the yeast prion protein Ure2p. Biochemistry 44:10669–10680

    PubMed  CAS  Google Scholar 

  • Chebaro Y, Derreumaux P (2009) Targeting the early steps of Aβ16–22 protofibril disassembly by N-methylated inhibitors: a numerical study. Proteins 75:442–452

    PubMed  CAS  Google Scholar 

  • Chen D, Dou QP (2008) New uses for old copper-binding drugs: converting the pro-angiogenic copper to a specific cancer cell death inducer. Expert Opin Ther Targets 12:739–748

    PubMed  CAS  Google Scholar 

  • Chen S, Berthelier V, Yang W, Wetzel R (2001) Polyglutamine aggregation behavior in vitro supports a recruitment mechanism of cytotoxicity. J Mol Biol 311:173–182

    PubMed  CAS  Google Scholar 

  • Chen S, Berthelier V, Hamilton JB, O’Nuallain B, Wetzel R (2002a) Amyloid-like features of polyglutamine aggregates and their assembly kinetics. Biochemistry 41:7391–7399

    PubMed  CAS  Google Scholar 

  • Chen S, Ferrone FA, Wetzel R (2002b) Huntington’s disease age-of-onset linked to polyglutamine aggregation nucleation. Proc Natl Acad Sci USA 99:11884–11889

    PubMed  CAS  Google Scholar 

  • Chen J, Zhou Y, Mueller-Steiner S, Chen LF, Kwon H, Yi S, Mucke L, Gan L (2005) SIRT1 protects against microglia-dependent amyloid-β toxicity through inhibiting NF-κB signaling. J Biol Chem 280:40364–40374

    PubMed  CAS  Google Scholar 

  • Cheng SY, Pages RA, Saroff HA, Edelhoch H, Robbins J (1977) Analysis of thyroid hormone binding to human serum prealbumin by 8-anilinonaphthalene-1-sulfonate fluorescence. Biochemistry 16:3707–3713

    PubMed  CAS  Google Scholar 

  • Cheng RP, Gellman SH, DeGrado WF (2001) β-Peptides: from structure to function. Chem Rev 101:3219–3232

    PubMed  CAS  Google Scholar 

  • Chen-Plotkin AS, Lee VM, Trojanowski JQ (2010) TAR DNA-binding protein 43 in neurodegenerative disease. Nat Rev Neurol 6:211–220

    PubMed  CAS  Google Scholar 

  • Cherny RA, Atwood CS, Xilinas ME, Gray DN, Jones WD, McLean CA, Barnham KJ, Volitakis I, Fraser FW, Kim Y, Huang X, Goldstein LE, Moir RD, Lim JT, Beyreuther K, Zheng H, TanzI RE, Masters CL, Bush AI (2001) Treatment with a copper-zinc chelator markedly and rapidly inhibits β-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 30:665–676

    PubMed  CAS  Google Scholar 

  • Cheung JC, Deber CM (2008) Misfolding of the cystic fibrosis transmembrane conductance regulator and disease. Biochemistry 47:1465–1473

    PubMed  CAS  Google Scholar 

  • Chi EY, Frey SL, Winans A, Lam KL, Kjaer K, Majewski J, Lee KY (2010) Amyloid-β fibrillogenesis seeded by interface-induced peptide misfolding and self-assembly. Biophys J 98:2299–2308

    PubMed  CAS  Google Scholar 

  • Chimon S, Ishii Y (2005) Capturing intermediate structures of Alzheimer’s β-amyloid, Aβ(1–40), by solid-state NMR spectroscopy. J Am Chem Soc 127:13472–13473

    PubMed  CAS  Google Scholar 

  • Chimon S, Shaibat MA, Jones CR, Calero DC, Aizezi B, Ishii Y (2007) Evidence of fibril-like β-sheet structures in a neurotoxic amyloid intermediate of Alzheimer’s β-amyloid. Nat Struct Mol Biol 14:1157–1164

    PubMed  CAS  Google Scholar 

  • Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Neurosci 75:333–366

    CAS  Google Scholar 

  • Chiti F, Taddei N, Webster P, Hamada D, Fiaschi T, Ramponi G, Dobson CM (1999) Acceleration of the folding of acylphosphatase by stabilization of local secondary structure. Nat Struct Biol 6:380–387

    PubMed  CAS  Google Scholar 

  • Chrivia JC, Kwok RP, Lamb N, Hagiwara M, Montminy MR, Goodman RH (1993) Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365:855–859

    PubMed  CAS  Google Scholar 

  • Chung KK, Zhang Y, Lim KL, Tanaka Y, Huang H, Gao J, Ross CA, Dawson VL, Dawson TM (2001) Parkin ubiquitinates the α-synuclein-interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. Nat Med 7:1144–1150

    PubMed  CAS  Google Scholar 

  • Cirrito JR, Holtzman DM (2003) Amyloid β and Alzheimer disease therapeutics: the devil may be in the details. J Clin Invest 112:321–323

    PubMed  CAS  Google Scholar 

  • Cirrito JR, May PC, O’Dell MA, Taylor JW, Parsadanian M, Cramer JW, Audia JE, Nissen JS, Bales KR, Paul SM, DeMattos RB, Holtzman DM (2003) In vivo assessment of brain interstitial fluid with microdialysis reveals plaque-associated changes in amyloid-β metabolism and half-life. J Neurosci 23:8844–8853

    PubMed  CAS  Google Scholar 

  • Cirrito JR, Yamada KA, Finn MB, Sloviter RS, Bales KR, May PC, Schoepp DD, Paul SM, Mennerick S, Holtzman DM (2005) Synaptic activity regulates interstitial fluid amyloid-β levels in vivo. Neuron 48:913–922

    PubMed  CAS  Google Scholar 

  • Citron M (2004) β-Secretase inhibition for the treatment of Alzheimer’s disease—promise and challenge. Trends Pharmacol Sci 25:59–112

    Google Scholar 

  • Citron M (2010) Alzheimer’s disease: strategies for disease modification. Nat Rev Drug Discov 9:387–398

    PubMed  CAS  Google Scholar 

  • Clark TD, Buriak JM, Kobayashi K, Isler MP, McRee DE, Ghadiri MR (1998) Cylindrical β-sheet peptide assemblies. J Am Chem Soc 120:8949–8962

    CAS  Google Scholar 

  • Cohen FE, Prusiner SB (1998) Pathologic conformations of prion proteins. Annu Rev Biochem 67:793–819

    PubMed  CAS  Google Scholar 

  • Cole SL, Vassar R (2008) The role of amyloid precursor protein processing by BACE-1, the β-secretase, in Alzheimer disease pathophysiology. J Biol Chem 283:29621–29625

    PubMed  CAS  Google Scholar 

  • Collinge J (2005) Molecular neurology of prion disease. J Neurol Neurosurg Psychiatry 76:906–919

    PubMed  CAS  Google Scholar 

  • Comenzo RL (2006) Systemic immunoglobulin light-chain amyloidosis. Clin Lymphoma Myeloma 7:182–185

    PubMed  CAS  Google Scholar 

  • Commenges D, Scotet V, Renaud S, Jacqmin-Gadda H, Barberger-Gateau P, Dartigues JF (2000) Intake of flavonoids and risk of dementia. Eur J Epidemiol 16:357–363

    PubMed  CAS  Google Scholar 

  • Commodari F, Khiat A, Ibrahimi S, Brizius AR, Kalkstein N (2005) Comparison of the phytoestrogen trans-resveratrol (3,4′,5-trihydroxystilbene) structures from X-ray diffraction and solution NMR. Magn Reson Chem 43:567–672

    PubMed  CAS  Google Scholar 

  • Connelly S, Choi S, Johnson SM, Kelly JW, Wilson IA (2010) Structure-based design of kinetic stabilizers that ameliorate the transthyretin amyloidoses. Curr Opin Struct Biol 20:54–62

    PubMed  CAS  Google Scholar 

  • Conway KA, Lee SJ, Rochet JC, Ding TT, Harper JD, Williamson RE, Lansbury PT Jr (2000a) Accelerated oligomerization by Parkinson’s disease linked α-synuclein mutants. Ann NY Acad Sci 920:42–45

    PubMed  CAS  Google Scholar 

  • Conway KA, Lee SJ, Rochet JC, Ding TT, Williamson RE, Lansbury PT Jr (2000b) Acceleration of oligomerization, not fibrillization, is a shared property of both α-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc Natl Acad Sci USA 97:571–576

    PubMed  CAS  Google Scholar 

  • Conway KA, Rochet JC, Bieganski RM, Lansbury PT Jr (2001) Kinetic stabilization of the α-synuclein protofibril by a dopamine–α-synuclein adduct. Science 294:1346–1349

    PubMed  CAS  Google Scholar 

  • Coomaraswamy J, Kilger E, Wölfing H, Schäfer C, Kaeser SA, Wegenast-Braun BM, Hefendehl JK, Wolburg H, Mazzella M, Ghiso J, Goedert M, Akiyama H, Garcia-Sierra F, Wolfer DP, Mathews PM, Jucker M (2010) Modeling familial Danish dementia in mice supports the concept of the amyloid hypothesis of Alzheimer’s disease. Proc Natl Acad Sci USA 107:7969–7974

    PubMed  CAS  Google Scholar 

  • Cornwell GG 3rd, Sletten K, Johansson B, Westermark P (1998) Evidence that the amyloid fibril protein in senile systemic amyloidosis is derived from normal prealbumin. Biochem Biophys Res Commun 154:648–653

    Google Scholar 

  • Costa R, Gonçalves A, Saraiva MJ, Cardoso I (2008) Transthyretin binding to A-Beta peptide—Impact on A-Beta fibrillogenesis and toxicity. FEBS Lett 582:936–942

    PubMed  CAS  Google Scholar 

  • Cribbs DH, Ghochikyan A, Vasilevko V, Tran M, Petrushina I, Sadzikava N, Babikyan D, Kesslak P, Kieber-Emmons T, Cotman CW, Agadjanyan MG (2003) Adjuvant-dependent modulation of Th1 and Th2 responses to immunization with β-amyloid. Int Immunol 15:505–514

    PubMed  CAS  Google Scholar 

  • Cripps D, Thomas SN, Jeng Y, Yang F, Davies P, Yang AJ (2006) Alzheimer disease-specific conformation of hyperphosphorylated paired helical filament-Tau is polyubiquitinated through Lys-48, Lys-11, and Lys-6 ubiquitin conjugation. J Biol Chem 281:10825–10838

    PubMed  CAS  Google Scholar 

  • Crisma M, Formaggio F, Toniolo C, Yoshikawa T, Wakamiya WJ (1999) Flat peptides. J Am Chem Soc 121:3272–3278

    CAS  Google Scholar 

  • Crowther DC, Kinghorn KJ, Miranda E, Page R, Curry JA, Duthie FA, Gubb DC, Lomas DA (2005) Intraneuronal Aβ, non-amyloid aggregates and neurodegeneration in a Drosophila model of Alzheimer’s disease. Neuroscience 132:123–135

    PubMed  CAS  Google Scholar 

  • Crowther DC, Page R, Chandraratna D, Lomas DA (2006) A Drosophila model of Alzheimer’s disease. Methods Enzymol 412:234–255

    PubMed  CAS  Google Scholar 

  • Cruz M, Tusell JM, Grillo-Bosch D, Albericio F, Serratosa J, Rabanal F, Giralt E (2004) Inhibition of β-amyloid toxicity by short peptides containing N-methyl amino acids. J Pept Res 63:324–328

    PubMed  CAS  Google Scholar 

  • Cummings CJ, Mancini MA, Antalffy B, DeFranco DB, Orr HT, Zoghbi HY (1998) Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat Genet 19:148–154

    PubMed  CAS  Google Scholar 

  • Cummings CJ, Reinstein E, Sun Y, Antalffy B, Jiang Y, Ciechanover A, Orr HT, Beaudet AL, Zoghbi HY (1999) Mutation of the E6-AP ubiquitin ligase reduces nuclear inclusion frequency while accelerating polyglutamine-induced pathology in SCA1 mice. Neuron 24:879–892

    PubMed  CAS  Google Scholar 

  • Dai Q, Borenstein AR, Wu Y, Jackson JC, Larson EB (2006) Fruit and vegetable juices and Alzheimer’s disease: the Kame Project. Am J Med 119:751–759

    PubMed  CAS  Google Scholar 

  • Damas AM, Saraiva MJ (2000) TTR amyloidosis—structural features leading to protein aggregation and their implications on therapeutic strategies. J Struct Biol 130:290–299

    PubMed  CAS  Google Scholar 

  • Darnell G, Orgel JPRO, Pahl R, Meredith SC (2007) Flanking polyproline sequences inhibit β-sheet structure in polyglutamine segments by inducing PPII-like helix structure. J Mol Biol 374:688–704

    PubMed  CAS  Google Scholar 

  • Darnell GD, Derryberry JM, Kurutz JW, Meredith SC (2009) Mechanism of cis-inhibition of polyQ fibrillation by polyP: PPII oligomers and the hydrophobic effect. Biophys J 97:2295–2305

    PubMed  CAS  Google Scholar 

  • Das P, Murphy MP, Younkin LH, Younkin SG, Golde TE (2001) Reduced effectiveness of Aβ1–42 immunization in APP transgenic mice with significant amyloid deposition. Neurobiol Aging 22:721–727

    PubMed  CAS  Google Scholar 

  • Das U, Hariprasad G, Ethayathulla AS, Manral P, Das TK, Pasha S, Mann A, Ganguli M, Verma AK, Bhat R, Chandrayan SK, Ahmed S, Sharma S, Kaur P, Singh TP, Srinivasan A (2007) Inhibition of protein aggregation: supramolecular assemblies of arginine hold the key. PLoS One 2:e1176

    PubMed  Google Scholar 

  • Dasuri K, Ebenezer P, Zhang L, Fernandez-Kim SO, Bruce-Keller AJ, Markesbery WR, Keller JN (2010) Increased protein hydrophobicity in response to aging and Alzheimer disease. Free Radic Biol Med 48:1330–1337

    PubMed  CAS  Google Scholar 

  • Dauchet L, Amouyel P, Dallongeville J (2005) Fruit and vegetable consumption and risk of stroke: a meta-analysis of cohort studies. Neurology 65:1193–1197

    PubMed  Google Scholar 

  • Davidson B, Fasman GD (1967) The conformational transitions of uncharged poly-L-lysine. α helix-random coil-β structure. Biochemistry 6:1616–1629

    PubMed  CAS  Google Scholar 

  • Davidson B, Tooney N, Fasman GD (1966) The optical rotatory dispersion of the β structure of poly-L-lysine and poly-L-serine. Biochem Biophys Res Commun 23:156–162

    PubMed  CAS  Google Scholar 

  • Davidson WS, Jonas A, Clayton DF, George JM (1998) Stabilization of α-synuclein secondary structure upon binding to synthetic membranes. J Biol Chem 273:9443–9449

    PubMed  CAS  Google Scholar 

  • Dawson TM, Dawson VL (2003) Molecular pathways of neurodegeneration in Parkinson’s disease. Science 302:819–822

    PubMed  CAS  Google Scholar 

  • Dawson PE, Kent SB (2000) Synthesis of native proteins by chemical ligation. Annu Rev Biochem 69:923–960

    PubMed  CAS  Google Scholar 

  • De Bona P, Giuffrida ML, Caraci F, Copani A, Pignataro B, Attanasio F, Cataldo S, Pappalardo G, Rizzarelli E (2009) Design and synthesis of new trehalose-conjugated pentapeptides as inhibitors of Aβ(1–42) fibrillogenesis and toxicity. J Pept Sci 15:220–228

    PubMed  Google Scholar 

  • De Ferrari GV, Canales MA, Shin I, Weiner LM, Silman I, Inestrosa NC (2001) A structural motif of acetylcholinesterase that promotes amyloid β-peptide fibril formation. Biochemistry 40:10447–10457

    PubMed  Google Scholar 

  • Dealwis C, Wall J (2004) Towards understanding the structure–function relationship of human amyloid disease. Curr Drug Targets 5:159–171

    PubMed  CAS  Google Scholar 

  • Deane R, Bell RD, Sagare A, Zlokovic BV (2009) Clearance of amyloid-β peptide across the blood–brain barrier: implication for therapies in Alzheimer’s disease. CNS Neurol Disord Drug Targets 8:16–30

    PubMed  CAS  Google Scholar 

  • Dedmon MM, Patel CN, Young GB, Pielak GJ (2002) FlgM gains structure in living cells. Proc Natl Acad Sci USA 99:12681–12684

    PubMed  CAS  Google Scholar 

  • DeKosky ST, Ikonomovic MD, Gandy S (2010) Traumatic brain injury—football, warfare, and long-term effects. N Engl J Med 363:1293–1296

    PubMed  CAS  Google Scholar 

  • DeMattos RB, Bales KR, Cummins DJ, Dodart JC, Paul SM, Holtzman DM (2001) Peripheral anti-Aβ antibody alters CNS and plasma Aβ clearance and decreases brain Aβ burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 98:8850–8855

    PubMed  CAS  Google Scholar 

  • Desai UA, Pallos J, Ma AA, Stockwell BR, Thompson LM, Marsh JL, Diamond MI (2006) Biologically active molecules that reduce polyglutamine aggregation and toxicity. Hum Mol Genet 15:2114–2124

    PubMed  CAS  Google Scholar 

  • DeStrooper B (2003) Aph-1, Pen-2, and Nicastrin with Presenilin generate an active γ-secretase complex. Neuron 38:9–12

    CAS  Google Scholar 

  • DeStrooper B, Annaert W (2010) Novel research horizons for presenilins and γ-secretases in cell biology and disease. Annu Rev Cell Dev Biol 26:235–260

    CAS  Google Scholar 

  • Di Giovanni S, Eleuteri S, Paleologou KE, Yin G, Zweckstetter M, Carrupt P-A, Lashuel HA (2010) Entacapone and tolcapone, two catechol O-methyltransferase inhibitors, block fibril formation of α-synuclein and β-amyloid and protect against amyloid-induced toxicity. J Biol Chem 285:14941–14954

    PubMed  Google Scholar 

  • Di Monte DA (2003) The environment and Parkinson’s disease: is the nigrostriatal system preferentially targeted by neurotoxins? Lancet Neurol 2:531–538

    PubMed  Google Scholar 

  • DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, Aronin N (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277:1990–1993

    PubMed  CAS  Google Scholar 

  • Ding WQ, Lind SE (2009) Metal ionophores—an emerging class of anticancer drugs. IUBMB Life 61:1013–1018

    PubMed  CAS  Google Scholar 

  • Diociaiuti M, Polzi LZ, Valvo L, Malchiodi-Albedi F, Bombelli C, Gaudiano MC (2006) Calcitonin forms oligomeric pore-like structures in lipid membranes. Biophys J 91:2275–2281

    PubMed  CAS  Google Scholar 

  • Dobson CM (2001) The structural basis of protein folding and its links with human disease. Philos Trans R Soc Lond B 356:133–145

    CAS  Google Scholar 

  • Dogterom P, Nagelkerke JF, Mulder GJ (1988) Hepatotoxicity of tetrahydroaminoacridine in isolated rat hepatocytes: effect of glutathione and vitamin E. Biochem Pharmacol 37:2311–2313

    PubMed  CAS  Google Scholar 

  • Doig AJ (1997) A three stranded β-sheet peptide in aqueous solution containing N-methyl amino acids to prevent aggregation. J Chem Soc Chem Commun 22:2153–2154

    Google Scholar 

  • Doig AJ, Hughes E, Burke RM, Su TJ, Heenan RK, Lu J (2002) Inhibition of toxicity and protofibril formation in the amyloid-β peptide β(25–35) using N-methylated derivatives. Biochem Soc Trans 30:537–542

    PubMed  CAS  Google Scholar 

  • Dolado I, Nieto J, Saraiva MJ, Arsequell G, Valencia G, Planas A (2005) Kinetic assay for high-throughput screening of in vitro transthyretin amyloid fibrillogenesis inhibitors. J Comb Chem 7:246–252

    PubMed  CAS  Google Scholar 

  • Dorval V, Fraser PE (2006) Small ubiquitin-like modifier (SUMO) modification of natively unfolded proteins tau and α-synuclein. J Biol Chem 281:9919–9924

    PubMed  CAS  Google Scholar 

  • Dovey HF, John V, Anderson JP, Chen LZ, de Saint Andrieu P, Fang LY, Freedman SB, Folmer B, Goldbach E, Holsztynska EJ, Hu KL, Johnson-Wood KL, Kennedy SL, Kholodenko D, Knops JE, Latimer LH, Lee M, Liao Z, Lieberburg IM, Motter RN, Mutter LC, Nietz J, Quinn KP, Sacchi KL, Seubert PA, Shopp GM, Thorsett ED, Tung JS, Wu J, Yang S, Yin CT, Schenk DB, May PC, Altstiel LD, Bender MH, Boggs LN, Britton TC, Clemens JC, Czilli DL, Dieckman-McGinty DK, Droste JJ, Fuson KS, Gitter BD, Hyslop PA, Johnstone EM, Li WY, Little SP, Mabry TE, Miller FD, Audia JE (2001) Functional γ-secretase inhibitors reduce β-amyloid peptide levels in brain. J Neurochem 76:173–181

    PubMed  CAS  Google Scholar 

  • Dumoulin M, Kumita JR, Dobson CM (2006) Normal and aberrant biological self-assembly: insights from studies of human lysozyme and its amyloidogenic variants. Acc Chem Res 39:603–610

    PubMed  CAS  Google Scholar 

  • Dunker AK, Oldfield CJ, Meng J, Romero P, Yang JY, Chen JW, Vacic V, Obradovic Z, Uversky VN (2008) The unfoldomics decade: an update on intrinsically disordered proteins. BMC Genomics 9(Suppl 2):S1

    Google Scholar 

  • Durairajan SS, Yuan Q, Xie L, Chan WS, Kum WF, Koo I, Liu C, Song Y, Huang JD, Klein WL, Li M (2008) Salvianolic acid B inhibits Aβ fibril formation and disaggregates preformed fibrils and protects against Aβ-induced cytotoxicity. Neurochem Int 52:741–750

    PubMed  CAS  Google Scholar 

  • Dzwolak W, Ravindra R, Nicolini C, Jansen R, Winter R (2004) The diastereomeric assembly of polylysine is the low-volume pathway for preferential formation of β-sheet aggregates. J Am Chem Soc 126:3762–3768

    PubMed  CAS  Google Scholar 

  • Eaton WA, Hofrichter J (1990) Sickle cell hemoglobin polymerization. Adv Protein Chem 40:63–279

    PubMed  CAS  Google Scholar 

  • Eaton WA, Hofrichter J (1995) The biophysics of sickle cell hydroxyurea therapy. Science 268:1142–1143

    PubMed  CAS  Google Scholar 

  • Eikelenboom P, van Exel E, Hoozemans JJ, Veerhuis R, Rozemuller AJ, van Gool WA (2010) Neuroinflammation—an early event in both the history and pathogenesis of Alzheimer’s disease. Neurodegener Dis 7:38–41

    PubMed  CAS  Google Scholar 

  • El-Agnaf OM, Paleologou KE, Greer B, Abogrein AM, King JE, Salem SA, Fullwood NJ, Benson FE, Hewitt R, Ford KJ, Martin FL, Harriott P, Cookson MR, Allsop D (2004) A strategy for designing inhibitors of α-synuclein aggregation and toxicity as a novel treatment for Parkinson’s disease and related disorders. FASEB J 18:1315–1317

    PubMed  CAS  Google Scholar 

  • Elgersma RC, Mulder GE, Kruijtzer JA, Posthuma G, Rijkers DT, Liskamp RM (2007) Transformation of the amyloidogenic peptide amylin(20–29) into its corresponding peptoid and retropeptoid: access to both an amyloid inhibitor and template for self-assembled supramolecular tapes. Bioorg Med Chem Lett 17:1837–1842

    PubMed  CAS  Google Scholar 

  • Elseviers M, Van der Auwera L, Pepermans H, Tourwe D, Van Binst G (1988) Evidence for the bioactive conformation in a cyclic hexapeptide analogue of somatostatin containing a cis-­peptide bond mimic. Biochem Biophys Res Commun 154:515–521

    PubMed  CAS  Google Scholar 

  • Emmanouilidou E, Stefanis L, Vekrellis K (2010) Cell-produced α-synuclein oligomers are targeted to, and impair, the 26S proteasome. Neurobiol Aging 31:953–968

    PubMed  CAS  Google Scholar 

  • Esler WP, Stimson ER, Fishman JB, Ghilardi JR, Vinters HV, Mantyh PW, Maggio JE (1999) Stereochemical specificity of Alzheimer’s disease-peptide assembly. Biopolymers 49:505–514

    PubMed  CAS  Google Scholar 

  • Esposito L, Paladino A, Pedone C, Vitagliano L (2008) Insights into structure, stability, and toxicity of monomeric and aggregated polyglutamine models from molecular dynamics simulations. Biophys J 94:4031–4040

    PubMed  CAS  Google Scholar 

  • Eulitz M, Weiss DT, Solomon A (1990) Immunoglobulin heavy-chain-associated amyloidosis. Proc Natl Acad Sci USA 87:6542–6546

    PubMed  CAS  Google Scholar 

  • Ezoulin MJ, Dong CZ, Liu Z, Li J, Chen HZ, Heymans F, Lelièvre L, Ombetta JE, Massicot F (2006) Study of PMS777, a new type of acetylcholinesterase inhibitor, in human HepG2 cells. Comparison with tacrine and galanthamine on oxidative stress and mitochondrial impairment. Toxicol In Vitro 20:824–831

    PubMed  CAS  Google Scholar 

  • Fadika GO, Baumann M (2002) Peptides corresponding to gelsolin derived amyloid of the Finnish type (AGelFIN) adopt two distinct forms in solution of which only one can polymerize into amyloid fibrils and form complexes with apoE. Amyloid 9:75–82

    PubMed  CAS  Google Scholar 

  • Fändrich M, Fletcher MA, Dobson CM (2001) Amyloid fibrils from muscle myoglobin. Nature 410:165–166

    PubMed  Google Scholar 

  • Fändrich M, Meinhardt J, Grigorieff N (2009) Structural polymorphism of Alzheimer Aβ and other amyloid fibrils. Prion 3:89–93

    PubMed  Google Scholar 

  • Fang L, Appenroth D, Decker M, Kiehntopf M, Roegler C, Deufel T, Fleck C, Peng S, Zhang Y, Lehmann J (2008) Synthesis and biological evaluation of NO-donor-tacrine hybrids as hepatoprotective anti-Alzheimer drug candidates. J Med Chem 51:713–716

    PubMed  CAS  Google Scholar 

  • Federoff HJ (2009) Development of vaccination approaches for the treatment of neurological diseases. J Comp Neurol 515:4–14

    PubMed  CAS  Google Scholar 

  • Fellouse FA, Esaki K, Birtalan S, Raptis D, Cancasci VJ, Koide A, Jhurani P, Vasser M, Wiesmann C, Kossiakoff AA, Koide S, Sidhu SS (2007) High-throughput generation of synthetic antibodies from highly functional minimalist phage-displayed libraries. J Mol Biol 373:924–940

    PubMed  CAS  Google Scholar 

  • Feng Y, Wang XP, Yang SG, Wang YJ, Zhang X, Du XT, Sun XX, Zhao M, Huang L, Liu RT (2009) Resveratrol inhibits β-amyloid oligomeric cytotoxicity but does not prevent oligomer formation. Neurotoxicology 30:986–995

    PubMed  CAS  Google Scholar 

  • Fernández-Bachiller MI, Pérez C, González-Muñoz GC, Conde S, López MG, Villarroya M, García AG, Rodríguez-Franco MI (2010) Novel tacrine-8-hydroxyquinoline hybrids as multifunctional agents for the treatment of Alzheimer’s disease, with neuroprotective, cholinergic, antioxidant, and copper complexing properties. J Med Chem 53:4927–4937

    PubMed  Google Scholar 

  • Ferreira ST, Vieira MN, De Felice FG (2007) Soluble protein oligomers as emerging toxins in Alzheimer’s and other amyloid diseases. IUBMB Life 59:332–345

    PubMed  CAS  Google Scholar 

  • Ferrer I, Boada Rovira M, Sánchez Guerra ML, Rey MJ, Costa‑Jussá F (2004) Neuropathology and pathogenesis of encephalitis following amyloid-β immunization in Alzheimer’s disease. Brain Pathol 14:11–20

    PubMed  CAS  Google Scholar 

  • Ferrone FA, Hofrichter J, Eaton WA (1985) Kinetics of sickle hemoglobin polymerization. II. A double nucleation mechanism. J Mol Biol 183:611–631

    PubMed  CAS  Google Scholar 

  • Figueroa KP, Pulst SM (2003) Identification and expression of the gene for human ataxin-2-related protein on chromosome 16. Exp Neurol 184:669–678

    PubMed  CAS  Google Scholar 

  • Findeis MA, Musso GM, Arico-Muendel CC, Benjamin HW, Hundal AM, Lee JJ, Chin J, Kelley M, Wakefield J, Hayward NJ, Molineaux SM (1999) Modified peptide inhibitors of amyloid β-peptide polymerization. Biochemistry 38:6791–6800

    PubMed  CAS  Google Scholar 

  • Fink AL (2005) Natively unfolded proteins. Curr Opin Struct Biol 15:35–41

    PubMed  CAS  Google Scholar 

  • Fink AL (2006) The aggregation and fibrillation of α-synuclein. Acc Chem Res 39:628–634

    PubMed  CAS  Google Scholar 

  • Finsterer J (2009) Bulbar and spinal muscular atrophy (Kennedy’s disease): a review. Eur J Neurol 16:556–561

    PubMed  CAS  Google Scholar 

  • Fleisher AS, Raman R, Siemers ER, Becerra L, Clark CM, Dean RA, Farlow MR, Galvin JE, Peskind ER, Quinn JF, Sherzai A, Sowell BB, Aisen PS, Thal LJ (2008) Phase 2 safety trial targeting amyloid β production with a γ-secretase inhibitor in Alzheimer disease. Arch Neurol 65:1031–1038

    PubMed  Google Scholar 

  • Floros J, Kala P (1998) Surfactant proteins: molecular genetics of neonatal pulmonary diseases. Annu Rev Physiol 60:365–384

    PubMed  CAS  Google Scholar 

  • Fonte V, Kapulkin V, Taft A, Fluet A, Friedman D, Link CD (2002) Interaction of intracellular β-amyloid peptide with chaperone proteins. Proc Natl Acad Sci USA 99:9439–9444

    PubMed  CAS  Google Scholar 

  • Fonte V, Kipp DR, Yerg J 3rd, Merin D, Forrestal M, Wagner E, Roberts CM, Link CD (2007) Suppression of in vivo β-amyloid peptide toxicity by overexpression of the HSP-16.2 small chaperone protein. J Biol Chem 283:784–791

    PubMed  Google Scholar 

  • Foster JK, Verdile G, Bates KA, Martins RN (2009) Immunization in Alzheimer’s disease: naïve hope or realistic clinical potential? Mol Psychiatry 14:239–251

    PubMed  CAS  Google Scholar 

  • Fowler SA, Blackwell HE (2009) Structure–function relationships in peptoids: recent advances toward deciphering the structural requirements for biological function. Org Biomol Chem 7:1508–1524

    PubMed  CAS  Google Scholar 

  • Fowler SA, Stacy DM, Blackwell HE (2008) Design and synthesis of macrocyclic peptomers as mimics of a quorum sensing signal from Staphylococcus aureus. Org Lett 10:2329–2332

    PubMed  CAS  Google Scholar 

  • Fox NC, Black RS, Gilman S, Rossor MN, Griffith SG, Jenkins L, Koller M (2005) AN1792(QS-21)-201 Study. Effects of Aβ immunization (AN1792) on MRI measures of cerebral volume in Alzheimer disease. Neurology 64:1563–1572

    PubMed  CAS  Google Scholar 

  • Friedman MJ, Wang CE, Li XJ, Li S (2008) Polyglutamine expansion reduces the association of TATA-binding protein with DNA and induces DNA binding-independent neurotoxicity. J Biol Chem 283:8283–8290

    PubMed  CAS  Google Scholar 

  • Fu H, Li W, Luo J, Lee NTK, Li M, Tsim KWK, Pang Y, Youdim MBH, Han Y (2008) Promising anti-Alzheimer’s dimer bis(7)-tacrine reduces β-amyloid generation by directly inhibiting BACE-1 activity. Biochem Biophys Res Commun 366:631–636

    PubMed  CAS  Google Scholar 

  • Fu HJ, Liu B, Frost JL, Lemere CA (2010) Amyloid-β immunotherapy for Alzheimer’s disease. CNS Neurol Disord Drug Targets 9:197–206

    PubMed  CAS  Google Scholar 

  • Fuhrhop JH, Krull M, Büldt G (1987) Precipitates with β-pleated sheet structure by mixing aqueous solutions of helical poly(D-lysine) and Poly(L-lysine). Angew Chem lnt Ed Engl 26:699–700

    Google Scholar 

  • Fülöp L, Zarándi M, Datki Z, Soós K, Penke B (2004) β-Amyloid-derived pentapeptide RIIGLa inhibits Aβ1–42 aggregation and toxicity. Biochem Biophys Res Commun 324:64–69

    PubMed  Google Scholar 

  • Fuxreiter M, Simon I, Friedrich P, Tompa P (2004) Preformed structural elements feature in partner recognition by intrinsically unstructured proteins. J Mol Biol 338:1015–1026

    PubMed  CAS  Google Scholar 

  • Galasko D, Chang L, Motter R, Clark CM, Kaye J, Knopman D, Thomas R, Kholodenko D, Schenk D, Lieberburg I, Miller B, Green R, Basherad R, Kertiles L, Boss MA, Seubert P (1998) High cerebrospinal fluid tau and low amyloid β42 levels in the clinical diagnosis of Alzheimer disease and relation to apolipoprotein E genotype. Arch Neurol 55:937–945

    PubMed  CAS  Google Scholar 

  • Gales L, Macedo-Ribeiro S, Arsequell G, Valencia G, Saraiva MJ, Damas AM (2005) Human transthyretin in complex with iododiflunisal—structural features associated with a potent amyloid inhibitor. Biochem J 388:615–621

    PubMed  CAS  Google Scholar 

  • Galván M, David JP, Delacourte A, Luna J, Mena R (2001) Sequence of neurofibrillary changes in aging and Alzheimer’s disease: a confocal study with phospho-tau antibody, AD2. J Alzheimers Dis 3:417–425

    PubMed  Google Scholar 

  • Gambetti P, Russo C (1998) Human brain amyloidoses. Nephrol Dial Transplant 13(Suppl 7):33–40

    PubMed  Google Scholar 

  • Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, Blackwell C, Carr T, Clemens L, Donaldson T, Gillespie E, Guido T, Hagopian S, Johnson-Wood K, Khan K, Lee M, Leibowitz P, Lieberburg I, Little S, Masliah E, McConlogue L, Montoya-Zavala M, Mucke L, Paganini L, Penniman E, Power M, Schenk D, Seubert P, Snyder B, Soriano F, Tan H, Vitale J, Wadworth S, Wolozin B, Zhao J (1995) Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature 373:523–527

    PubMed  CAS  Google Scholar 

  • Gao R, Matsuura T, Coolbaugh M, Zühlke C, Nakamura K, Rasmussen A, Siciliano MJ, Ashizawa T, Lin X (2008) Instability of expanded CAG/CAA repeats in spinocerebellar ataxia type 17. Eur J Hum Genet 16:215–222

    PubMed  CAS  Google Scholar 

  • García-Palomero E, Muñoz P, Usan P, Garcia P, Delgado E, De Austria C, Valenzuela R, Rubio L, Medina M, Martínez A (2008) Potent β-amyloid modulators. Neurodegener Dis 5:153–156

    PubMed  Google Scholar 

  • Gardberg AS, Dice LT, Ou S, Rich RL, Helmbrecht E, Ko J, Wetzel R, Myszka DG, Patterson PH, Dealwis C (2007) Molecular basis for passive immunotherapy of Alzheimer’s disease. Proc Natl Acad Sci USA 104:15659–15664

    PubMed  CAS  Google Scholar 

  • Garden GA, La Spada AR (2008) Molecular pathogenesis and cellular pathology of spinocerebellar ataxia type 7 neurodegeneration. Cerebellum 7:138–149

    PubMed  CAS  Google Scholar 

  • Gauthier S, Aisen PS, Ferris SH, Saumier D, Duong A, Haine D, Garceau D, Suhy J, Oh J, Lau W, Sampalis J (2007) Effect of tramiprosate in patients with mild-to-moderate Alzheimer’s disease: exploratory analyses of the MRI sub-group of the Alphase study. J Nutr Health Aging 13:550–557

    Google Scholar 

  • Genschel J, Haas R, Propsting MJ, Schmidt HH (1998) Apolipoprotein A-I induced amyloidosis. FEBS Lett 430:145–149

    PubMed  CAS  Google Scholar 

  • Gervais F, Chailfour R, Garceau D, Kong X, Laurin J, McLaughlin R, Morissette C, Paquette J (2001) Glycosaminoglycan mimetics: a therapeutic approach to cerebral amyloid angiopathy. Amyloid 8(Suppl 1):28–35

    PubMed  CAS  Google Scholar 

  • Gervais F, Paquette J, Morissette C, Krzywkowski P, Yu M, Azzi M, Lacombe D, Kong X, Aman A, Laurin J, Szarek WA, Tremblay P (2006) Targeting soluble Aβ peptide with Tramiprosate for the treatment of brain amyloidosis. Neurobiol Aging 28:537–547

    PubMed  Google Scholar 

  • Geser F, Martinez-Lage M, Kwong LK, Lee VM, Trojanowski JQ (2009) Amyotrophic lateral sclerosis, frontotemporal dementia and beyond: the TDP-43 diseases. J Neurol 256:1205–1214

    PubMed  Google Scholar 

  • Geula C, Mesulam M (1989) Special properties of cholinesterases in the cerebral cortex of Alzheimer’s disease. Brain Res 498:185–189

    PubMed  CAS  Google Scholar 

  • Ghiso J, Jensson O, Frangione B (1986) Amyloid fibrils in hereditary cerebral hemorrhage with amyloidosis of Icelandic type is a variant of α-trace basic protein (cystatin C). Proc Natl Acad Sci USA 83:2974–2978

    PubMed  CAS  Google Scholar 

  • Giacomelli CE, Norde W (2003) Influence of hydrophobic teflon particles on the structure of amyloid β-peptide. Biomacromolecules 4:1719–1726

    PubMed  CAS  Google Scholar 

  • Giasson BI, Duda JE, Murray IV, Chen Q, Souza JM, Hurtig HI, Ischiropoulos H, Trojanowski JQ, Lee VM (2000) Oxidative damage linked to neurodegeneration by selective α-synuclein nitration in synucleinopathy lesions. Science 290:985–989

    PubMed  CAS  Google Scholar 

  • Gibson TJ, Murphy RM (2005) Design of peptidyl compounds that affect β-amyloid aggregation: importance of surface tension and context. Biochemistry 44:8898–8907

    PubMed  CAS  Google Scholar 

  • Gibson G, El-Agnaf OM, Anwar Z, Sidera C, Isbister A, Austen BM (2005) Structure and neurotoxicity of novel amyloids derived from the BRI gene. Biochem Soc Trans 33:1111–1112

    PubMed  CAS  Google Scholar 

  • Gilead S, Gazit E (2004) Inhibition of amyloid fibril formation by peptide analogues modified with α-aminoisobutyric acid. Angew Chem Int Ed Engl 43:4041–4044

    PubMed  CAS  Google Scholar 

  • Giordano C, Masi A, Pizzini A, Sansone A, Consalvi V, Chiaraluce R, Lucente G (2009) Synthesis and activity of fibrillogenesis peptide inhibitors related to the 17–21 β amyloid sequence. Eur J Med Chem 44:179–189

    PubMed  CAS  Google Scholar 

  • Giunta S, Valli MB, Galeazzi R, Fattoretti P, Corder EH, Galeazzi L (2005) Transthyretin inhibition of amyloid β aggregation and toxicity. Clin Biochem 38:1112–1119

    PubMed  CAS  Google Scholar 

  • Glabe CG (2008) Structural classification of toxic amyloid oligomers. J Biol Chem 283:29639–29643

    PubMed  CAS  Google Scholar 

  • Gladkevich A, Bosker F, Korf J, Yenkoyan K, Vahradyan H, Aghajanov M (2007) Proline-rich polypeptides in Alzheimer’s disease and neurodegenerative disorders—Therapeutic potential or a mirage? Prog Neuropsychopharmacol Biol Psychiatry 31:1347–1355

    PubMed  CAS  Google Scholar 

  • Glenner GG, Bladen HA (1966) purification and reconstitution of the periodic fibril and unit structure of human amyloid. Science 154:271–272

    PubMed  CAS  Google Scholar 

  • Glenner GG, Wong CW (1984a) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885–890

    PubMed  CAS  Google Scholar 

  • Glenner GG, Wong CW (1984b) Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun 122:1131–1135

    PubMed  CAS  Google Scholar 

  • Goedert M, Spillantini MG (2006) A century of Alzheimer’s disease. Science 314:777–781

    PubMed  CAS  Google Scholar 

  • Gonzalez A, Quirante J, Nieto J, Almeida MR, Saraiva MJ, Planas A, Arsequell G, Valencia G (2009) Isatin derivatives, a novel class of transthyretin fibrillogenesis inhibitors. Bioorg Med Chem Lett 19:5270–5273

    PubMed  CAS  Google Scholar 

  • Gooptu B, Hazes B, Chang WS, Dafforn TR, Carrell RW, Read RJ, Lomas DA (2000) Inactive conformation of the serpin α(1)-antichymotrypsin indicates two-stage insertion of the reactive loop: implications for inhibitory function and conformational disease. Proc Natl Acad Sci USA 97:67–72

    PubMed  CAS  Google Scholar 

  • Gordon DJ, Sciarretta KL, Meredith SC (2001) Inhibition of β-amyloid(40) fibrillogenesis and disassembly of β-amyloid(40) fibrils by short β-amyloid congeners containing N-methyl amino acids at alternate residues. Biochemistry 40:8237–8245

    PubMed  CAS  Google Scholar 

  • Gordon DJ, Tappe R, Meredith SC (2002) Design and characterization of a membrane permeable N-methyl amino acid containing peptide that inhibits Aβ(1–40) fibrillogenesis. J Pept Res 60:37–55

    PubMed  CAS  Google Scholar 

  • Gordon DJ, Balbach JJ, Tycko R, Meredith SC (2004) Increasing the amphiphilicity of an amyloidogenic peptide changes the β-sheet structure in the fibrils from antiparallel to parallel. Biophys J 86:428–434

    PubMed  CAS  Google Scholar 

  • Gorske BC, Blackwell HE (2006) Interception of quorum sensing in Staphylococcus aureus: a new niche for peptidomimetics. Org Biomol Chem 4:1441–1445

    PubMed  Google Scholar 

  • Goux WJ, Kopplin L, Nguyen AD, Leak K, Rutkofsky M, Shanmuganandam VD, Sharma D, Inouye H, Kirschner DA (2004) The formation of straight and twisted filaments from short Tau peptides. J Biol Chem 279:26868–26875

    PubMed  CAS  Google Scholar 

  • Green NS, Foss TR, Kelly JW (2005) Genistein, a natural product from soy, is a potent inhibitor of transthyretin amyloidosis. Proc Natl Acad Sci USA 104:14545–14550

    Google Scholar 

  • Greenfield N, Fasman GD (1969) Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry 8:4108–4116

    PubMed  CAS  Google Scholar 

  • Greenfield N, Davidson B, Fasman GD (1967) The use of computed optical rotatory dispersion curves for the evaluation of protein conformation. Biochemistry 6:1630–1637

    PubMed  CAS  Google Scholar 

  • Grill JD, Cummings JL (2010) Current therapeutic targets for the treatment of Alzheimer’s disease. Expert Rev Neurother 10:711–728

    PubMed  CAS  Google Scholar 

  • Grillo-Bosch D, Carulla N, Cruz M, Sánchez L, Pujol-Pina R, Madurga S, Rabanal F, Giralt E (2009) Retro-enantio N-methylated peptides as β-amyloid aggregation inhibitors. ChemMedChem 4:1488–1494

    PubMed  CAS  Google Scholar 

  • Grundman M, Black R (2008) Clinical trials of bapineuzumab, a β-amyloid-targeted immunotherapy in patients with mild to moderate Alzheimer’s disease [abstract O3‑04‑05]. Alzheimers Dement 4:T166

    Google Scholar 

  • Grune T, Reinheckel T, Davies KJ (1997) Degradation of oxidized proteins in mammalian cells. FASEB J 11:526–534

    PubMed  CAS  Google Scholar 

  • Gudmundsson G, Hallgrimsson J, Jonasson TA, Bjarnason O (1972) Hereditary cerebral haemorrhage with amyloidosis. Brain 95:387–404

    PubMed  CAS  Google Scholar 

  • Guijarro JI, Sunde M, Jones JA, Campbell ID, Dobson CM (1998) Amyloid fibril formation by an SH3 domain. Proc Natl Acad Sci USA 95:4224–4228

    PubMed  CAS  Google Scholar 

  • Gupta VB, Indi SS, Rao KS (2009) Garlic extract exhibits antiamyloidogenic activity on amyloid-β fibrillogenesis: relevance to Alzheimer’s disease. Phytother Res 23:111–115

    PubMed  Google Scholar 

  • Gusella JF, MacDonald ME (1995) Huntington’s disease. Semin Cell Biol 6:21–28

    PubMed  CAS  Google Scholar 

  • Gusella JF, MacDonald ME (2003) Huntingtin: a single bait hooks many species. Curr Opin Neurobiol 8:425–430

    Google Scholar 

  • Gustafson DR, Skoog I, Rosengren L, Zetterberg H, Blennow K (2007) Cerebrospinal fluid β-amyloid 1–42 concentration may predict cognitive decline in older women. J Neurol Neurosurg Psychiatry 78:461–464

    PubMed  Google Scholar 

  • Gustavsson A, Engstrom U, Westermark P (1991) Normal transthyretin and synthetic transthyretin fragments form amyloid-like fibrils in vitro. Biochem Biophys Res Commun 175:1159–1164

    PubMed  CAS  Google Scholar 

  • Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Rev Mol Cell Biol 8:101–112

    PubMed  CAS  Google Scholar 

  • Haass C, Schlossmacher MG, Hung AY, Vigo-Pelfrey C, Mellon A, Ostaszewski BL, Lieberburg I, Koo EH, Schenk D, Teplow DB, Selkoe DJ (1992) Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature 359:322–325

    PubMed  CAS  Google Scholar 

  • Haass C, Lemere CA, Capell A, Citron M, Seubert P, Schenk D, Lannfelt L, Selkoe DJ (1995) The Swedish mutation causes early-onset Alzheimer’s disease by β-secretase cleavage within the secretory pathway. Nat Med 1:1291–1296

    PubMed  CAS  Google Scholar 

  • Haataja L, Gurlo T, Huang CJ, Butler PC (2008) Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis. Endocr Rev 29:303–316

    PubMed  CAS  Google Scholar 

  • Hackeng TM, Griffin JH, Dawson PE (1999) Protein synthesis by native chemical ligation: expanded scope by using straightforward methodology. Proc Natl Acad Sci USA 96:10068–10073

    PubMed  CAS  Google Scholar 

  • Hagen GA, Elliot WJ (1973) Transport of thyroid hormones in serum and cerebrospinal fluid. J Clin Endocrinol 37:415–422

    CAS  Google Scholar 

  • Hainfellner JA, Budka H (1999) Disease associated prion protein may deposit in the peripheral nervous system in human transmissible spongiform encephalopathies. Acta Neuropathol (Berl) 98:458–460

    CAS  Google Scholar 

  • Hamaguchi T, Ono K, Yamada M (2010) Curcumin and Alzheimer’s disease. CNS Neurosci Ther 16:285–297

    PubMed  CAS  Google Scholar 

  • Hamidi AL, Liepnieks JJ, Uemichi T, Rebibou JM, Justrabo E, Droz D, Mousson C, Chalopin JM, Benson MD, Delpech M, Grateau G (1997) Renal amyloidosis with a frame shift mutation in fibrinogen α-chain gene producing a novel amyloid protein. Blood 90:4799–4805

    Google Scholar 

  • Hammarström P, Jiang X, Hurshman AR, Powers ET, Kelly JW (2002) Sequence-dependent denaturation energetics: a major determinant in amyloid disease diversity. Proc Natl Acad Sci USA 99:16427–16432

    PubMed  Google Scholar 

  • Hammarström P, Wiseman RL, Powers ET, Kelly JW (2003) Prevention of transthyretin amyloid disease by changing protein misfolding energetics. Science 299:713–716

    PubMed  Google Scholar 

  • Hands SL, Wyttenbach A (2010) Neurotoxic protein oligomerization associated with polyglutamine diseases. Acta Neuropathol 120:419–437

    PubMed  CAS  Google Scholar 

  • Hanger DP, Wray S (2010) Tau cleavage and tau aggregation in neurodegenerative disease. Biochem Soc Trans 38:1016–1020

    PubMed  CAS  Google Scholar 

  • Hanson JC, Lippa CF (2009) Lewy body dementia. Int Rev Neurobiol 84:215–228

    PubMed  CAS  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    PubMed  CAS  Google Scholar 

  • Harirforoosh S, Jamali F (2009) Renal adverse effects of nonsteroidal anti-inflammatory drugs. Expert Opin Drug Saf 8:669–681

    PubMed  CAS  Google Scholar 

  • Harper JD, Lansbury PT Jr (1997) Models of amyloid seeding in Alzheimer’s disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu Rev Biochem 66:385–407

    PubMed  CAS  Google Scholar 

  • Hart PJ (2006) Pathogenic superoxide dismutase structure, folding, aggregation and turnover. Curr Opin Chem Biol 10:131–138

    PubMed  CAS  Google Scholar 

  • Hasegawa K, Ohhashi Y, Yamaguchi I, Takahashi N, Tsutsumi S, Goto Y, Gejyo F, Naiki H (2003) Amyloidogenic synthetic peptides of β2-microglobulin—a role of the disulfide bond. Biochem Biophys Res Commun 304:101–106

    PubMed  CAS  Google Scholar 

  • Hatters DM, Howlett GJ (2002) The structural basis for amyloid formation by plasma apolipoproteins: a review. Eur Biophys J 31:2–8

    PubMed  CAS  Google Scholar 

  • Hawkins PN (2003) Hereditary systemic amyloidosis with renal involvement. J Nephrol 16:443–448

    PubMed  CAS  Google Scholar 

  • He B, Wang K, Liu Y, Xue B, Uversky VN, Dunker AK (2009) Predicting intrinsic disorder in proteins: an overview. Cell Res 19:929–949

    PubMed  CAS  Google Scholar 

  • Heegaard NH (2009) β2-microglobulin: from physiology to amyloidosis. Amyloid 16:151–173

    PubMed  CAS  Google Scholar 

  • Heise H, Hoyer W, Becker S, Andronesi OC, Riedel D, Baldus M (2005) Molecular-level secondary structure, polymorphism, and dynamics of full-length α-synuclein fibrils studied by solid-state NMR. Proc Natl Acad Sci USA 102:15871–15876

    PubMed  CAS  Google Scholar 

  • Heiser V, Scherzinger E, Boeddrich A, Nordhoff E, Lurz R, Schugardt N, Lehrach H, Wanker EE (2000) Inhibition of huntingtin fibrillogenesis by specific antibodies and small molecules: implications for Huntington’s disease therapy. Proc Natl Acad Sci USA 97:6739–6744

    PubMed  CAS  Google Scholar 

  • Heiser V, Engemann S, Bröcker W, Dunkel I, Boeddrich A, Waelter S, Nordhoff E, Lurz R, Schugardt N, Rautenberg S, Herhaus C, Barnickel G, Böttcher H, Lehrach H, Wanker EE (2002) Identification of benzothiazoles as potential polyglutamine aggregation inhibitors of Huntington’s disease by using an automated filter retardation assay. Proc Natl Acad Sci USA 99(Suppl 4):16400–16406

    PubMed  CAS  Google Scholar 

  • Henzler Wildman KA, Ramamoorthy A, Wakamiya T, Yoshikawa T, Crisma M, Toniolo C, Formaggio F (2004) A study of a Cα, β-didehydroalanine homo-oligopeptide series in the solid-state by 13C cross-polarization magic angle spinning NMR. J Pept Sci 10:336–341

    PubMed  Google Scholar 

  • Herbst M, Wanker EE (2006) Therapeutic approaches to polyglutamine diseases: combating protein misfolding and aggregation. Curr Pharm Des 12:2543–2555

    PubMed  CAS  Google Scholar 

  • Hetényi C, Szabo Z, Klement E, Datki Z, Kortvelyesi T, Zarandi M, Penke B (2002) Pentapeptide amides interfere with disaggregation of β-amyloid peptide of Alzheimer’s disease. Biochem Biophys Res Commun 292:931–936

    PubMed  Google Scholar 

  • Higuchi N, Kyogoku Y, Shin M, Inouye K (1983) Origin of slow conformer conversion of triostin A and interaction ability with nucleic acid bases. Int J Pept Protein Res 21:541–545

    PubMed  CAS  Google Scholar 

  • Hilbich C, Kisters-Woike B, Reed J, Masters CL, Beyreuther K (1992) Substitutions of hydrophobic amino acids reduce the amyloidogenicity of Alzheimer’s disease βA4 peptides. J Mol Biol 228:460–473

    PubMed  CAS  Google Scholar 

  • Hills ID, Vacca JP (2007) Progress toward a practical BACE-1 inhibitor. Curr Opin Drug Discov Devel 10:383–391

    PubMed  CAS  Google Scholar 

  • Hirakura Y, Azimov R, Azimova R, Kagan BL (2000) Polyglutamine-induced ion channels: a possible mechanism for the neurotoxicity of Huntington and other CAG repeat diseases. J Neurosci Res 60:490–494

    PubMed  CAS  Google Scholar 

  • Hock C, Konietzko U, Streffer JR, Tracy J, Signorell A, Müller-Tillmanns B, Lemke U, Henke K, Moritz E, Garcia E, Wollmer MA, Umbricht D, de Quervain DJ, Hofmann M, Maddalena A, Papassotiropoulos A, Nitsch RM (2003) Antibodies against β-amyloid slow cognitive decline in Alzheimer’s disease. Neuron 38:547–554

    PubMed  CAS  Google Scholar 

  • Hockly E, Tse J, Barker AL, Moolman DL, Beunard JL, Revington AP, Holt K, Sunshine S, Moffitt H, Sathasivam K, Woodman B, Wanker EE, Lowden PA, Bates GP (2006) Evaluation of the benzothiazole aggregation inhibitors riluzole and PGL-135 as therapeutics for Huntington’s disease. Neurobiol Dis 21:228–236

    PubMed  CAS  Google Scholar 

  • Holmberg CI, Staniszewski KE, Mensah KN, Matouschek A, Morimoto RI (2004) Inefficient degradation of truncated polyglutamine proteins by the proteasome. EMBO J 23:4307–4318

    PubMed  CAS  Google Scholar 

  • Holmes C, Boche D, Wilkinson D, Yadegarfar G, Hopkins V, Bayer A, Jones RW, Bullock R, Love S, Neal JW, Zotova E, Nicoll JA (2009) Long-term effects of Aβ42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 372:216–223

    Google Scholar 

  • Holton JL, Ghiso J, Lashley T, Rostagno A, Guerin CJ, Gibb G, Houlden H, Ayling H, Martinian L, Anderton BH, Wood NW, Vidal R, Plant G, Frangione B, Revesz T (2001) Regional distribution of amyloid-Bri deposition and its association with neurofibrillary degeneration in familial British dementia. Am J Pathol 158:515–526

    PubMed  CAS  Google Scholar 

  • Holton JL, Lashley T, Ghiso J, Braendgaard H, Vidal R, Guerin CJ, Gibb G, Hanger DP, Rostagno A, Anderton BH, Strand C, Ayling H, Plant G, Frangione B, Bojsen-Moller M, Revesz T (2002) Familial Danish dementia: a novel form of cerebral amyloidosis associated with deposition of both amyloid-Dan and amyloid-β. J Neuropathol Exp Neurol 61:254–267

    PubMed  CAS  Google Scholar 

  • Hong L, Koelsch G, Lin X, Wu S, Terzyan S, Ghosh AK, Zhang XC, Tang J (2000) Structure of the protease domain of memapsin 2 (β-secretase) complexed with inhibitor. Science 290:150–153

    PubMed  CAS  Google Scholar 

  • Hong L, Turner RT, Koelsch G, Shin D, Ghosh AK, Tang J (2002) Crystal structure of memapsin 2 (β-secretase) in complex with an inhibitor OM00-3. Biochemistry 41:10963–10967

    PubMed  CAS  Google Scholar 

  • Hong H-S, Maezawa I, Yao N, Diaz-Avalos R, Rana S, Hua DH, Cheng RH, Lam KS, Jin L-W (2007) Combining the rapid MTT formazan exocytosis assay and the MC65 protection assay led to the discovery of carbazole analogs as small molecule inhibitors of A-β oligomer-induced cytotoxicity. Brain Res 1130:223–234

    PubMed  CAS  Google Scholar 

  • Hoogeveen AT, Willemsen R, Meyer N, de Rooij KE, Roos RA, van Ommen GJ, Galjaard H (1993) Characterization and localization of the Huntington disease gene product. Hum Mol Genet 2:2069–2073

    PubMed  CAS  Google Scholar 

  • Hornberg A, Eneqvist T, Olofsson A, Lundgren E, Sauer-Eriksson AE (2000) A comparative analysis of 23 structures of the amyloidogenic protein transthyretin. J Mol Biol 302:649–669

    PubMed  CAS  Google Scholar 

  • Hou X, Aguilar MI, Small DH (2007) Transthyretin and familial amyloidotic polyneuropathy. Recent progress in understanding the molecular mechanism of neurodegeneration. FEBS J 274:1637–1650

    PubMed  CAS  Google Scholar 

  • Howell PL, Pangborn WA, Marshall GR, Zabrocki J, Smith GD (1995) A thyrotropin-releasing hormone analogue: pGlu–Phe–D–Pro–Ψ[CN4]–NMe at 293 and 107 K. Acta Crystallogr C 51:2575–2579

    PubMed  Google Scholar 

  • Howlett DR, Perry AE, Godfrey F, Swatton JE, Jennings KH, Spitzfaden C, Wadsworth H, Wood SJ, Markwell RE (1999) Inhibition of fibril formation in β-amyloid peptide by a novel series of benzofurans. Biochem J 340:283–289

    PubMed  CAS  Google Scholar 

  • Hsu AL, Murphy CT, Kenyon C (2003) Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300:1142–1145

    PubMed  CAS  Google Scholar 

  • Hu WT, Grossman M (2009) TDP-43 and frontotemporal dementia. Curr Neurol Neurosci Rep 9:353–358

    PubMed  CAS  Google Scholar 

  • Hu X, Hicks CW, He W, Wong P, Macklin WB, Trapp BD, Yan R (2006) BACE-1 modulates myelination in the central and peripheral nervous system. Nat Neurosci 9:1520–1525

    PubMed  CAS  Google Scholar 

  • Huang X, Atwood CS, Hartshorn MA, Multhaup G, Goldstein LE, Scarpa RC, Cuajungco MP, Gray DN, Lim J, Moir RD, Tanzi RE, Bush AI (1999a) The Aβ peptide of Alzheimer’s disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry 38:7609–7616

    PubMed  CAS  Google Scholar 

  • Huang X, Cuajungco MP, Atwood CS, Hartshorn MA, Tyndall JD, Hanson GR, Stokes KC, Leopold M, Multhaup G, Goldstein LE, Scarpa RC, Saunders AJ, Lim J, Moir RD, Glabe C, Bowden EF, Masters CL, Fairlie DP, Tanzi RE, Bush AI (1999b) Cu(II) potentiation of Alzheimer Aβ neurotoxicity. Correlation with cell-free hydrogen peroxide production and metal reduction. J Biol Chem 274:37111–37116

    PubMed  CAS  Google Scholar 

  • Hughes SR, Goyal S, Sun JE, Gonzalez-Dewhitt P, Fortes M, Riedel NG, Sahasrabudhe SR (1996) Two hybrid system as a model to study the interaction of β-amyloid peptide monomers. Proc Natl Acad Sci USA 93:2065–2070

    PubMed  CAS  Google Scholar 

  • Hughes E, Burke RM, Doig AJ (2000) Inhibition of toxicity in the β-amyloid peptide fragment β-(25–35) using N-methylated derivatives—a general strategy to prevent amyloid formation. J Biol Chem 275:25109–25115

    PubMed  CAS  Google Scholar 

  • Hunt CE, Turner AJ (2009) Cell biology, regulation and inhibition of β-secretase (BACE-1). FEBS J 276:1845–1859

    PubMed  CAS  Google Scholar 

  • Hurle MR, Helms LR, Li L, Chan W, Wetzel R (1994) A role for destabilizing amino acid replacements in light-chain amyloidosis. Proc Natl Acad Sci USA 91:5446–5450

    PubMed  CAS  Google Scholar 

  • Hurshman Babbes AR, Powers ET, Kelly JW (2008) Quantification of the thermodynamically linked quaternary and tertiary structural stabilities of transthyretin and its disease-associated variants: the relationship between stability and amyloidosis. Biochemistry 47:6969–6984

    PubMed  CAS  Google Scholar 

  • Hurshman AR, White JT, Powers ET, Kelly JW (2004) Transthyretin aggregation under partially denaturing conditions is a downhill polymerization. Biochemistry 43:7365–7381

    PubMed  CAS  Google Scholar 

  • Hussain I, Powell D, Howlett DR, Tew DG, Meek TD, Chapman C, Gloger IS, Murphy KE, Southan CD, Ryan DM, Smith TS, Simmons DL, Walsh FS, Dingwall C, Christie G (1999) Identification of a novel aspartic protease (Asp 2) as β-secretase. Mol Cell Neurosci 14:419–427

    PubMed  CAS  Google Scholar 

  • Ikonomovic MD, Uryu K, Abrahamson EE, Ciallella JR, Trojanowski JQ, Lee VM, Clark RS, Marion DW, Wisniewski SR, DeKosky ST (2004) Alzheimer’s pathology in human temporal cortex surgically excised after severe brain injury. Exp Neurol 190:192–203

    PubMed  CAS  Google Scholar 

  • Imai J, Yashiroda H, Maruya M, Yahara I, Tanaka K (2003) Proteasomes and molecular chaperones: cellular machinery responsible for folding and destruction of unfolded proteins. Cell Cycle 2:585–590

    PubMed  CAS  Google Scholar 

  • Imbimbo BP, Giardina GA (2011) γ-Secretase inhibitors and modulators for the treatment of Alzheimer’s disease: disappointments and hopes. Curr Top Med Chem 11:1555–70 (Epub ahead of print)

    Google Scholar 

  • Inestrosa NC, Silberstein L, Hall ZW (1982) Association of the synaptic form of acetylcholinesterase with extracellular matrix in cultured mouse muscle cells. Cell 29:71–79

    PubMed  CAS  Google Scholar 

  • Inestrosa NC, Alvarez A, Calderon F (1996a) Acetylcholinesterase is a senile plaque component that promotes assembly of amyloid β-peptide into Alzheimer’s filaments. Mol Psychiatry 1:359–361

    PubMed  CAS  Google Scholar 

  • Inestrosa NC, Alvarez A, Perez CA, Moreno RD, Vicente M, Linker C, Casanueva OI, Soto C, Garrido J (1996b) Acetylcholinesterase accelerates assembly of amyloid-β-peptides into Alzheimer’s fibrils: possible role of the peripheral site of the enzyme. Neuron 16:881–891

    PubMed  CAS  Google Scholar 

  • Ingenbleek Y, De Visscher M, De Nayer P (1972) Measurement of prealbumin as index of protein-calorie malnutrition. Lancet 2:106–109

    PubMed  CAS  Google Scholar 

  • Ingwall RT, Goodman M (1974) Polydepsipeptides. III. Theoretical conformational analysis of randomly coiling and ordered depsipeptide chains. Macromolecules 7:598–605

    PubMed  CAS  Google Scholar 

  • Irizarry MC, McNamara M, Fedorchak K, Hsiao K, Hyman BT (1997) APPSw transgenic mice develop age-related Aβ deposits and neuropil abnormalities, but no neuronal loss in CA1. J Neuropathol Exp Neurol 56:965–973

    PubMed  CAS  Google Scholar 

  • Ittner LM, Götz J (2011) Amyloid-β and tau—a toxic pas de deux in Alzheimer’s disease. Nat Rev Neurosci 12:65–72

    PubMed  CAS  Google Scholar 

  • Ivanova MI, Gingery M, Whitson LJ, Eisenberg D (2003) Role of the C-terminal 28 residues of β2-microglobulin in amyloid fibril formation. Biochemistry 42:13536–13540

    PubMed  CAS  Google Scholar 

  • Iwata K, Fujiwara T, Matsuki Y, Akutsu H, Takahashi S, Naiki H, Goto Y (2006) 3D structure of amyloid protofilaments of β2-microglobulin fragment probed by solid-state NMR. Proc Natl Acad Sci USA 103:18119–18124

    PubMed  CAS  Google Scholar 

  • Iwatsubo T (2003) Aggregation of α-synuclein in the pathogenesis of Parkinson’s disease. J Neurol 250(suppl 3):III 11–III 14

    Google Scholar 

  • Jana NR, Tanaka M, Wang G, Nukina N (2000) Polyglutamine length-dependent interaction of Hsp40 and Hsp70 family chaperones with truncated N-terminal huntingtin: their role in suppression of aggregation and cellular toxicity. Hum Mol Genet 9:2009–2018

    PubMed  CAS  Google Scholar 

  • Janus C, Pearson J, McLaurin J, Mathews PM, Jiang Y, Schmidt SD, Chishti MA, Horne P, Heslin D, French J, Mount HT, Nixon RA, Mercken M, Bergeron C, Fraser PE, St George-Hyslop P, Westaway D (2000) Aβ peptide immunization reduces behavioral impairment and plaques in a model of Alzheimer’s disease. Nature 408:979–982

    PubMed  CAS  Google Scholar 

  • Janusz M, Staroscik K, Zimecki M, Wieczorek Z, Lisowski J (1981) Chemical and physical characterization of a proline-rich polypeptide from sheep colostrum. Biochem J 199:9–15

    PubMed  CAS  Google Scholar 

  • Jao CC, Der-Sarkissian A, Chen J, Langen R (2004) Structure of membrane-bound α-synuclein studied by site-directed spin labeling. Proc Natl Acad Sci USA 101:8331–8336

    PubMed  CAS  Google Scholar 

  • Jarrett JT, Lansbury PT Jr (1993) Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 73:1055–1058

    PubMed  CAS  Google Scholar 

  • Jellinger KA (2009) Formation and development of Lewy pathology: a critical update. J Neurol 256(Suppl 3):270–279

    PubMed  Google Scholar 

  • Jiang X, Smith CS, Petrassi HM, Hammarström P, White JT, Sacchettini JC, Kelly JW (2001) An engineered transthyretin monomer that is nonamyloidogenic, unless it is partially denatured. Biochemistry 40:11442–11452

    PubMed  CAS  Google Scholar 

  • Jicha GA (2009) Is passive immunization for Alzheimer’s disease ‘alive and well’ or ‘dead and buried’? Expert Opin Biol Ther 9:481–491

    PubMed  CAS  Google Scholar 

  • Johansson B, Wernstedt C, Westermark P (1987) Atrial natriuretic peptide deposited as atrial amyloid fibrils. Biochem Biophys Res Commun 148:1087–1092

    PubMed  CAS  Google Scholar 

  • John R, Herzenberg AM (2009) Renal toxicity of therapeutic drugs. J Clin Pathol 62:505–515

    PubMed  CAS  Google Scholar 

  • Johnson G (2006) Tau phosphorylation and proteolysis: insights and perspectives. J Alzheimers Dis 9:243–250

    PubMed  CAS  Google Scholar 

  • Johnson RT, Gibbs CJ Jr (1998) Creutzfeldt–Jakob disease and related transmissible spongiform encephalopathies. N Engl J Med 339:1994–2004

    PubMed  CAS  Google Scholar 

  • Johnson KH, O’Brien TD, Betsholtz C, Westermark P (1989) Islet amyloid, islet-amyloid polypeptide, and diabetes mellitus. N Engl J Med 321:513–518

    PubMed  CAS  Google Scholar 

  • Johnson SM, Wiseman RL, Sekijima Y, Green NS, Adamski-Werner SL, Kelly JW (2005) Native state kinetic stabilization as a strategy to ameliorate protein misfolding diseases: a focus on the transthyretin amyloidoses. Acc Chem Res 38:911–921

    PubMed  CAS  Google Scholar 

  • Johnson SM, Connelly S, Wilson IA, Kelly JW (2008a) Biochemical and structural evaluation of highly selective 2-arylbenzoxazolebased transthyretin amyloidogenesis inhibitors. J Med Chem 51:260–270

    PubMed  CAS  Google Scholar 

  • Johnson SM, Connelly S, Wilson IA, Kelly JW (2008b) Toward optimization of the linker substructure common to transthyretin amyloidogenesis inhibitors using biochemical and structural studies. J Med Chem 51:6348–6358

    PubMed  CAS  Google Scholar 

  • Johnson SM, Connelly S, Wilson IA, Kelly JW (2009) Toward optimization of the second aryl substructure common to transthyretin amyloidogenesis. Inhibitors using biochemical and structural studies. J Med Chem 52:1115–1125

    PubMed  CAS  Google Scholar 

  • Jones S, Manning J, Kad NM, Radford SE (2003) Amyloid-forming peptides from β2-microglobuli—insights into the mechanism of fibril formation in vitro. J Mol Biol 325:249–257

    PubMed  CAS  Google Scholar 

  • Joy T, Wang J, Hahn A, Hegele RA (2003) APOA1 related amyloidosis: a case report and literature review. Clin Biochem 36:641–645

    PubMed  CAS  Google Scholar 

  • Julius RL, Farha OK, Chiang J, Perry LJ, Hawthorne MF (2007) Synthesis and evaluation of transthyretin amyloidosis inhibitors containing carborane pharmacophores. Proc Natl Acad Sci USA 104:4808–4813

    PubMed  CAS  Google Scholar 

  • Kagan BL, Hirakura Y, Azimov R, Azimova R, Lin MC (2002) The channel hypothesis of Alzheimer’s disease: current status. Peptides 23:1311–1315

    PubMed  CAS  Google Scholar 

  • Kaiser ET, Kézdy FJ (1984) Amphiphilic secondary structure: design of peptide hormones. Science 223:249–255

    PubMed  CAS  Google Scholar 

  • Kaiser ET, Kézdy FJ (1987) Peptides with affinity for membranes. Annu Rev Biophys Biophys Chem 16:561–581

    PubMed  CAS  Google Scholar 

  • Kampers T, Pangalos M, Geerts H, Wiech H, Mandelkow E (1999) Assembly of paired helical filaments from mouse tau: implications for the neurofibrillary pathology in transgenic mouse models for Alzheimer’s disease. FEBS Lett 451:39–44

    PubMed  CAS  Google Scholar 

  • Kang JE, Lim MM, Bateman RJ, Lee JJ, Smyth LP, Cirrito JR, Fujiki N, Nishino S, Holtzman DM (2009) Amyloid-β dynamics are regulated by orexin and the sleep-wake cycle. Science 326:1005–1007

    PubMed  CAS  Google Scholar 

  • Kannabiran C, Klintworth GK (2006) TGFβI gene mutations in corneal dystrophies. Hum Mutat 27:615–625

    PubMed  CAS  Google Scholar 

  • Kapurniotu A (2001) Amyloidogenicity and cytotoxicity of islet amyloid polypeptide. Biopolymers 60:438–459

    PubMed  CAS  Google Scholar 

  • Katsuno M, Adachi H, Kume A, Li M, Nakagomi Y, Niwa H, Sang C, Kobayashi Y, Doyu M, Sobue G (2002) Testosterone reduction prevents phenotypic expression in a transgenic mouse model of spinal and bulbar muscular atrophy. Neuron 35:843–854

    PubMed  CAS  Google Scholar 

  • Katsuno M, Banno H, Suzuki K, Adachi H, Tanaka F, Sobue G (2010) Clinical features and molecular mechanisms of spinal and bulbar muscular atrophy (SBMA). Adv Exp Med Biol 685:64–74

    PubMed  CAS  Google Scholar 

  • Kawasaki T, Onodera K, Kamijo S (2010) Selection of peptide inhibitors of soluble Aβ(1–42) oligomer formation by phage display. Biosci Biotechnol Biochem 74:2214–2219

    PubMed  CAS  Google Scholar 

  • Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489

    PubMed  CAS  Google Scholar 

  • Kayed R, Head E, Sarsoza F, Saing T, Cotman CW, Necula M, Margol L, Wu J, Breydo L, Thompson JL, Rasool S, Gurlo T, Butler P, Glabe CG (2007) Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers. Mol Neurodegener 2:18

    PubMed  Google Scholar 

  • Kelleher RJ 3rd, Shen J (2010) γ-Secretase and human disease. Science 330:1055–1056

    PubMed  CAS  Google Scholar 

  • Keller JN, Hanni KB, Markesbery WR (2000) Impaired proteasome function in Alzheimer’s disease. J Neurochem 75:436–439

    PubMed  CAS  Google Scholar 

  • Kelly JW (1998) The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways. Curr Opin Struct Biol 8:101–106

    PubMed  CAS  Google Scholar 

  • Kent SB (2009) Total chemical synthesis of proteins. Chem Soc Rev 38:338–351

    PubMed  CAS  Google Scholar 

  • Kheterpal I, Wetzel R (2006) Hydrogen/deuterium exchange mass spectrometry—a window into amyloid structure. Acc Chem Res 39:584–593

    PubMed  CAS  Google Scholar 

  • Kheterpal I, Zhou S, Cook KD, Wetzel R (2000) Aβ amyloid fibrils possess a core structure highly resistant to hydrogen exchange. Proc Natl Acad Sci USA 97:13597–13601

    PubMed  CAS  Google Scholar 

  • Kheterpal I, Lashuel HA, Hartley DM, Walz T, Lansbury PT Jr, Wetzel R (2003) Aβ protofibrils possess a stable core structure resistant to hydrogen exchange. Biochemistry 42:14092–14098

    PubMed  CAS  Google Scholar 

  • Khurana R, Agarwal A, Bajpai VK, Verma N, Sharma AK, Gupta RP, Madhusudan KP (2004) Unraveling the amyloid associated with human medullary thyroid carcinoma. Endocrinology 145:5465–5470

    PubMed  CAS  Google Scholar 

  • Kim HJ, Lee KW, Lee HJ (2007) Protective effects of piceatannol against β-amyloid-induced neuronal cell death. Ann N Y Acad Sci 1095:473–482

    PubMed  CAS  Google Scholar 

  • Kim MW, Chelliah Y, Kim SW, Otwinowski Z, Bezprozvanny I (2009) Secondary structure of huntingtin amino-terminal region. Structure 17:1205–1212

    PubMed  CAS  Google Scholar 

  • Kita Y, Arakawa T, Lin TY, Timasheff SN (1994) Contribution of the surface free energy perturbation to protein-solvent interactions. Biochemistry 33:15178–15189

    PubMed  CAS  Google Scholar 

  • Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1999) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392:605–608

    Google Scholar 

  • Kiuru S (1998) Gelsolin-related familial amyloidosis, Finnish type (FAF), and its variants found worldwide. Amyloid 5:55–66

    Google Scholar 

  • Klabunde T, Petrassi HM, Oza VB, Raman P, Kelly JW, Sacchettini JC (2000) Rational design of potent human transthyretin amyloid disease inhibitors. Nat Struct Biol 7:312–321

    PubMed  CAS  Google Scholar 

  • Klajnert B, Cortijo-Arellano M, Cladera J, Bryszewska M (2006) Influence of dendrimer’s structure on its activity against amyloid fibril formation. Biochem Biophys Res Commun 345:21–28

    PubMed  CAS  Google Scholar 

  • Klein WL, Krafft GA, Finch CE (2001) Targeting small Aβ oligomers: the solution to an Alzheimer’s disease conundrum? Trends Neurosci 24:219–224

    PubMed  CAS  Google Scholar 

  • Klintworth GK, Valnickova Z, Kielar RA, Baratz KH, Campbell RJ, Enghild JJ (1997) Familial subepithelial corneal amyloidosis—a lactoferrin-related amyloidosis. Invest Ophthalmol Vis Sci 38:2756–2763

    PubMed  CAS  Google Scholar 

  • Knight JD, Miranker AD (2004) Phospholipid catalysis of diabetic amyloid assembly. J Mol Biol 341:1175–1187

    PubMed  CAS  Google Scholar 

  • Kodali R, Williams AD, Chemuru S, Wetzel R (2010) Aβ(1–40) forms five distinct amyloid structures whose β-sheet contents and fibril stabilities are correlated. J Mol Biol 401:503–517

    PubMed  CAS  Google Scholar 

  • Koide A, Tereshko V, Uysal S, Margalef K, Kossiakoff AA, Koide S (2007) Exploring the capacity of minimalist protein interfaces: interface energetics and affinity maturation to picomolar Kd of a single-domain antibody with a flat paratope. J Mol Biol 373:941–953

    PubMed  CAS  Google Scholar 

  • Kokkoni N, Stott K, Amijee H, Mason JM, Doig AJ (2006) N-Methylated peptide inhibitors of β-amyloid aggregation and toxicity. Optimization of the inhibitor structure. Biochemistry 45:9906–9918

    PubMed  CAS  Google Scholar 

  • Kordasiewicz HB, Gomez CM (2007) Molecular pathogenesis of spinocerebellar ataxia type 6. Neurotherapeutics 4:285–294

    PubMed  CAS  Google Scholar 

  • Kossiakoff AA, Koide S (2008) Understanding mechanisms governing protein–protein interactions from synthetic binding interfaces. Curr Opin Struct Biol 18:499–506

    PubMed  CAS  Google Scholar 

  • Kotilinek LA, Bacskai B, Westerman M, Kawarabayashi T, Younkin L, Hyman BT, Younkin S, Ashe KH (2002) Reversible memory loss in a mouse transgenic model of Alzheimer’s disease. J Neurosci 22:6331–6335

    PubMed  CAS  Google Scholar 

  • Krebs MR, Wilkins DK, Chung EW, Pitkeathly MC, Chamberlain AK, Zurdo J, Robinson CV, Dobson CM (2000) Formation and seeding of amyloid fibrils from wild-type hen lysozyme and a peptide fragment from the β-domain. J Mol Biol 300:541–549

    PubMed  CAS  Google Scholar 

  • Krishnan R, Lindquist S (2005) Structural insights into a yeast prion illuminate nucleation and strain diversity. Nature 435:765–772

    PubMed  CAS  Google Scholar 

  • Kumar NG, Izumiya N, Miyoshi M, Sugano H, Urry DW (1975) Conformational and spectral analysis of the polypeptide antibiotic N-methylleucine gramicidin S dihydrochloride by nuclear magnetic resonance. Biochemistry 14:2197–2207

    PubMed  CAS  Google Scholar 

  • Kwon KJ, Kim HJ, Shin CY, Han SH (2010) Melatonin potentiates the neuroprotective properties of resveratrol against β-amyloid-induced neurodegeneration by modulating AMP-activated protein kinase pathways. J Clin Neurol 6:127–137

    PubMed  Google Scholar 

  • Lacomblez L, Bensimon G, Leigh PN, Guillet P, Meininger V (1996) Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis/Riluzole Study Group II. Lancet 347:1425–1431

    PubMed  CAS  Google Scholar 

  • Ladiwala AR, Lin JC, Bale SS, Marcelino-Cruz AM, Bhattacharya M, Dordick JS, Tessier PM (2010) Resveratrol selectively remodels soluble oligomers and fibrils of amyloid Aβ into off-pathway conformers. J Biol Chem 285:24228–24237

    PubMed  CAS  Google Scholar 

  • Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL, Wals P, Zhang C, Finch CE, Krafft GA, Klein WL (1998) Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 95:6448–6453

    PubMed  CAS  Google Scholar 

  • Lamitina T, Huang CG, Strange K (2006) Genome-wide RNAi screening identifies protein damage as a regulator of osmoprotective gene expression. Proc Natl Acad Sci USA 103:12173–12178

    PubMed  CAS  Google Scholar 

  • Lannfelt L, Blennow K, Zetterberg H, Båtsman S, Ames D, Harrison J, Masters CL, Targum S, Bush AI, Murdoch R, Wilson J, Ritchie CW (2008) Safety, efficacy, and biomarker findings of PBT2 in targeting Aβ as a modifying therapy for Alzheimer’s disease: a phase IIa, double-blind, randomised, placebo-controlled trial. Lancet Neurol 7:779–786

    PubMed  CAS  Google Scholar 

  • Lanning JD, Hawk AJ, Derryberry J, Meredith SC (2010) Chaperone-like N-methyl peptide inhibitors of polyglutamine aggregation. Biochemistry 49:7108–7118

    PubMed  CAS  Google Scholar 

  • Larsson A, Söderberg L, Westermark GT, Sletten K, Engström U, Tjernberg LO, Näslund J, Westermark P (2007) Unwinding fibril formation of medin, the peptide of the most common form of human amyloid. Biochem Biophys Res Commun 361:822–828

    PubMed  CAS  Google Scholar 

  • Lashuel HA, Petre BM, Wall J, Simon M, Nowak RJ, Walz T, Lansbury PT Jr (2002) α-Synuclein, especially the Parkinson’s disease-associated mutants, forms pore-like annular and tubular protofibrils. J Mol Biol 322:1089–1102

    PubMed  CAS  Google Scholar 

  • Lashuel HA, Hartley DM, Petre BM, Wall JS, Simon MN, Walz T, Lansbury PT Jr (2003) Mixtures of wild-type and a pathogenic (E22G) form of Aβ40 in vitro accumulate protofibrils, including amyloid pores. J Mol Biol 332:795–808

    PubMed  CAS  Google Scholar 

  • Lastres-Becker I, Rüb U, Auburger G (2008) Spinocerebellar ataxia 2 (SCA2). Cerebellum 7:115–124

    PubMed  CAS  Google Scholar 

  • Lebre AS, Brice A (2003) Spinocerebellar ataxia 7 (SCA7). Cytogenet Genome Res 100:154–163

    PubMed  CAS  Google Scholar 

  • Lee G (2005) Tau and src family tyrosine kinases. Biochim Biophys Acta 1739:323–330

    PubMed  CAS  Google Scholar 

  • Lee SM, Jeon R (2005) Synthesis of 6-[2-(benzoxazol-2-ylmethylamino)ethoxy]-1-alkyl- 1H-indole-2-carboxylic acid and inhibitory activity on β-amyloid aggregation. Arch Pharm Res 28:1219–1223

    PubMed  CAS  Google Scholar 

  • Lee M, Bard F, Johnson-Wood K, Lee C, Hu K, Griffith SG, Black RS, Schenk D, Seubert P (2005) Aβ42 immunization in Alzheimer’s disease generates Aβ N-terminal antibodies. Ann Neurol 58:430–435

    PubMed  CAS  Google Scholar 

  • Lees AJ, Hardy J, Revesz T (2009) Parkinson’s disease. Lancet 373:2055–2066

    PubMed  CAS  Google Scholar 

  • Lemere CA, Masliah E (2010) Can Alzheimer disease be prevented by amyloid-β immunotherapy? Nat Rev Neurol 6:108–119

    PubMed  CAS  Google Scholar 

  • Lemere CA, Maron R, Spooner ET, Grenfell TJ, Mori C, Desai R, Hancock WW, Weiner HL, Selkoe DJ (2000) Nasal Aβ treatment induces anti-Aβ antibody production and decreases cerebral amyloid burden in PD-APP mice. Ann N Y Acad Sci 920:328–331

    PubMed  CAS  Google Scholar 

  • Lemere CA, Maron R, Selkoe DJ, Weiner HL (2001) Nasal vaccination with β-amyloid peptide for the treatment of Alzheimer’s disease. DNA Cell Biol 20:705–711

    PubMed  CAS  Google Scholar 

  • Lesné S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH (2006) A specific amyloid-β protein assembly in the brain impairs memory. Nature 440:352–357

    PubMed  Google Scholar 

  • Lev N, Melamed E, Offen D (2006) Proteasomal inhibition hypersensitizes differentiated neuroblastoma cells to oxidative damage. Neurosci Lett 399:27–32

    PubMed  CAS  Google Scholar 

  • Levites Y, Amit T, Mandel S, Youdim MB (2003) Neuroprotection and neurorescue against Aβ toxicity and PKC-dependent release of nonamyloidogenic soluble precursor protein by green tea polyphenol (–)-epigallocatechin-3-gallate. FASEB J 17:952–954

    PubMed  CAS  Google Scholar 

  • Li SH, Li XJ (2004) Huntingtin-protein interactions and the pathogenesis of Huntington’s disease. Trends Genet 20:146–154

    PubMed  Google Scholar 

  • Li X, Lu F, Wang JZ, Gong CX (2006) Concurrent alterations of O-GlcNAcylation and phosphorylation of tau in mouse brains during fasting. Eur J Neurosci 23:2078–2086

    PubMed  Google Scholar 

  • Liepina I, Janmey P, Czaplewski C, Liwo A (2004) Towards gelsolin amyloid formation. Biopolymers 76:543–548

    PubMed  CAS  Google Scholar 

  • Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM (2001) The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci 21:8370–8377

    PubMed  CAS  Google Scholar 

  • Lim KH, Nguyen TN, Damo SM, Mazur T, Ball HL, Prusiner SB, Pines A, Wemmer DE (2008) Solid-state NMR structural studies of the fibril form of a mutant mouse prion peptide PrP89–143(P101L). Solid State Nucl Magn Reson 29:183–190

    Google Scholar 

  • Limprasert P, Nouri N, Nopparatana C, Deininger PL, Keats BJ (1997) Comparative studies of the CAG repeats in the spinocerebellar ataxia type 1 (SCA1) gene. Am J Med Genet 74:488–493

    PubMed  CAS  Google Scholar 

  • Lin TY, Timasheff SN (1996) On the role of surface tension in the stabilization of globular proteins. Protein Sci 5:372–381

    PubMed  CAS  Google Scholar 

  • Lin H, Bhatia R, Lal R (2000a) Fresh and globular amyloid-β protein (1–42) induces rapid cellular degeneration: evidence for AβP channel-mediated cellular toxicity. FASEB J 14:1233–1243

    PubMed  Google Scholar 

  • Lin X, Antalffy B, Kang D, Orr HT, Zoghbi HY (2000b) Polyglutamine expansion down-regulates specific neuronal genes before pathologic changes in SCA1. Nat Neurosci 3:157–163

    PubMed  CAS  Google Scholar 

  • Lin X, Koelsch G, Wu S, Downs D, Dashti A, Tang J (2000c) Human aspartic protease memapsin 2 cleaves the β-secretase site of β-amyloid precursor protein. Proc Natl Acad Sci USA 97:1456–1460

    PubMed  CAS  Google Scholar 

  • Lin H, Bhatia R, Lal R (2001) Amyloid β-protein forms ion channels: implications for Alzheimer’s disease pathophysiology. FASEB J 15:2433–2444

    PubMed  CAS  Google Scholar 

  • Lin S-J, Shiao Y-J, Chi CW, Yang L-M (2004) Aβ Aggregation inhibitors. Part 1: synthesis and biological activity of phenylazo benzenesulfonamides. Bioorg Med Chem Lett 14:1173–1176

    PubMed  CAS  Google Scholar 

  • Lindsay J, Laurin D, Verreault R, Hébert R, Helliwell B, Hill GB, McDowell I (2002) Risk factors for Alzheimer’s disease: a prospective analysis from the Canadian study of health and aging. Am J Epidemiol 156:445–453

    PubMed  Google Scholar 

  • Link CD (1995) Expression of human β-amyloid peptide in transgenic Caenorhabditis elegans. Proc Natl Acad Sci USA 92:9368–9372

    PubMed  CAS  Google Scholar 

  • Linke RP, Joswig R, Murphy CL, Wang S, Zhou H, Gross U, Rocken C, Westermark P, Weiss DT, Solomon A (2005) Senile seminal vesicle amyloid is derived from seminogelin I. J Lab Clin Med 145:187–193

    PubMed  CAS  Google Scholar 

  • Litvinovich SV, Brew SA, Aota S, Akiyama SK, Haudenschild C, Ingham KC (1998) Formation of amyloid-like fibrils by self-association of a partially unfolded fibronectin type III module. J Mol Biol 280:245–258

    PubMed  CAS  Google Scholar 

  • Liu L, Murphy RM (2006) Kinetics of inhibition of β-amyloid aggregation by transthyretin. Biochemistry 45:15702–15709

    PubMed  CAS  Google Scholar 

  • Liu F, Iqbal K, Grundke-Iqbal I, Hart GW, Gong CX (2004) O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer’s disease. Proc Natl Acad Sci USA 101:10804–10809

    PubMed  CAS  Google Scholar 

  • Lomakin A, Teplow DB, Kirschner DA, Benedek GB (1997) Kinetic theory of fibrillogenesis of amyloid β-protein. Proc Natl Acad Sci USA 94:7942–7947

    PubMed  CAS  Google Scholar 

  • Lomas DA, Carrell RW (2002) Serpinopathies and the conformational dementias. Nat Rev Gen 3:759–768

    CAS  Google Scholar 

  • Lomas DA, Evans DL, Stone SR, Chang WS, Carrell RW (1993) Effect of the Z mutation on the physical and inhibitory properties of α1-antitrypsin. Biochemistry 32:500–508

    PubMed  CAS  Google Scholar 

  • Lowe TL, Strzelec A, Kiessling LL, Murphy RM (2001) Structure–function relationships for inhibitors of β-amyloid toxicity containing the recognition sequence KLVFF. Biochemistry 40:7882–7889

    PubMed  CAS  Google Scholar 

  • Lu W, Qasim MA, Laskowski MJ, Kent SBH (1997) Probing intermolecular main chain hydrogen bonding in serine proteinase–protein inhibitor complexes: chemical synthesis of backbone-engineered turkey ovomucoid third domain. Biochemistry 36:673–679

    PubMed  CAS  Google Scholar 

  • Luca S, Yau WM, Leapman R, Tycko R (2007) Peptide conformation and supramolecular organization in amylin fibrils: constraints from solid-state NMR. Biochemistry 46:13505–13522

    PubMed  CAS  Google Scholar 

  • Luchsinger JA, Tang MX, Siddiqui M, Shea S, Mayeux R (2004) Alcohol intake and risk of dementia. J Am Geriatr Soc 52:540–546

    PubMed  Google Scholar 

  • Lueprasitsakul W, Alex S, Fang SL, Pino S, Irmscher K, Kohrle J, Braverman LE (1990) Flavonoid administration immediately displaces thyroxine (T4) from serum transthyretin, increases serum free T4, and decreases serum Thyrotropin in the rat. Endocrinology 126:2890–2895

    PubMed  CAS  Google Scholar 

  • Luheshi LM, Tartaglia GG, Brorsson AC, Pawar AP, Watson IE, Chiti F, Vendruscolo M, Lomas DA, Dobson CM, Crowther DC (2007) Systematic in vivo analysis of the intrinsic determinants of amyloid β pathogenicity. PLoS Biol 5:e290

    PubMed  Google Scholar 

  • Lührs T, Ritter C, Adrian M, Riek-Loher D, Bohrmann B, Döbeli H, Schubert D, Riek R (2005) 3D structure of Alzheimer’s amyloid-β(1–42) fibrils. Proc Natl Acad Sci USA 102:17342–17347

    PubMed  Google Scholar 

  • Maas T, Eidenmuller J, Brandt R (2000) Interaction of tau with the neural membrane cortex is regulated by phosphorylation at sites that are modified in paired helical filaments. J Biol Chem 275:15733–15740

    PubMed  CAS  Google Scholar 

  • Mackenzie IR, Rademakers R (2008) The role of transactive response DNA-binding protein-43 in amyotrophic lateral sclerosis and frontotemporal dementia. Curr Opin Neurol 21:693–700

    PubMed  CAS  Google Scholar 

  • Madine J, Jack E, Stockley PG, Radford SE, Serpell LC, Middleton DA (2008) Structural insights into the polymorphism of amyloid-like fibrils formed by region 20–29 of amylin revealed by solid-state NMR and X-ray fiber diffraction. J Am Chem Soc 130:14990–15001

    PubMed  Google Scholar 

  • Madine J, Copland A, Serpell LC, Middleton DA (2009a) Cross-β spine architecture of fibrils formed by the amyloidogenic segment NFGSVQFV of medin from solid-state NMR and X-ray fiber diffraction measurements. Biochemistry 48:3089–3099

    PubMed  CAS  Google Scholar 

  • Madine J, Wang X, Brown DR, Middleton DA (2009b) Evaluation of β-alanine- and GABA-substituted peptides as inhibitors of disease-linked protein aggregation. Chembiochem 10:1982–1987

    PubMed  CAS  Google Scholar 

  • Maeda S, Sahara N, Saito Y, Murayama S, Ikai A, Takashima A (2006) Increased levels of granular tau oligomers: an early sign of brain aging and Alzheimer’s disease. Neurosci Res 54:197–201

    PubMed  CAS  Google Scholar 

  • Maeda S, Sahara N, Saito Y, Murayama M, Yoshiike Y, Kim H, Miyasaka T, Murayama S, Ikai A, Takashima A (2007) Granular tau oligomers as intermediates of tau filaments. Biochemistry 46:3856–3861

    PubMed  CAS  Google Scholar 

  • Maezawa I, Hong HS, Wu HC, Battina SK, Rana S, Iwamoto T, Radke GA, Pettersson E, Martin GM, Hua DH, Jin LW (2006) A novel tricyclic pyrone compound ameliorates cell death associated with intracellular amyloid-β oligomeric complexes. J Neurochem 98:57–67

    PubMed  CAS  Google Scholar 

  • Mahalakshmi R, Balaram P (2006) Non-protein amino acids in the design of secondary structure scaffolds. Methods Mol Biol 340:71–94

    PubMed  CAS  Google Scholar 

  • Maia F, Almeida Mdo R, Gales L, Kijjoa A, Pinto MM, Saraiva MJ, Damas AM (2005) The binding of xanthone derivatives to transthyretin. Biochem Pharmacol 70:1861–1869

    PubMed  CAS  Google Scholar 

  • Maier M, Seabrook TJ, Lazo ND, Jiang L, Das P, Janus C, Lemere CA (2006) Short amyloid-β (Aβ) immunogens reduce cerebral Aβ load and learning deficits in an Alzheimer’s disease mouse model in the absence of an Aβ-specific cellular immune response. J Neurosci 26:4717–4728

    PubMed  CAS  Google Scholar 

  • Mairal T, Nieto J, Pinto M, Almeida MR, Gales L, Ballesteros A, Barluenga J, Pérez JJ, Vázquez JT, Centeno NB, Saraiva MJ, Damas AM, Planas A, Arsequell G, Valencia G (2009) Iodine atoms: a new molecular feature for the design of potent transthyretin fibrillogenesis inhibitors. PLoS One 4:e4124

    PubMed  Google Scholar 

  • Manavalan P, Momany FA (1980) Conformational energy studies on N-methylated analogs of thyrotropin releasing hormone, enkephalin, and luteinizing hormone-releasing hormone. Biopolymers 19:1943–1973

    PubMed  CAS  Google Scholar 

  • Mandel SA, Amit T, Weinreb O, Reznichenko L, Youdim MB (2008) Simultaneous manipulation of multiple brain targets by green tea catechins: a potential neuroprotective strategy for Alzheimer and Parkinson diseases. CNS Neurosci Ther 14:352–365

    PubMed  CAS  Google Scholar 

  • Mantamadiotis T, Lemberger T, Bleckmann SC, Kern H, Kretz O, Martin Villalba A, Tronche F, Kellendonk C, Gau D, Kapfhammer J, Otto C, Schmid W, Schütz G (2002) Disruption of CREB function in brain leads to neurodegeneration. Nat Genet 31:47–54

    PubMed  CAS  Google Scholar 

  • Mantuano E, Veneziano L, Jodice C, Frontali M (2003) Spinocerebellar ataxia type 6 and episodic ataxia type 2: differences and similarities between two allelic disorders. Cytogenet Genome Res 100:147–153

    PubMed  CAS  Google Scholar 

  • Marambaud P, Zhao H, Davies P (2005) Resveratrol promotes clearance of Alzheimer’s disease amyloid-β peptides. J Biol Chem 280:37377–37382

    PubMed  CAS  Google Scholar 

  • Marco-Contelles J, León R, de los Ríos C, Samadi A, Bartolini M, Andrisano V, Huertas O, Barril OX, Luque FJ, Rodríguez-Franco MI, López B, López MG, García AG, do Carmo Carreiras M, Villarroya M (2009) Tacripyrines, the first tacrine-dihydropyridine hybrids, as multitarget-directed ligands for the treatment of Alzheimer’s disease. J Med Chem 52:2724–2732

    PubMed  CAS  Google Scholar 

  • Marks N, Berg MJ (2010) BACE and γ-secretase characterization and their sorting as therapeutic targets to reduce amyloidogenesis. Neurochem Res 35:181–210

    PubMed  CAS  Google Scholar 

  • Martone RL, Zhou H, Atchison K, Comery T, Xu JZ, Huang X, Gong X, Jin M, Kreft A, Harrison B, Mayer SC, Aschmies S, Gonzales C, Zaleska MM, Riddell DR, Wagner E, Lu P, Sun SC, Sonnenberg-Reines J, Oganesian A, Adkins K, Leach MW, Clarke DW, Huryn D, Abou-Gharbia M, Magolda R, Bard J, Frick G, Raje S, Forlow SB, Balliet C, Burczynski ME, Reinhart PH, Wan HI, Pangalos MN, Jacobsen JS (2009) Begacestat (GSI-953): a novel, selective thiophene sulfonamide inhibitor of amyloid precursor protein γ-secretase for the treatment of Alzheimer’s disease. J Pharmacol Exp Ther 331:598–608

    PubMed  CAS  Google Scholar 

  • Masino L (2004) Polyglutamine and neurodegeneration: structural aspects. Protein Pept Lett 11:239–248

    PubMed  CAS  Google Scholar 

  • Masison DC, Maddelein ML, Wickner RB (1997) The prion model for [URE3] of yeast: spontaneous generation and requirements for propagation. Proc Natl Acad Sci USA 94:12503–12508

    PubMed  CAS  Google Scholar 

  • Mastrianni JA (2010) The genetics of prion diseases. Genet Med 12:187–195

    PubMed  CAS  Google Scholar 

  • Mastrianni JA, Nixon R, Layzer R, Telling GC, Han D, DeArmond SJ, Prusiner SB (1999) Prion protein conformation in a patient with sporadic fatal insomnia. N Engl J Med 340:1630–1638

    PubMed  CAS  Google Scholar 

  • Matagne A, Dobson CM (1998) The folding process of hen lysozyme: a perspective from the ‘new view’. Cell Mol Life Sci 54:363–371

    PubMed  CAS  Google Scholar 

  • Matharu B, Gibson G, Parsons R, Huckerby TN, Moore SA, Cooper LJ, Millichamp R, Allsop D, Austen B (2009) Galantamine inhibits β-amyloid aggregation and cytotoxicity. J Neurol Sci 280:49–58

    PubMed  CAS  Google Scholar 

  • Matharu B, El-Agnaf O, Razvi A, Austen BM (2010) Development of retro-inverso peptides as anti-aggregation drugs for β-amyloid in Alzheimer’s disease. Peptides 31:1866–1872

    PubMed  CAS  Google Scholar 

  • Matsuzaki K (2007) Physicochemical interactions of amyloid β-peptide with lipid bilayers. Biochim Biophys Acta 1768:1935–1942

    PubMed  CAS  Google Scholar 

  • Matsuzaki K, Kato K, Yanagisawa K (2010) Aβ polymerization through interaction with membrane gangliosides. Biochim Biophys Acta 1801:868–877

    PubMed  CAS  Google Scholar 

  • Maury CP, Nurmiaho-Lassila EL, Boysen G, Liljestrom M (2003) Fibrillogenesis in gelsolin-related familial amyloidosis. Amyloid 10(Suppl 1):21–25

    PubMed  CAS  Google Scholar 

  • Mazanetz MP, Fischer PM (2007) Untangling tau hyperphosphorylation in drug design for neurodegenerative diseases. Nat Rev Drug Discov 6:464–479

    PubMed  CAS  Google Scholar 

  • McCarthy JV, Twomey C, Wujek P (2009) Presenilin-dependent regulated intramembrane proteolysis and γ-secretase activity. Cell Mol Life Sci 66:1534–1555

    PubMed  CAS  Google Scholar 

  • McCutchen SL, Lai Z, Miroy G, Kelly JW, Colon W (1995) Comparison of lethal and nonlethal transthyretin variants and their relationship to amyloid disease. Biochemistry 34:13527–13536

    PubMed  CAS  Google Scholar 

  • McGeer EG, McGeer PL (2010) Neuroinflammation in Alzheimer’s disease and mild cognitive impairment: a field in its infancy. J Alzheimers Dis 19:355–361

    PubMed  Google Scholar 

  • McGlinchey RP, Kryndushkin D, Wickner RB (2011) Suicidal [PSI+] is a lethal yeast prion. Proc Natl Acad Sci USA 108:5337–5341

    PubMed  CAS  Google Scholar 

  • McLaurin J, Golomb R, Jurewicz A, Antel JP, Fraser PE (2000) Inositol stereoisomers stabilise an oligomeric aggregate of Alzheimer amyloid β peptide and inhibit Aβ-induced toxicity. J Biol Chem 275:18495–18502

    PubMed  CAS  Google Scholar 

  • McLaurin J, Cecal R, Kierstead ME, Tian X, Phinney AL, Manea M, French JE, Lambermon MH, Darabie AA, Brown ME, Janus C, Chishti MA, Horne P, Westaway D, Fraser PE, Mount HT, Przybylski M, St George-Hyslop P (2002) Therapeutically effective antibodies against amyloid-β peptide target amyloid-β residues 4–10 and inhibit cytotoxicity and fibrillogenesis. Nat Med 8:1263–1269

    PubMed  CAS  Google Scholar 

  • McLaurin J, Kierstead ME, Brown ME, Hawkes CA, Lambermon MHL, Phinney AL, Darabie AA, Cousins JE, French JE, Lan MF, Chen F, Wong SSN, Mount HTJ, Fraser PE, Westaway D, St George-Hyslop P (2006) Cyclohexanehexol inhibitors of Aβ aggregation prevent and reverse Alzheimer phenotype in a mouse model. Nat Med 12:801–808

    PubMed  CAS  Google Scholar 

  • McNaught KS, Shashidharan P, Perl DP, Jenner P, Olanow CW (2002) Aggresome-related biogenesis of Lewy bodies. Eur J Neurosci 16:2136–2148

    PubMed  Google Scholar 

  • McNaught KS, Belizaire R, Isacson O, Jenner P, Olanow CW (2003) Altered proteasomal function in sporadic Parkinson’s disease. Exp Neurol 179:38–46

    PubMed  CAS  Google Scholar 

  • McNulty BC, Young GB, Pielak GJ (2006) Macromolecular crowding in the Escherichia coli periplasm maintains α-synuclein disorder. J Mol Biol 355:893–897

    PubMed  CAS  Google Scholar 

  • Meraz-Ríos MA, Lira-De León KI, Campos-Peña V, De Anda-Hernández MA, Mena-López R (2010) Tau oligomers and aggregation in Alzheimer’s disease. J Neurochem 112:1353–1367

    PubMed  Google Scholar 

  • Merlini G, Bellotti V (2005) Lysozyme: a paradigmatic molecule for the investigation of protein structure, function and misfolding. Clin Chim Acta 357:168–172

    PubMed  CAS  Google Scholar 

  • Mestre T, Ferreira J, Coelho MM, Rosa M, Sampaio C (2009) Therapeutic interventions for disease progression in Huntington’s disease. Cochrane Database Syst Rev 3:CD006455

    PubMed  Google Scholar 

  • Milano J, McKay J, Dagenais C, Foster-Brown L, Pognan F, Gadient R, Jacobs RT, Zacco A, Greenberg B, Ciaccio PJ (2004) Modulation of notch processing by γ-secretase inhibitors causes intestinal goblet cell metaplasia and induction of genes known to specify gut secretory lineage differentiation. Toxicol Sci 82:341–358

    PubMed  CAS  Google Scholar 

  • Miller SR, Sekijima Y, Kelly JW (2004) Native state stabilization by NSAIDs inhibits transthyretin amyloidogenesis from the most common familial disease variants. Lab Invest 84:545–552

    PubMed  CAS  Google Scholar 

  • Miller Y, Ma B, Nussinov R (2009) Polymorphism of Alzheimer’s Aβ17–42 (p3) oligomers: the importance of the turn location and its conformation. Biophys J 97:1168–1177

    PubMed  CAS  Google Scholar 

  • Miyazaki D, Yazaki M, Gono T, Kametani F, Tsuchiya A, Matsuda M, Takenaka Y, Hosh Y 2nd, Ikeda S (2008) AH amyloidosis associated with an immunoglobulin heavy chain variable region (VH1) fragment: a case report. Amyloid 15:125–128

    PubMed  CAS  Google Scholar 

  • Monaco HL, Rizzi M, Coda A (1995) Structure of a complex of two plasma proteins: transthyretin and retinol-binding protein. Science 268:1039–1041

    PubMed  CAS  Google Scholar 

  • Monsonego A, Maron R, Zota V, Selkoe D, Weiner H (2001) Immune hyporesponsiveness to amyloid-β peptide in amyloid precursor protein transgenic mice: implications for the pathogenesis and treatment of Alzheimer’s disease. Proc Natl Acad Sci USA 98:10273–10278

    PubMed  CAS  Google Scholar 

  • Moore SA, Huckerby TN, Gibson GL, Fullwood NJ, Turnbull S, Tabner BJ, El-Agnaf OM, Allsop D (2004) Both the D-(+) and L-(−) enantiomers of nicotine inhibit Aβ aggregation and cytotoxicity. Biochemistry 43:819–826

    PubMed  CAS  Google Scholar 

  • Morais-de-Sá E, Pereira PJ, Saraiva MJ, Damas AM (2004) The crystal structure of transthyretin in complex with diethylstilbestrol: a promising template for the design of amyloid inhibitors. J Biol Chem 279:53483–53490

    PubMed  Google Scholar 

  • Morgan D (2009) The role of microglia in antibody-mediated clearance of amyloid-β from the brain. CNS Neurol Disord Drug Targets 8:7–15

    PubMed  CAS  Google Scholar 

  • Morgan D, Diamond DM, Gottschall PE, Ugen KE, Dickey C, Hardy J, Duff K, Jantzen P, DiCarlo G, Wilcock D, Connor K, Hatcher J, Hope C, Gordon M, Arendash GW (2000) Aβ peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature 408:982–985

    PubMed  CAS  Google Scholar 

  • Mrak RE (2009) Neuropathology and the neuroinflammation idea. J Alzheimers Dis 18:473–481

    PubMed  Google Scholar 

  • Muchowski PJ, Wacker JL (2005) Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 6:11–22

    PubMed  CAS  Google Scholar 

  • Mukaetova-Ladinska EB, Hurt J, Jakes R, Xuereb J, Honer WG, Wischik CM (2000) α-Synuclein inclusions in Alzheimer and Lewy body diseases. J Neuropathol Exp Neurol 59:408–417

    PubMed  CAS  Google Scholar 

  • Muñoz FJ, Aldunate R, Inestrosa NC (1999) Peripheral binding site is involved in the neurotrophic activity of acetylcholinesterase. Neuroreport 10:3621–3625

    PubMed  Google Scholar 

  • Muñoz-Ruiz P, Rubio L, García-Palomero E, Dorronsoro I, del Monte-Millán M, Valenzuela R, Usán P, de Austria C, Bartolini M, Andrisano V, Bidon-Chanal A, Orozco M, Luque FJ, Medina M, Martínez A (2005) Design, synthesis, and biological evaluation of dual binding site acetylcholinesterase inhibitors: new disease-modifying agents for Alzheimer’s disease. J Med Chem 48:7223–7233

    PubMed  Google Scholar 

  • Muñoz-Torrero D (2008) Acetylcholinesterase inhibitors as disease-modifying therapies for Alzheimer’s disease. Curr Med Chem 15:2433–2455

    PubMed  Google Scholar 

  • Murphy MP, LeVine H 3rd (2010) Alzheimer’s disease and the amyloid-β peptide. J Alzheimers Dis 19:311–323

    PubMed  Google Scholar 

  • Mustafi SM, Garai K, Crick SL, Baban B, Frieden C (2010) Substoichiometric inhibition of Aβ1–40 aggregation by a tandem Aβ40–1–Gly8–Aβ1–40 peptide. Biochem Biophys Res Commun 397:509–512

    PubMed  CAS  Google Scholar 

  • Nagai Y, Tucker T, Ren H, Kenan DJ, Henderson BS, Keene JD, Strittmatter WJ, Burke JR (2000) Inhibition of polyglutamine protein aggregation and cell death by novel peptides identified by phage display screening. J Biol Chem 275:10437–10442

    PubMed  CAS  Google Scholar 

  • Nagai Y, Fujikake N, Ohno K, Higashiyama H, Popiel HA, Rahadian J, Yamaguchi M, Strittmatter WJ, Burke JR, Toda T (2003) Prevention of polyglutamine oligomerization and neurodegeneration by the peptide inhibitor QBP1 in Drosophila. Hum Mol Genet 12:1253–1259

    PubMed  CAS  Google Scholar 

  • Naiki H, Nagai Y (2009) Molecular pathogenesis of protein misfolding diseases: pathological molecular environments versus quality control systems against misfolded proteins. J Biochem 146:751–756

    PubMed  CAS  Google Scholar 

  • Naiki H, Nakakuki K (1996) First-order kinetic model of Alzheimer’s β-amyloid fibril extension in vitro. Lab Invest 74:374–383

    PubMed  CAS  Google Scholar 

  • Naiki H, Yamamoto S, Hasegawa K, Yamaguchi I, Goto Y, Gejyo F (2005) Molecular interactions in the formation and deposition of β2-microglobulin-related amyloid fibrils. Amyloid 12:15–25

    PubMed  CAS  Google Scholar 

  • Neagu A, Neagu M, Der A (2001) Fluctuations and the Hofmeister effect. Biophys J 81:1285–1294

    PubMed  CAS  Google Scholar 

  • Neugroschl J, Sano M (2009) An update on treatment and prevention strategies for Alzheimer’s disease. Curr Neurol Neurosci Rep 9:368–376

    PubMed  CAS  Google Scholar 

  • Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CM, McCluskey LF, Miller BL, Masliah E, Mackenzie IR, Feldman H, Feiden W, Kretzschmar HA, Trojanowski JQ, Lee VM (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133

    PubMed  CAS  Google Scholar 

  • Nichols WC, Dwulet FE, Liepnieks J, Benson MD (1988) Variant apolipoprotein AI as a major constituent of a human hereditary amyloid. Biochem Biophys Res Commun 156:762–768

    PubMed  CAS  Google Scholar 

  • Nicoll JA, Barton E, Boche D, Neal JW, Ferrer I, Thompson P, Vlachouli C, Wilkinson D, Bayer A, Games D, Seubert P, Schenk D, Holmes C (2006) Aβ species removal after Aβ42 immunization. J Neuropathol Exp Neurol 65:1040–1048

    PubMed  CAS  Google Scholar 

  • Niewold TA, Murphy CL, Hulskamp-Koch CA, Tooten PC, Gruys E (1999) Casein related amyloid, characterization of a new and unique amyloid protein isolated from bovine corpora amylacea. Amyloid 6:244–249

    PubMed  CAS  Google Scholar 

  • Nilsson MR, Dobson CM (2003) In vitro characterization of lactoferrin aggregation and amyloid formation. Biochemistry 42:375–382

    PubMed  CAS  Google Scholar 

  • Nilsson SF, Rask L, Peterson PA (1975) Studies on thyroid hormone-binding proteins. II. Binding of thyroid hormones, retinol-binding protein, and fluorescent probes to prealbumin and effects of thyroxine on prealbumin subunit self-association. J Biol Chem 250:8554–8563

    PubMed  CAS  Google Scholar 

  • Nitz M, Fenili D, Darabie AA, Wu L, Cousins JE, McLaurin J (2008) Modulation of amyloid-β aggregation and toxicity by inosose stereoisomers. FEBS J 275:1663–1674

    PubMed  CAS  Google Scholar 

  • Nollen EA, Garcia SM, van Haaften G, Kim S, Chavez A, Morimoto RI, Plasterk RH (2004) Genome-wide RNA interference screen identifies previously undescribed regulators of polyglutamine aggregation. Proc Natl Acad Sci USA 101:6403–6408

    PubMed  CAS  Google Scholar 

  • Nolte D, Sobanski E, Wissen A, Regula JU, Lichy C, Müller U (2010) Spinocerebellar ataxia type 17 associated with an expansion of 42 glutamine residues in TATA-box binding protein gene. J Neurol Neurosurg Psychiatry 81:1396–1399

    PubMed  CAS  Google Scholar 

  • Nonnis S, Cappelletti G, Taverna F, Ronchi C, Ronchi S, Negri A, Grassi E, Tedeschi G (2008) Tau is endogenously nitrated in mouse brain: identification of a tyrosine residue modified in vivo by NO. Neurochem Res 33:518–525

    PubMed  CAS  Google Scholar 

  • Nucifora FC Jr, Sasaki M, Peters MF, Huang H, Cooper JK, Yamada M, Takahashi H, Tsuji S, Troncoso J, Dawson VL, Dawson TM, Ross CA (2001) Interference by huntingtin and atrophin-1 with CBP-mediated transcription leading to cellular toxicity. Science 291:2423–2428

    PubMed  CAS  Google Scholar 

  • O’Nuallain B, Williams AD, Westermark P, Wetzel R (2004) Seeding specificity in amyloid growth induced by heterologous fibrils. J Biol Chem 279:17490–17499

    PubMed  Google Scholar 

  • Obregon DF, Rezai-Zadeh K, Bai Y, Sun N, Hou H, Ehrhart J, Zeng J, Mori T, Arendash GW, Shytle D, Town T, Tan J (2006) ADAM10 activation is required for green tea (−)-epigallocatechin-3-gallate-induced α-secretase cleavage of amyloid precursor protein. J Biol Chem 281:16419–16427

    PubMed  CAS  Google Scholar 

  • Ohashi K (2001) Pathogenesis of β2-microglobulin amyloidosis. Pathol Int 51:1–10

    PubMed  CAS  Google Scholar 

  • Okamoto Y, Nagai Y, Fujikake N, Akiko Popiel H, Yoshioka T, Toda T, Inui T (2009) Surface plasmon resonance characterization of specific binding of polyglutamine aggregation inhibitors of the expanded polyglutamine stretch. Biochem Biophys Res Commun 378:634–639

    PubMed  CAS  Google Scholar 

  • Ong DS, Kelly JW (2010) Chemical and/or biological therapeutic strategies to ameliorate protein misfolding diseases. Curr Opin Cell Biol 23:231–238

    PubMed  Google Scholar 

  • Ono K, Yoshiike Y, Takashima A, Hasegawa K, Naiki H, Yamada M (2003) Potent anti-­amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: implications for the prevention and therapeutics of Alzheimer’s disease. J Neurochem 87:172–181

    PubMed  CAS  Google Scholar 

  • Ono K, Hasegawa K, Naiki H, Yamada M (2004) Anti-amyloidogenic activity of tannic acid and its activity to destabilize Alzheimer’s β-amyloid fibrils in vitro. Biochim Biophys Acta 1690:193–202

    PubMed  CAS  Google Scholar 

  • Orgogozo JM, Dartigues JF, Lafont S, Letenneur L, Commenges D, Salamon R, Renaud S, Breteler MB (1997) Wine consumption and dementia in the elderly: a prospective community study in the Bordeaux area. Rev Neurol (Paris) 153:185–192

    CAS  Google Scholar 

  • Ossato G, Digman MA, Aiken C, Lukacsovich T, Marsh JL, Gratton E (2010) A two-step path to inclusion formation of huntingtin peptides revealed by number and brightness analysis. Biophys J 98:3078–3085

    PubMed  CAS  Google Scholar 

  • Osseni RA, Debbasch C, Christen M-O, Rat P, Warnet J-M (1999) Tacrine-induced reactive oxygen species in a human liver cell line: the role of anethole dithiolethione as a scavenger. Toxicol In Vitro 13:683–688

    PubMed  CAS  Google Scholar 

  • Oza VB, Petrassi HM, Purkey HE, Kelly JW (1999) Synthesis and evaluation of anthranilic acid-based transthyretin amyloid fibril inhibitors. Bioorg Med Chem Lett 9:1–6

    PubMed  CAS  Google Scholar 

  • Oza VB, Smith C, Raman P, Koepf EK, Lashuel HA, Petrassi HM, Chiang KP, Powers ET, Sachettinni J, Kelly JW (2002) Synthesis, structure, and activity of diclofenac analogues as transthyretin amyloid fibril formation inhibitors. J Med Chem 45:321–332

    PubMed  CAS  Google Scholar 

  • Padrick SB, Miranker AD (2001) Islet amyloid polypeptide: identification of long-range contacts and local order on the fibrillogenesis pathway. J Mol Biol 308:783–794

    PubMed  CAS  Google Scholar 

  • Palaninathan SK, Mohamedmohaideen NN, Snee WC, Kelly JW, Sacchettini JC (2008) Structural insight into pH-induced conformational changes within the native human transthyretin tetramer. J Mol Biol 382:1157–1167

    PubMed  CAS  Google Scholar 

  • Palaninathan SK, Mohamedmohaideen NN, Orlandini E, Ortore G, Nencetti S, Lapucci A, Rossello A, Freundlich JS, Sacchettini JC (2009) Novel transthyretin amyloid fibril formation inhibitors: synthesis, biological evaluation, and X-ray structural analysis. PLoS One 4:e6290

    PubMed  Google Scholar 

  • Palazzolo I, Gliozzi A, Rusmini P, Sau D, Crippa V, Simonini F, Onesto E, Bolzoni E, Poletti A (2008) The role of the polyglutamine tract in androgen receptor. J Steroid Biochem Mol Biol 108:245–253

    PubMed  CAS  Google Scholar 

  • Paleos CM, Tsiourvas D, Sideratou Z, Tziveleka LA (2010) Drug delivery using multifunctional dendrimers and hyperbranched polymers. Expert Opin Drug Deliv 7:1387–1398

    PubMed  CAS  Google Scholar 

  • Palhano FL, Leme LP, Busnardo RG, Foguel D (2009) Trapping the monomer of a non-amyloidogenic variant of transthyretin: exploring its possible use as a therapeutic strategy against transthyretin amyloidogenic diseases. J Biol Chem 284:1443–1453

    PubMed  CAS  Google Scholar 

  • Pan T, Jankovic J, Le W (2003) Potential therapeutic properties of green tea polyphenols in Parkinson’s disease. Drugs Aging 20:711–721

    PubMed  CAS  Google Scholar 

  • Pan M, Maitin V, Parathath S, Andreo U, Lin SX, St Germain C, Yao Z, Maxfield FR, Williams KJ, Fisher EA (2008) Presecretory oxidation, aggregation, and autophagic destruction of apoprotein-B: a pathway for late-stage quality control. Proc Natl Acad Sci USA 105:5862–5867

    PubMed  CAS  Google Scholar 

  • Pang Y-P, Quiram P, Jelacic T, Hong F, Brimijoin S (1996) Highly potent, selective, and low cost bis-tetrahydroaminacrine inhibitors of acetylcholinesterase. J Biol Chem 271:23646–23649

    PubMed  CAS  Google Scholar 

  • Panza F, Frisardi V, Imbimbo BP, Capurso C, Logroscino G, Sancarlo D, Seripa D, Vendemiale G, Pilotto A, Solfrizzi V (2010) γ-Secretase inhibitors for the treatment of Alzheimer’s disease: the current state. CNS Neurosci Ther 16:272–284

    PubMed  CAS  Google Scholar 

  • Paravastu AK, Petkova AT, Tycko R (2006) Polymorphic fibril formation by residues 10–40 of the Alzheimer’s β-amyloid peptide. Biophys J 90:4618–4629

    PubMed  CAS  Google Scholar 

  • Paravastu AK, Leapman RD, Yau WM, Tycko R (2008) Molecular structural basis for polymorphism in Alzheimer’s β-amyloid fibrils. Proc Natl Acad Sci USA 105:18349–18354

    PubMed  CAS  Google Scholar 

  • Paravastu AK, Qahwash I, Leapman RD, Meredith SC, Tycko R (2009) Seeded growth of β-amyloid fibrils from Alzheimer’s brain-derived fibrils produces a distinct fibril structure. Proc Natl Acad Sci USA 106:7443–7448

    PubMed  CAS  Google Scholar 

  • Patch JA, Barron AE (2003) Helical peptoid mimics of magainin-2 amide. J Am Chem Soc 125:12092–12093

    PubMed  CAS  Google Scholar 

  • Patel DJ, Tonelli AE (1976) N-methylleucine gramicidin-S and (di-N-methylleucine) gramicidin-S conformations with cis L-Orn–L-N–MeLeu peptide bonds. Biopolymers 15:1623–1635

    PubMed  CAS  Google Scholar 

  • Peng S, Larsson A, Wassberg E, Gerwins P, Thelin S, Fu X, Westermark P (2007) Role of aggregated medin in the pathogenesis of thoracic aortic aneurysm and dissection. Lab Invest 87:1195–1205

    PubMed  CAS  Google Scholar 

  • Penkler LJ, Van Rooyen PH, Wessels PL (1993) Conformational analysis of μ-selective [D-Ala2, MePhe4]enkephalins. Int J Pept Protein Res 41:261–274

    PubMed  CAS  Google Scholar 

  • Pepeu G, Giovannini MG (2009) Cholinesterase inhibitors and beyond. Curr Alzheimer Res 6:86–96

    PubMed  CAS  Google Scholar 

  • Pepys MB (2009) A molecular correlate of clinicopathology in transthyretin amyloidosis. J Pathol 217:1–3

    PubMed  Google Scholar 

  • Permanne B, Adessi C, Saborio GP, Fraga S, Frossard MJ, Van Dorpe J, Dewachter I, Banks WA, Van Leuven F, Soto C (2002) Reduction of amyloid load and cerebral damage in a transgenic mouse model of Alzheimer’s disease by treatment with a β-sheet breaker peptide. FASEB J 16:860–862

    PubMed  CAS  Google Scholar 

  • Perrin RJ, Woods WS, Clayton DF, George JM (2000) Interaction of human α-synuclein and Parkinson’s disease variants with phospholipids. Structural analysis using site-directed mutagenesis. J Biol Chem 275:34393–34398

    PubMed  CAS  Google Scholar 

  • Perry JJ, Shin DS, Tainer JA (2010) Amyotrophic lateral sclerosis. Adv Exp Med Biol 685:9–20

    PubMed  CAS  Google Scholar 

  • Pertinhez TA, Bouchard M, Tomlinson EJ, Wain R, Ferguson SJ, Dobson CM, Smith LJ (2001) Amyloid fibril formation by a helical cytochrome. FEBS Lett 495:184–186

    PubMed  CAS  Google Scholar 

  • Peterson DW, Zhou H, Dahlquist FW, Lew J (2008) A soluble oligomer of tau associated with fiber formation analyzed by NMR. Biochemistry 47:7393–7404

    PubMed  CAS  Google Scholar 

  • Petkova AT, Ishii Y, Balbach JJ, Antzutkin ON, Leapman RD, Delaglio F, Tycko R (2002) A structural model for Alzheimer’s β-amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci USA 99:16742–16747

    PubMed  CAS  Google Scholar 

  • Petkova AT, Leapman RD, Guo Z, Yau WM, Mattson MP, Tycko R (2005) Self-propagating, molecular-level polymorphism in Alzheimer’s β-amyloid fibrils. Science 307:262–265

    PubMed  CAS  Google Scholar 

  • Petkova AT, Yau WM, Tycko R (2006) Experimental constraints on quaternary structure in Alzheimer’s β-amyloid fibrils. Biochemistry 45:498–512

    PubMed  CAS  Google Scholar 

  • Petrassi HM, Klabunde T, Sacchettini J, Kelly JW (2000) Structure-based design of N-phenyl phenoxazine transthyretin amyloid fibril inhibitors. J Am Chem Soc 122:2178–2192

    CAS  Google Scholar 

  • Petrassi HM, Johnson SM, Purkey HE, Chiang KP, Walkup T, Jiang X, Powers ET, Kelly JW (2005) Potent and selective structure-based dibenzofuran inhibitors of transthyretin amyloidogenesis: kinetic stabilization of the native state. J Am Chem Soc 127:6662–6671

    PubMed  CAS  Google Scholar 

  • Pfeifer M, Boncristiano S, Bondolfi L, Stalder A, Deller T, Staufenbiel M, Mathews PM, Jucker M (2002) Cerebral hemorrhage after passive anti-Aβ immunotherapy. Science 298:1379

    PubMed  CAS  Google Scholar 

  • Piazzi L, Rampa A, Bisi A, Gobbi S, Belluti F, Cavalli A, Bartolini M, Andrisano V, Valenti P, Recanatini M (2003) 3-(4-[[Benzyl(methyl)amino]methyl]phenyl)- 6,7-dimethoxy-2H-2-chromenone (AP2238) inhibits both acetylcholinesterase and acetylcholinesterase-induced β-amyloid aggregation: a dual function lead for Alzheimer’s disease therapy. J Med Chem 46:2279–2282

    PubMed  CAS  Google Scholar 

  • Plein H (2002) Amyloid β-protein forms ion channels. Trends Neurosci 25:137

    PubMed  CAS  Google Scholar 

  • Poduslo JF, Curran GL, Kumar A, Frangione B, Soto C (1999) β-Sheet breaker peptide inhibitor of Alzheimer’s amyloidogenesis with increased blood–brain barrier permeability and resistance to proteolytic degradation in plasma. J Neurobiol 39:371–382

    PubMed  CAS  Google Scholar 

  • Pokorski JK, Jenkins LM, Feng H, Durell SR, Bai Y, Appella DH (2007) Introduction of a triazole amino acid into a peptoid oligomer induces turn formation in aqueous solution. Org Lett 9:2381–2383

    PubMed  CAS  Google Scholar 

  • Pollitt SK, Pallos J, Shao J, Desai UA, Ma AA, Thompson LM, Marsh JL, Diamond MI (2003) A rapid cellular FRET assay of polyglutamine aggregation identifies a novel inhibitor. Neuron 40:685–694

    PubMed  CAS  Google Scholar 

  • Popiel HA, Nagai Y, Fujikake N, Toda T (2007) Protein transduction domain mediated delivery of QBP1 suppresses polyglutamine-induced neurodegeneration in vivo. Mol Ther 15:303–309

    PubMed  CAS  Google Scholar 

  • Popiel HA, Nagai Y, Fujikake N, Toda T (2009) Delivery of the aggregate inhibitor peptide QBP1 into the mouse brain using PTDs and its therapeutic effect on polyglutamine disease mice. Neurosci Lett 449:87–92

    PubMed  CAS  Google Scholar 

  • Popova LA, Kodali R, Wetzel R, Lednev IK (2010) Structural variations in the cross-β core of amyloid β fibrils revealed by deep UV resonance Raman spectroscopy. J Am Chem Soc 132:6324–6328

    PubMed  CAS  Google Scholar 

  • Popovich PG, Longbrake EE (2008) Can the immune system be harnessed to repair the CNS? Nat Rev Neurosci 9:481–493

    PubMed  CAS  Google Scholar 

  • Popper K (1945) The open society and its enemies. Routledge. p 276. http://en.wikipedia.org/wiki/The_Open_Society_and_Its_Enemies

  • Porat Y, Mazor Y, Efrat S, Gazit E (2004) Inhibition of islet amyloid polypeptide fibril formation: a potential role for heteroaromatic interactions. Biochemistry 43:14454–14462

    PubMed  CAS  Google Scholar 

  • Porat Y, Abramowitz A, Gazit E (2006) Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism. Chem Biol Drug Des 67:27–37

    PubMed  CAS  Google Scholar 

  • Post SG (2000) Defining the task. In: The moral challenge of Alzheimer’s disease. Johns Hopkins University Press, Baltimore, p 3

    Google Scholar 

  • Pountney DL, Voelcker NH, Gai WP (2005) Annular α-synuclein oligomers are potentially toxic agents in α-synucleinopathy. Neurotox Res 7:59–67

    PubMed  CAS  Google Scholar 

  • Pratim Bose P, Chatterjee U, Nerelius C, Govender T, Norström T, Gogoll A, Sandegren A, Göthelid E, Johansson J, Arvidsson PI (2009) Poly-N-methylated amyloid β-peptide (Aβ) C-terminal fragments reduce Aβ toxicity in vitro and in Drosophila melanogaster. J Med Chem 52:8002–8009

    PubMed  Google Scholar 

  • Prevelige PE, Thomas D, King J (1993) Nucleation and growth phases in the polymerization of coat and scaffolding subunits into icosahedral procapsid shells. Biophys J 64:824–835

    PubMed  CAS  Google Scholar 

  • Pride M, Seubert P, Grundman M, Hagen M, Eldridge J, Black RS (2008) Progress in the active immunotherapeutic approach to Alzheimer’s disease: clinical investigations into AN1792-associated meningoencephalitis. Neurodegener Dis 5:194–196

    PubMed  CAS  Google Scholar 

  • Prusiner SB (1998) Prions. Proc Natl Acad Sci USA 95:13363–13383

    PubMed  CAS  Google Scholar 

  • Prusiner SB (2001) Shattuck lecture—neurodegenerative diseases and prions. N Engl J Med 344:1516–1526

    PubMed  CAS  Google Scholar 

  • Prusiner SB, Scott MR, DeArmond SJ, Cohen FE (1998) Prion protein biology. Cell 93:337–348

    PubMed  CAS  Google Scholar 

  • Purkey HE, Palaninathan SK, Kent KC, Smith C, Safe SH, Sacchettini JC, Kelly JW (2004) Hydroxylated polychlorinated biphenyls selectively bind transthyretin in blood and inhibit amyloidogenesis: rationalizing rodent PCB toxicity. Chem Biol 11:1719–1728

    PubMed  CAS  Google Scholar 

  • Qiao ZS, Guo ZY, Feng YM (2001) Putative disulfide-forming pathway of porcine insulin precursor during its refolding in vitro. Biochemistry 40:2662–2668

    PubMed  CAS  Google Scholar 

  • Racke MM, Boone LI, Hepburn DL, Parsadainian M, Bryan MT, Ness DK, Piroozi KS, Jordan WH, Brown DD, Hoffman WP, Holtzman DM, Bales KR, Gitter BD, May PC, Paul SM, DeMattos RB (2005) Exacerbation of cerebral amyloid angiopathy-associated microhemorrhage in amyloid precursor protein transgenic mice by immunotherapy is dependent on antibody recognition of deposited forms of amyloid β. J Neurosci 25:629–636

    PubMed  CAS  Google Scholar 

  • Raguse TL, Porter EA, Weisblum B, Gellman SH (2002) Structure–activity studies of 14-helical antimicrobial β-peptides: probing the relationship between conformational stability and antimicrobial potency. J Am Chem Soc 124:12774–12785

    PubMed  CAS  Google Scholar 

  • Rajarathnam K, Clark-Lewis I, Sykes BD (1994) 1H NMR studies of interleukin 8 analogs: characterization of the domains essential for function. Biochemistry 33:6623–6630

    PubMed  CAS  Google Scholar 

  • Razavi H, Palaninathan SK, Powers ET, Wiseman RL, Purkey HE, Mohamedmohaideen NN, Deechongkit S, Chiang KP, Dendle MT, Sacchettini JC, Kelly JW (2003) Benzoxazoles as transthyretin amyloid fibril inhibitors. Synthesis, evaluation, and mechanism of action. Angew Chem Int Ed Engl 42:2758–2761

    PubMed  CAS  Google Scholar 

  • Reches M, Gazit E (2003) Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300:625–627

    PubMed  CAS  Google Scholar 

  • Reches M, Porat Y, Gazit E (2002) Amyloid fibril formation by pentapeptide and tetrapeptide fragments of human calcitonin. J Biol Chem 277:35475–35480

    PubMed  CAS  Google Scholar 

  • Redfield C, Schulman BA, Milhollen MA, Kim PS, Dobson CM (1999) α-Lactalbumin forms a compact molten globule in the absence of disulfide bonds. Nat Struct Biol 6:948–952

    PubMed  CAS  Google Scholar 

  • Reixach N, Deechongkit S, Jiang X, Kelly JW, Buxbaum JN (2004) Tissue damage in the amyloidoses: transthyretin monomers and nonnative oligomers are the major cytotoxic species in tissue culture. Proc Natl Acad Sci USA 101:2817–2822

    PubMed  CAS  Google Scholar 

  • Reixach N, Adamski-Werner SL, Kelly JW, Koziol J, Buxbaum JN (2006) Cell based screening of inhibitors of transthyretin aggregation. Biochem Biophys Res Commun 348:889–897

    PubMed  CAS  Google Scholar 

  • Reyes AE, Perez DR, Alvarez A, Garrido J, Gentry MK, Doctor BP, Inestrosa NC (1997) A monoclonal antibody against acetylcholinesterase inhibits the formation of amyloid fibrils induced by the enzyme. Biochem Biophys Res Commun 232:652–655

    PubMed  CAS  Google Scholar 

  • Reyes JF, Fu Y, Vana L, Kanaan NM, Binder LI (2011) Tyrosine nitration within the proline-rich region of Tau in Alzheimer’s disease. Am J Pathol 178:2275–2285

    PubMed  CAS  Google Scholar 

  • Rezai-Zadeh K, Shytle D, Sun N, Mori T, Hou H, Jeanniton D, Ehrhart J, Townsend K, Zeng J, Morgan D, Hardy J, Town T, Tan J (2005) Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J Neurosci 25:8807–8814

    PubMed  CAS  Google Scholar 

  • Riess O, Rüb U, Pastore A, Bauer P, Schöls L (2008) SCA3: neurological features, pathogenesis and animal models. Cerebellum 7:125–137

    PubMed  CAS  Google Scholar 

  • Riisoen H (1988) Reduced prealbumin (transthyretin) in CSF of severely demented patients with Alzheimer’s disease. Acta Neurol Scand 78:455–459

    PubMed  CAS  Google Scholar 

  • Rinderspacher A, Cremona ML, Liu Y, Deng SX, Xie Y, Gong G, Aulner N, Többen U, Myers K, Chung C, Andersen M, Vidović D, Schürer S, Brandén L, Yamamoto A, Landry DW (2009) Potent inhibitors of Huntingtin protein aggregation in a cell-based assay. Bioorg Med Chem Lett 19:1715–1717

    PubMed  CAS  Google Scholar 

  • Ringman JM, Cole GM, Teng E, Badmaev V, Bardens J, Frautschy S, Rosario E, Fein J, Porter V, Vanek Z, Sugar C, Yau A, Cummings JL (2008) Oral curcumin for the treatment of mild-to-moderate Alzheimer’s disease: tolerability and clinical and biomarker efficacy results of a placebo-controlled 24-week study. In: Proceedings of the abstract of international conference on Alzheimer’s disease, Chicago, USA, 26–31 July 2008, p T774

    Google Scholar 

  • Ritchie CW, Bush AI, Mackinnon A, Macfarlane S, Mastwyk M, MacGregor L, Kiers L, Cherny R, Li QX, Tammer A, Carrington D, Mavros C, Volitakis I, Xilinas M, Ames D, Davis S, Beyreuther K, Tanzi RE, Masters CL (2003) Metalprotein attenuation with iodochlorhydroxyquin (clioquinol) targeting Aβ amyloid deposition and toxicity in Alzheimer disease: a pilot phase 2 clinical trial. Arch Neurol 60:1685–1691

    PubMed  Google Scholar 

  • Ritter C, Maddelein ML, Siemer AB, Lührs T, Ernst M, Meier BH, Saupe SJ, Riek R (2005) Correlation of structural elements and infectivity of the HET-s prion. Nature 435:844–848

    PubMed  CAS  Google Scholar 

  • Rival T, Page RM, Chandraratna DS, Sendall TJ, Ryder E, Liu B, Lewis H, Rosahl T, Hider R, Camargo LM, Shearman MS, Crowther DC, Lomas DA (2009) Fenton chemistry and oxidative stress mediate the toxicity of the β-amyloid peptide in a Drosophila model of Alzheimer’s disease. Eur J Neurosci 29:1335–1347

    PubMed  Google Scholar 

  • Rivière C, Richard T, Quentin L, Krisa S, Mérillon JM, Monti JP (2006) Inhibitory activity of stilbenes on Alzheimer’s β-amyloid fibrils in vitro. Bioorg Med Chem 15:1160–1167

    PubMed  Google Scholar 

  • Rizzo S, Bartolini M, Ceccarini L, Piazzi L, Gobbi S, Cavalli A, Recanatini M, Andrisano V, Rampa A (2010) Targeting Alzheimer’s disease: Novel indanone hybrids bearing a pharmacophoric fragment of AP2238. Bioorg Med Chem 18(5):1749–60. Epub 2010 Feb 4. PMID: 20171894 [PubMed - indexed for MEDLINE]: http://www.ncbi.nlm.nih.gov/pubmed/20171894

    Google Scholar 

  • Röcken C, Shakespeare A (2002) Pathology, diagnosis and pathogenesis of AA amyloidosis. Virchows Arch 440:111–122

    PubMed  Google Scholar 

  • Röcken C, Becker K, Fandrich M, Schroeckh V, Stix B, Rath T, Kahne T, Dierkes J, Roessner A, Albert FW (2006) ALys amyloidosis caused by compound heterozygosity in exon 2 (Thr70Asn) and exon 4 (Trp112Arg) of the lysozyme gene. Hum Mutat 27:119–120

    PubMed  Google Scholar 

  • Rosas HD, Koroshetz WJ, Jenkins BG, Chen YI, Hayden DL, Beal MF, Cudkowicz ME (1999) Riluzole therapy in Huntington’s disease. Mov Disord 14:326–330

    PubMed  CAS  Google Scholar 

  • Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O’Regan JP, Deng HX, Rahmani Z, Krizus A, McKenna-Yasek D, Cayabyab A, Gaston SM, Berger R, Tanzi RE, Halperin JJ, Herzfeldt B, Van den Bergh R, Hung W-Y, Bird T, Deng G, Mulder DW, Smyth C, Laing NG, Soriano E, Pericak–Vance MA, Haines J, Rouleau GA, Gusella JS, Horvitz HR, Brown RH Jr (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62

    PubMed  CAS  Google Scholar 

  • Rosini M, Andrisano V, Bartolini M, Bolognesi ML, Rehíla P, Minarini A, Tarozzi A, Melchiorre C (2005) Rational approach to discover multipotent anti-Alzheimer drugs. J Med Chem 48:360–363

    PubMed  CAS  Google Scholar 

  • Röskam S, Neff F, Schwarting R, Bacher M, Dodel R (2010) APP transgenic mice: the effect of active and passive immunotherapy in cognitive tasks. Neurosci Biobehav Rev 34:487–499

    PubMed  Google Scholar 

  • Ross CA (2002) Polyglutamine pathogenesis: emergence of unifying mechanisms for Huntington’s disease and related disorders. Neuron 35:819–822

    PubMed  CAS  Google Scholar 

  • Ross CA, Poirier MA, Wanker EE, Amzel M (2003) PolyQ fibrillogenesis: the pathway unfolds. Proc Natl Acad Sci USA 100:1–3

    PubMed  CAS  Google Scholar 

  • Rothstein JD (2009) Current hypotheses for the underlying biology of amyotrophic lateral sclerosis. Ann Neurol 65(Suppl 1):S3–S9

    PubMed  CAS  Google Scholar 

  • Roze E, Bonnet C, Betuing S, Caboche J (2010) Huntington’s disease. Adv Exp Med Biol 685:45–63

    PubMed  CAS  Google Scholar 

  • Rüb U, Brunt ER, Deller T (2008) New insights into the pathoanatomy of spinocerebellar ataxia type 3 (Machado-Joseph disease). Curr Opin Neurol 21:111–116

    PubMed  Google Scholar 

  • Rubinsztein DC (2002) Lessons from animal models of Huntington’s disease. Trends Genet 18:202–209

    PubMed  CAS  Google Scholar 

  • Ryu J, Kanapathipillai M, Lentzen G, Park CB (2008) Peptide inhibition of β-amyloid peptide aggregation and neurotoxicity by α-D-mannosylglycerate, a natural extremolyte. Peptides 29:578–584

    PubMed  CAS  Google Scholar 

  • Sadler K, Tam JP (2002) Peptide dendrimers: applications and synthesis. J Biotechnol 90:195–229

    PubMed  CAS  Google Scholar 

  • Sahara N, Maeda S, Murayama M, Suzuki T, Dohmae N, Yen SH, Takashima A (2007) Assembly of two distinct dimers and higher-order oligomers from full length tau. Eur J Neurosci 25:3020–3029

    PubMed  Google Scholar 

  • Salomon AR, Marcinowski KJ, Friedland RP, Zagorski MG (1996) Nicotine inhibits amyloid formation by the β-peptide. Biochemistry 35:13568–13578

    PubMed  CAS  Google Scholar 

  • Samson K (2010) NerveCenter: phase III Alzheimer trial halted: search for therapeutic biomarkers continues. Ann Neurol 68:A9–A12

    PubMed  Google Scholar 

  • Santhoshkumar P, Sharma KK (2004) Inhibition of amyloid fibrillogenesis and toxicity by a peptide chaperone. Mol Cell Biochem 267:147–155

    PubMed  CAS  Google Scholar 

  • Saraiva MJ (1995) Transthyretin mutations in health and disease. Hum Mutat 5:191–196

    PubMed  CAS  Google Scholar 

  • Saraiva MJ (2002) Hereditary transthyretin amyloidosis: molecular basis and therapeutical strategies. Expert Rev Mol Med 4:1–11

    PubMed  Google Scholar 

  • Saumier D, Aisen PS, Gauthier S, Vellas B, Ferris SH, Duong A, Suhy J, Oh J, Lau W, Garceau D, Haine D, Sampalis J (2009) Lessons learned in the use of volumetric MRI in therapeutic trials in Alzheimer’s disease: the ALZHEMED (Tramiprosate) experience. J Nutr Health Aging 13:370–372

    PubMed  CAS  Google Scholar 

  • Saura CA, Choi SY, Beglopoulos V, Malkani S, Zhang D, Shankaranarayana Rao BS, Chattarji S, Kelleher RJ 3rd, Kandel ER, Duff K, Kirkwood A, Shen J (2004) Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration. Neuron 42:23–36

    PubMed  CAS  Google Scholar 

  • Sayre LM, Zelasko DA, Harris PL, Perry G, Salomon RG, Smith MA (1997) 4-Hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer’s disease. J Neurochem 68:2092–2097

    PubMed  CAS  Google Scholar 

  • Scarmeas N, Stern Y, Mayeux R, Luchsinger JA (2006) Mediterranean diet, Alzheimer disease, and vascular mediation. Arch Neurol 63:1709–1717

    PubMed  Google Scholar 

  • Scatena R, Martorana GE, Bottoni P, Botta G, Pastore P, Giardina B (2007) An update on pharmacological approaches to neurodegenerative diseases. Expert Opin Investig Drugs 16:59–72

    PubMed  CAS  Google Scholar 

  • Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Liao Z, Lieberburg I, Motter R, Mutter L, Soriano F, Shopp G, Vasquez N, Vandevert C, Walker S, Wogulis M, Yednock T, Games D, Seubert P (1999) Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400:173–177

    PubMed  CAS  Google Scholar 

  • Scherzer-Attali R, Pellarin R, Convertino M, Frydman-Marom A, Egoz-Matia N, Peled S, Levy-Sakin M, Shalev DE, Caflisch A, Gazit E, Segal D (2010) Complete phenotypic recovery of an Alzheimer’s disease model by a quinone-tryptophan hybrid aggregation inhibitor. PLoS One 5:e11101

    PubMed  Google Scholar 

  • Scherzinger E, Sittler A, Schweiger K, Heiser V, Lurz R, Hasenbank R, Bates GP, Lehrach H, Wanker EE (1999) Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: implications for Huntington’s disease pathology. Proc Natl Acad Sci USA 96:4604–4609

    PubMed  CAS  Google Scholar 

  • Schiefer J, Landwehrmeyer GB, Lüesse HG, Sprünken A, Puls C, Milkereit A, Milkereit E, Kosinski CM (2002) Riluzole prolongs survival time and alters nuclear inclusion formation in a transgenic mouse model of Huntington’s disease. Mov Disord 17:748–757

    PubMed  Google Scholar 

  • Schlachetzki JC, Hüll M (2009) Microglial activation in Alzheimer’s disease. Curr Alzheimer Res 6:554–563

    PubMed  CAS  Google Scholar 

  • Schor NF (2011) What the halted phase III γ-secretase inhibitor trial may (or may not) be telling us. Ann Neurol 69:237–239

    PubMed  CAS  Google Scholar 

  • Schott JM, Price SL, Frost C, Whitwell JL, Rossor MN, Fox NC (2005) Measuring atrophy in Alzheimer disease: a serial MRI study over 6 and 12 months. Neurology 65:119–124

    PubMed  CAS  Google Scholar 

  • Schwarzman AL, Goldgaber D (1996) Interaction of transthyretin with amyloid β-protein: binding and inhibition of amyloid formation. Ciba Found Symp 199:146–160, discussion 160–4

    PubMed  CAS  Google Scholar 

  • Schwarzman AL, Gregori L, Vitek MP, Lyubski S, Strittmatter WJ, Enghilde JJ, Bhasin R, Silverman J, Weisgraber KH, Coyle PK, Zagorski MG, Talafous J, Eisenberg M, Saunders AM, Roses AD, Goldgaber D (1994) Transthyretin sequesters amyloid β protein and prevents amyloid formation. Proc Natl Acad Sci USA 91:8368–8372

    PubMed  CAS  Google Scholar 

  • Schwarzman AL, Tsiper M, Wente H, Wang A, Vitek MP, Vasiliev V, Goldgaber D (2004) Amyloidogenic and anti-amyloidogenic properties of recombinant transthyretin variants. Amyloid 11:1–9

    PubMed  CAS  Google Scholar 

  • Schwarzman AL, Tsiper M, Gregori L, Goldgaber D, Frakowiak J, Mazur-Kolecka B, Taraskina A, Pcheina S, Vitek MP (2005) Selection of peptides binding to the amyloid β protein reveals potential inhibitors of amyloid formation. Amyloid 12:199–209

    PubMed  CAS  Google Scholar 

  • Sekijima Y, Wiseman RL, Matteson J, Hammarström P, Miller SR, Sawkar AR, Balch WE, Kelly JW (2005) The biological and chemical basis for tissue-selective amyloid disease. Cell 121:73–85

    PubMed  CAS  Google Scholar 

  • Sekijima Y, Kelly JW, Ikeda S (2008) Pathogenesis of and therapeutic strategies to ameliorate the transthyretin amyloidoses. Curr Pharm Des 14:3219–3230

    PubMed  CAS  Google Scholar 

  • Selenko P, Wagner G (2007) Looking into live cells with in-cell NMR spectroscopy. J Struct Biol 158:244–253

    PubMed  CAS  Google Scholar 

  • Serot JM, Christmann D, Dubost T, Couturier M (1997) Cerebrospinal fluid transthyretin: aging and late onset Alzheimer’s disease. J Neurol Neurosurg Psychiatry 63:506–508

    PubMed  CAS  Google Scholar 

  • Seubert P, Vigo-Pelfrey C, Esch F, Lee M, Dovey H, Davis D, Sinha S, Schlossmacher M, Whaley J, Swindlehurst C, McCormack R, Wolfert R, Selkoe D, Lieberburg I, Schenk D (1992) Isolation and quantification of soluble Alzheimer’s β-peptide from biological fluids. Nature 359:325–327

    PubMed  CAS  Google Scholar 

  • Seurynck-Servoss SL, Dohm MT, Barron AE (2006) Effects of including an N-terminal insertion region and arginine-mimetic side chains in helical peptoid analogues of lung surfactant protein B. Biochemistry 45:11809–11818

    PubMed  CAS  Google Scholar 

  • Shafrir Y, Durell SR, Anishkin A, Guy HR (2010) β-Barrel models of soluble amyloid-β oligomers and annular protofibrils. Proteins 78:3458–3472

    PubMed  CAS  Google Scholar 

  • Shah RS, Lee HG, Xiongwei Z, Perry G, Smith MA, Castellani RJ (2008) Current approaches in the treatment of Alzheimer’s disease. Biomed Pharmacother 62:199–207

    PubMed  CAS  Google Scholar 

  • Shehi E, Fusi P, Secundo F, Pozzuolo S, Bairati A, Tortora P (2003) Temperature-dependent, irreversible formation of amyloid fibrils by a soluble human ataxin-3 carrying a moderately expanded polyglutamine stretch (Q36). Biochemistry 42:14626–14632

    PubMed  CAS  Google Scholar 

  • Shen J, Kelleher RJ 3rd (2007) The presenilin hypothesis of Alzheimer’s disease: evidence for a loss-of-function pathogenic mechanism. Proc Natl Acad Sci USA 104:403–409

    PubMed  CAS  Google Scholar 

  • Shewmaker F, Wickner RB, Tycko R (2006) Amyloid of the prion domain of Sup35p has an in-register parallel β-sheet structure. Proc Natl Acad Sci USA 103:19754–19759

    PubMed  CAS  Google Scholar 

  • Shewmaker F, Kryndushkin D, Chen B, Tycko R, Wickner RB (2009) Two prion variants of Sup35p have in-register parallel β-sheet structures, independent of hydration. Biochemistry 48:5074–5082

    PubMed  CAS  Google Scholar 

  • Shikama Y, Kitazawa J, Yagihashi N, Uehara O, Murata Y, Yajima N, Wada R, Yagihashi S (2010) Localized amyloidosis at the site of repeated insulin injection in a diabetic patient. Intern Med 49:397–401

    PubMed  Google Scholar 

  • Shimohata T, Nakajima T, Yamada M, Uchida C, Onodera O, Naruse S, Kimura T, Koide R, Nozaki K, Sano Y, Ishiguro H, Sakoe K, Ooshima T, Sato A, Ikeuchi T, Oyake M, Sato T, Aoyagi Y, Hozumi I, Nagatsu T, Takiyama Y, Nishizawa M, Goto J, Kanazawa I, Davidson I, Tanese N, Takahashi H, Tsuji S (2000) Expanded polyglutamine stretches interact with TAFII130, interfering with CREB-dependent transcription. Nat Genet 26:29–36

    PubMed  CAS  Google Scholar 

  • Shimohata M, Shimohata T, Igarashi S, Naruse S, Tsuji S (2005) Interference of CREB-dependent transcriptional activation by expanded polyglutamine stretches—augmentation of transcriptional activation as a potential therapeutic strategy for polyglutamine diseases. J Neurochem 93:654–663

    PubMed  CAS  Google Scholar 

  • Shin I, Silman I, Weiner LM (1996) Interaction of partially unfolded forms of Torpedo acetylcholinesterase with liposomes. Protein Sci 5:42–51

    PubMed  CAS  Google Scholar 

  • Shin SB, Yoo B, Todaro LJ, Kirshenbaum K (2007) Cyclic peptoids. J Am Chem Soc 129:3218–3225

    PubMed  CAS  Google Scholar 

  • Shiraki K, Kudou M, Fujiwara S, Imanaka T, Takagi M (2002) Biophysical effect of amino acids on the prevention of protein aggregation. J Biochem 132:591–595

    PubMed  CAS  Google Scholar 

  • Shiraki K, Kudou M, Nishikori S, Kitagawa H, Imanaka T, Takagi M (2004) Arginine ethylester prevents thermal inactivation and aggregation of lysozyme. Eur J Biochem 271:3242–3247

    PubMed  CAS  Google Scholar 

  • Shorter J, Lindquist S (2005) Prions as adaptive conduits of memory and inheritance. Nat Rev Genet 6:435–450

    PubMed  CAS  Google Scholar 

  • Siddiqui N, Afshari NA (2002) The changing face of the genetics of corneal dystrophies. Curr Opin Ophthalmol 13:199–203

    PubMed  Google Scholar 

  • Sigurdsson EM, Permanne B, Soto C, Wisniewski T, Frangione B (2000) In vivo reversal of amyloid-β lesions in rat brain. J Neuropathol Exp Neurol 59:11–17

    PubMed  CAS  Google Scholar 

  • Sigurdsson EM, Scholtzova H, Mehta PD, Frangione B, Wisniewski T (2001) Immunization with a nontoxic/nonfibrillar amyloid‑β homologous peptide reduces Alzheimer’s disease-associated pathology in transgenic mice. Am J Pathol 159:439–447

    PubMed  CAS  Google Scholar 

  • Simons LJ, Caprathe BW, Callahan M, Graham JM, Kimura T, Lai Y, LeVine H 3rd, Lipinski W, Sakkab AT, Tasaki Y, Walker LC, Yasunaga T, Ye Y, Zhuang N, Augelli-Szafran CE (2009) The synthesis and structure–activity relationship of substituted N-phenyl anthranilic acid analogs as amyloid aggregation inhibitors. Bioorg Med Chem Lett 19:654–657

    PubMed  CAS  Google Scholar 

  • Sipe JD (2000) Serum amyloid A: from fibril to function. Current status. Amyloid 7:10–12

    PubMed  CAS  Google Scholar 

  • Smith MA, Harris PL, Sayre LM, Perry G (1997) Iron accumulation in Alzheimer’s disease is a source of redox-generated free radicals. Proc Natl Acad Sci USA 94:9866–9868

    PubMed  CAS  Google Scholar 

  • Smith DL, Portier R, Woodman B, Hockly E, Mahal A, Klunk WE, Li XJ, Wanker E, Murray KD, Bates GP (2001) Inhibition of polyglutamine aggregation in R6/2 HD brain slices-complex dose-response profiles. Neurobiol Dis 8:1017–1026

    PubMed  CAS  Google Scholar 

  • Smith DL, Woodman B, Mahal A, Sathasivam K, Ghazi-Noori S, Lowden PA, Bates GP, Hockly E (2003) Minocycline and doxycycline are not beneficial in a model of Huntington’s disease. Ann Neurol 54:186–196

    PubMed  CAS  Google Scholar 

  • Soderlund T, Alakoskela JM, Pakkanen AL, Kinnunen PK (2003) Comparison of the effects of surface tension and osmotic pressure on the interfacial hydration of a fluid phospholipid bilayer. Biophys J 85:2333–2341

    PubMed  Google Scholar 

  • Sokolowski F, Modler AJ, Masuch R, Zirwer D, Baier M, Lutsch G, Moss DA, Gast K, Naumann D (2003) Formation of critical oligomers is a key event during conformational transition of recombinant syrian hamster prion protein. J Biol Chem 278:40481–40492

    PubMed  CAS  Google Scholar 

  • Solomon A, Frangione B, Franklin EC (1982) Bence Jones proteins and light chain of immunoglobulins Preferential association of the VλVI subgroup of human light chains with amyloidosis AL(λ). J Clin Invest 70:453–460

    PubMed  CAS  Google Scholar 

  • Solomon A, Murphy CL, Weaver K, Weiss DT, Hrncic R, Eulitz M, Donnell RL, Sletten K, Westermark G, Westermark P (2003) Calcifying epithelial odontogenic (Pindborg) tumor-associated amyloid consists of a novel human protein. J Lab Clin Med 142:348–355

    PubMed  CAS  Google Scholar 

  • Sonnen AF, Yu C, Evans EJ, Stuart DI, Davis SJ, Gilbert RJ (2010) Domain metastability: a molecular basis for immunoglobulin deposition? J Mol Biol 399:207–213

    PubMed  CAS  Google Scholar 

  • Soreghan B, Kosmoski J, Glabe C (1994) Surfactant properties of Alzheimer’s Aβ peptides and the mechanism of amyloid aggregation. J Biol Chem 269:28551–28554

    PubMed  CAS  Google Scholar 

  • Soto C, Kindy MS, Baumann M, Frangione B (1996) Inhibition of Alzheimer’s amyloidosis by peptides that prevent β-sheet conformation. Biochem Biophys Res Commun 226:672–680

    PubMed  CAS  Google Scholar 

  • Soto C, Sigurdsson EM, Morelli L, Kumar RA, Castano EM, Frangione B (1998) β-sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: Implications for Alzheimer’s therapy. Nat Med 4:822–826

    PubMed  CAS  Google Scholar 

  • Soto P, Griffin MA, Shea J-E (2007) New insights into the mechanism of Alzheimer amyloid-β fibrillogenesis inhibition by N-methylated peptides. Biophys J 93:3015–3025

    PubMed  CAS  Google Scholar 

  • Sousa MM, Yan SD, Stern D, Saraiva MJ (2000) Interaction of the receptor for advanced glycation end products (RAGE) with transthyretin triggers nuclear transcription factor κB (NF-κB) activation. Lab Invest 80:1101–1110

    PubMed  CAS  Google Scholar 

  • Sousa MM, Cardoso I, Fernandes R, Guimaraes R, Saraiva MJ (2001) Deposition of transthyretin in early stages of familial amyloidotic polyneuropathy: evidence for toxicity of nonfibrillar aggregates. Am J Pathol 159:1993–2000

    PubMed  CAS  Google Scholar 

  • Souza JM, Giasson BI, Chen Q, Lee VM, Ischiropoulos H (2000) Dityrosine cross-linking promotes formation of stable α-synuclein polymers. Implication of nitrative and oxidative stress in the pathogenesis of neurodegenerative synucleinopathies. J Biol Chem 275:18344–18349

    PubMed  CAS  Google Scholar 

  • Spetzler JC, Tam JP (1995) Unprotected peptides as building blocks for branched peptides and peptide dendrimers. Int J Pept Protein Res 45:78–85

    PubMed  CAS  Google Scholar 

  • Spires-Jones TL, Stoothoff WH, de Calignon A, Jones PB, Hyman BT (2009) Tau pathophysiology in neurodegeneration: a tangled issue. Trends Neurosci 32:150–159

    PubMed  CAS  Google Scholar 

  • Squier TC (2001) Oxidative stress and protein aggregation during biological aging. Exp Gerontol 36:1539–1550

    PubMed  CAS  Google Scholar 

  • Stackman RW, Eckenstein F, Frei B, Kulhanek D, Nowlin J, Quinn JF (2003) Prevention of age-related spatial memory deficits in a transgenic mouse model of Alzheimer’s disease by chronic Ginkgo biloba treatment. Exp Neurol 184:510–520

    PubMed  Google Scholar 

  • Stanger HE, Syud FA, Espinosa JF, Giriat I, Muir T, Gellman SH (2001) Length-dependent stability and strand length limits in antiparallel β-sheet secondary structure. Proc Natl Acad Sci USA 98:12015–12020

    PubMed  CAS  Google Scholar 

  • Starikov EB, Lehrach H, Wanker EE (1999) Folding of oligoglutamines: a theoretical approach based on thermodynamics and molecular mechanics. J Biomol Struct Dyn 17:409–427

    PubMed  CAS  Google Scholar 

  • Stefani M (2004) Protein misfolding and aggregation: new examples in medicine and biology of the dark side of the protein world. Biochim Biophys Acta 1739:5–25

    PubMed  CAS  Google Scholar 

  • Stefani M, Dobson CM (2003) Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Mol Med 81:678–699

    PubMed  CAS  Google Scholar 

  • Stefano Rizzo S, Bartolini M, Ceccarini L, Piazzi L, Gobbi S, Cavalli A, Recanatini M, Andrisano V, Rampa A (2010) Targeting Alzheimer’s disease: novel indanone hybrids bearing a pharmacophoric fragment of AP2238. Bioorg Med Chem 18:1749–1760

    PubMed  Google Scholar 

  • Stein TD, Johnson JA (2002) Lack of neurodegeneration in transgenic mice overexpressing mutant amyloid precursor protein is associated with increased levels of transthyretin and the activation of cell survival pathways. J Neurosci 22:7380–7388

    PubMed  CAS  Google Scholar 

  • Stein TD, Anders NJ, DeCarli C, Chan SL, Mattson MP, Johnson JA (2004) Neutralization of transthyretin reverses the neuroprotective effects of secreted amyloid precursor protein (APP) in APPSw mice resulting in tau phosphorylation and loss of hippocampal neurons: support for the amyloid hypothesis. J Neurosci 24:7707–7717

    PubMed  CAS  Google Scholar 

  • Stephenson V, Weaver DF (2006) Mechanism of action of the anti-Alzheimer’s drug 3-APS. Alzheimers Dement 2(Suppl 1):P4–P436

    Google Scholar 

  • Storkel S, Schneider HM, Muntefering H, Kashiwagi S (1983) Iatrogenic, insulin-dependent, local amyloidosis. Lab Invest 48:108–111

    PubMed  CAS  Google Scholar 

  • Strobel G (2009) An eFAD prevention trial—one man’s view. Alzheimer Research Forum [online]. http://www.alzforum.org/new/detail.asp?id=2273

  • Strozyk D, Blennow K, White LR, Launer LJ (2003) CSF Aβ42 levels correlate with amyloid-neuropathology in a population-based autopsy study. Neurology 60:652–656

    PubMed  CAS  Google Scholar 

  • Sun Y, Zhang G, Hawkes CA, Shaw JE, McLaurin J, Nitz M (2008) Synthesis of scyllo-inositol derivatives and their effects on amyloid β peptide aggregation. Bioorg Med Chem 16:7177–7184

    PubMed  CAS  Google Scholar 

  • Supattapone S, Nguyen HO, Cohen FE, Prusiner SB, Scott MR (1999) Elimination of prions by branched polyamines and implications for therapeutics. Proc Natl Acad Sci USA 96:14529–14534

    PubMed  CAS  Google Scholar 

  • Supattapone S, Wille H, Uyechi L, Safar J, Tremblay P, Szoka FC, Cohen FE, Prusiner SB, Scott MR (2001) Branched polyamines cure prion-infected neuroblastoma cells. J Virol 75:3453–3461

    PubMed  CAS  Google Scholar 

  • Suzuki N, Cheung TT, Cai XD, Odaka A, Otvos L Jr, Eckman C, Golde TE, Younkin SG (1994) An increased percentage of long amyloid β protein secreted by familial amyloid β protein precursor (βAPP717) mutants. Science 264:1336–1340

    PubMed  CAS  Google Scholar 

  • Swift B (2002) Examination of insulin injection sites: an unexpected finding of localized amyloidosis. Diabet Med 19:881–882

    PubMed  CAS  Google Scholar 

  • Takahashi T, Mihara H (2008) Peptide and protein mimetics inhibiting amyloid-β peptide aggregation. Acc Chem Res 41:1309–1318

    PubMed  CAS  Google Scholar 

  • Takahashi T, Ohta K, Mihara H (2010) Rational design of amyloid β peptide-binding proteins: pseudo-Aβ β-sheet surface presented in green fluorescent protein binds tightly and preferentially to structured Aβ. Proteins 78:336–347

    PubMed  CAS  Google Scholar 

  • Takashima A, Murayama M, Murayama O, Kohno T, Honda T, Yasutake K, Nihonmatsu N, Mercken M, Yamaguchi H, Sugihara S, Wolozin B (1998) Presenilin 1 associates with glycogen synthase kinase-3β and its substrate tau. Proc Natl Acad Sci USA 95:9637–9641

    PubMed  CAS  Google Scholar 

  • Takeyama K, Ito S, Yamamoto A, Tanimoto H, Furutani T, Kanuka H, Miura M, Tabata T, Kato S (2002) Androgen-dependent neurodegeneration by polyglutamine-expanded human androgen receptor in Drosophila. Neuron 35:855–864

    PubMed  CAS  Google Scholar 

  • Tam JP, Spetzler JC (1995) Chemoselective approaches to the preparation of peptide dendrimers and branched artificial proteins using unprotected peptides as building blocks. Biomed Pept Proteins Nucleic Acids 1:123–132

    PubMed  CAS  Google Scholar 

  • Tam JP, Spetzler JC (2001) Synthesis and application of peptide dendrimers as protein mimetics. Curr Protoc Immunol, Chapter 9, Unit 9.6

    Google Scholar 

  • Tanaka M, Morishima I, Akagi T, Hashikawa T, Nukina N (2001) Intra-and intermolecular β-pleated sheet formation in glutamine-repeat inserted myoglobin as a model for polyglutamine diseases. J Biol Chem 276:45470–45475

    PubMed  CAS  Google Scholar 

  • Tanaka M, Machida Y, Nishikawa Y, Akagi T, Morishima I, Hashikawa T, Fujisawa T, Nukina N (2002) The effects of aggregation-inducing motifs on amyloid formation of model proteins related to neurodegenerative diseases. Biochemistry 41:10277–10286

    PubMed  CAS  Google Scholar 

  • Tanaka M, Machida Y, Niu S, Ikeda T, Jana NR, Doi H, Kurosawa M, Nekooki M, Nukina N (2004) Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nat Med 10:148–154

    PubMed  CAS  Google Scholar 

  • Tanaka M, Chien P, Yonekura K, Weissman JS (2005a) Mechanism of cross-species prion transmission: an infectious conformation compatible with two highly divergent yeast prion proteins. Cell 121:49–62

    PubMed  CAS  Google Scholar 

  • Tanaka M, Machida Y, Nukina N (2005b) A novel therapeutic strategy for polyglutamine diseases by stabilizing aggregation-prone proteins with small molecules. J Mol Med 83:343–352

    PubMed  CAS  Google Scholar 

  • Taneja S, Ahmad F (1994) Increased thermal stability of proteins in the presence of amino acids. Biochem J 303:147–153

    PubMed  CAS  Google Scholar 

  • Tang MX, Redemann CT, Szoka FC Jr (1996) In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconjug Chem 7:703–714

    PubMed  CAS  Google Scholar 

  • Tarditi A, Caricasole A, Terstappen G (2009) Therapeutic targets for Alzheimer’s disease. Expert Opin Ther Targets 13:551–567

    PubMed  CAS  Google Scholar 

  • Taylor M, Moore S, Mayes J, Parkin E, Beeg M, Canovi M, Gobbi M, Mann DMA, Allsop D (2010) Development of a proteolytically stable retro-inverso peptide inhibitor of β-amyloid oligomerization as a potential novel treatment for Alzheimer’s disease. Biochemistry 49:3261–3272

    PubMed  CAS  Google Scholar 

  • Thakur AK, Yang W, Wetzel R (2004) Inhibition of polyglutamine aggregate cytotoxicity by a structure-based elongation inhibitor. FASEB J 18:923–925

    PubMed  CAS  Google Scholar 

  • Thakur AK, Jayaraman M, Mishra R, Thakur M, Chellgren VM, Byeon IJ, Anjum DH, Kodali R, Creamer TP, Conway JF, Gronenborn AM, Wetzel R (2009) Polyglutamine disruption of the huntingtin exon 1 N-terminus triggers a complex aggregation mechanism. Nat Struct Mol Biol 16:380–389

    PubMed  CAS  Google Scholar 

  • Tjernberg LO, Naslund J, Lindqvist F, Johansson J, Karlstrom AR, Thyberg J, Terenius L, Nordstedt C (1996) Arrest of β-amyloid fibril formation by a pentapeptide ligand. J Biol Chem 271:8545–8548

    PubMed  CAS  Google Scholar 

  • Tjernberg LO, Lilliiehook C, Callaway DJE, Naslund J, Hahne S, Thyberg J, Terenius L, Nordstedt C (1997) Controlling amyloid β-peptide fibril formation with protease stable ligands. J Biol Chem 272:12601–12605

    PubMed  CAS  Google Scholar 

  • Tobin AJ, Signer ER (2000) Huntington’s disease: the challenge for cell biologists. Trends Cell Biol 10:531–536

    PubMed  CAS  Google Scholar 

  • Tonelli AE (1971) On the stability of cis and trans amide bond conformations in polypeptides. J Am Chem Soc 93:7153–7155

    PubMed  CAS  Google Scholar 

  • Tonelli AE (1974) Conformational characteristics of polypeptides containing isolated L-proline residues with cis peptide bonds. J Mol Biol 86:627–635

    PubMed  CAS  Google Scholar 

  • Tong Y, Yamaguchi H, Giaime E, Boyle S, Kopan R, Kelleher RJ 3rd, Shen J (2010) Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of α-synuclein, and apoptotic cell death in aged mice. Proc Natl Acad Sci USA 107:9879–9884

    PubMed  CAS  Google Scholar 

  • Török M, Abid M, Mhadgut SC, Török B (2006) Organofluorine inhibitors of amyloid fibrillogenesis. Biochemistry 45:5377–5383

    PubMed  Google Scholar 

  • Town T, Tan J, Sansone N, Obregon D, Klein T, Mullan M (2001) Characterization of murine immunoglobulin G antibodies against human amyloid-β1–42. Neurosci Lett 307:101–104

    PubMed  CAS  Google Scholar 

  • Townend R, Kumosinski TF, Timasheff SN (1966) The circular dichroism of the β structure of poly-L-lysine. Biochem Biophys Res Commun 23:163–169

    PubMed  CAS  Google Scholar 

  • Townsend M, Cleary JP, Mehta T, Hofmeister J, Lesné S, O’Hare E, Walsh DM, Selkoe DJ (2006) Orally available compound prevents deficits in memory caused by the Alzheimer amyloid-β oligomers. Ann Neurol 60:668–676

    PubMed  CAS  Google Scholar 

  • Trapnell BC, Whitsett JA, Nakata K (2003) Pulmonary alveolar proteinosis. N Engl J Med 349:2527–2539

    PubMed  CAS  Google Scholar 

  • Trexler AJ, Nilsson MR (2007) The formation of amyloid fibrils from proteins in the lysozyme family. Curr Protein Pept Sci 8:537–557

    PubMed  CAS  Google Scholar 

  • Trottier Y, Devys D, Imbert G, Saudou F, An I, Lutz Y, Weber C, Agid Y, Hirsch EC, Mandel JL (1995a) Cellular localization of the Huntington’s disease protein and discrimination of the normal and mutated form. Nat Genet 10:104–110

    PubMed  CAS  Google Scholar 

  • Trottier Y, Lutz Y, Stevanin G, Imbert G, Devys D, Cancel G, Saudou F, Weber C, David G, Tora L, Agid Y, Brice A, Mandel J-L (1995b) Polyglutamine expansion as a pathological epitope in Huntington’s disease and four dominant cerebellar ataxias. Nature 378:403–406

    PubMed  CAS  Google Scholar 

  • Truant R, Atwal RS, Desmond C, Munsie L, Tran T (2008) Huntington’s disease: revisiting the aggregation hypothesis in polyglutamine neurodegenerative diseases. FEBS J 275:4252–4262

    PubMed  CAS  Google Scholar 

  • Tsuji S (2004) Spinocerebellar ataxia type 17: latest member of polyglutamine disease group highlights unanswered questions. Arch Neurol 61:183–184

    PubMed  Google Scholar 

  • Tsumoto K, Umetsu M, Kumagai I, Ejima D, Philo JS, Arakawa T (2004) Role of arginine in protein refolding, solubilization, and purification. Biotechnol Prog 20:1301–1308

    PubMed  CAS  Google Scholar 

  • Tsuzuki F, Fukatsu R, Hayashi Y, Yoshida T, Sasaki N, Takamaru Y, Yamaguchi H, Tateno M, Fujii N, Takahata N (1996) Amyloid β-protein and transthyretin, sequestrating protein colocalize in normal human kidney. Neurosci Lett 222:163–166

    Google Scholar 

  • Tycko R (2006) Molecular structure of amyloid fibrils: insights from solid-state NMR. Q Rev Biophys 39:1–55

    PubMed  CAS  Google Scholar 

  • Tycko R, Sciarretta KL, Orgel JP, Meredith SC (2009) Evidence for novel β-sheet structures in Iowa mutant β-amyloid fibrils. Biochemistry 48:6072–6084

    PubMed  CAS  Google Scholar 

  • Uéda K, Fukushima H, Masliah E, Xia Y, Iwai A, Yoshimoto M, Otero DA, Kondo J, Ihara Y, Saitoh T (1993) Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc Natl Acad Sci USA 90:11282–11286

    PubMed  Google Scholar 

  • Uemichi T, Liepnieks JJ, Benson MD (1994) Hereditary renal amyloidosis with a novel variant fibrinogen. J Clin Invest 93:731–736

    PubMed  CAS  Google Scholar 

  • Uemichi T, Liepnieks JJ, Yamada T, Gertz MA, Bang N, Benson MD (1996) A frame shift mutation in the fibrinogen Aα chain gene in a kindred with renal amyloidosis. Blood 87:4197–4203

    PubMed  CAS  Google Scholar 

  • Uversky VN (2003) A protein-chameleon: conformational plasticity of α-synuclein, a disordered protein involved in neurodegenerative disorders. J Biomol Struct Dyn 21:211–234

    PubMed  CAS  Google Scholar 

  • Uversky VN (2008) α-Synuclein misfolding and neurodegenerative diseases. Curr Protein Pept Sci 9:507–540

    PubMed  CAS  Google Scholar 

  • Uversky VN (2009) Intrinsic disorder in proteins associated with neurodegenerative diseases. Front Biosci 14:5188–5238

    PubMed  CAS  Google Scholar 

  • Uversky VN (2010) The mysterious unfoldome: structureless, underappreciated, yet vital part of any given proteome. J Biomed Biotechnol 2010:568068

    PubMed  Google Scholar 

  • Uversky VN, Dunker AK (2010) Understanding protein non-folding. Biochim Biophys Acta 1804:1231–1264

    PubMed  CAS  Google Scholar 

  • Uversky VN, Eliezer D (2009) Biophysics of Parkinson’s disease: structure and aggregation of α-synuclein. Curr Protein Pept Sci 10:483–499

    PubMed  CAS  Google Scholar 

  • Uversky VN, Gillespie JR, Fink AL (2000) Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins 41:415–427

    PubMed  CAS  Google Scholar 

  • Uversky VN, Lee HJ, Li J, Fink AL, Lee SJ (2001) Stabilization of partially folded conformation during α-synuclein oligomerization in both purified and cytosolic preparations. J Biol Chem 276:43495–43498

    PubMed  CAS  Google Scholar 

  • Uversky VN, Yamin G, Souillac PO, Goers J, Glaser CB, Fink AL (2002) Methionine oxidation inhibits fibrillation of human α-synuclein in vitro. FEBS Lett 517:239–244

    PubMed  CAS  Google Scholar 

  • van Ham TJ, Thijssen KL, Breitling R, Hofstra RM, Plasterk RH, Nollen EA (2008) C. elegans model identifies genetic modifiers of α-synuclein inclusion formation during aging. PLoS Genet 4:e1000027

    PubMed  Google Scholar 

  • Van Melckebeke H, Wasmer C, Lange A, Ab E, Loquet A, Böckmann A, Meier BH (2010) Atomic-resolution three-dimensional structure of HET-s(218–289) amyloid fibrils by solid-state NMR spectroscopy. J Am Chem Soc 132:13765–13775

    PubMed  Google Scholar 

  • Vardy ER, Hussain I, Hooper NM (2006) Emerging therapeutics for Alzheimer’s disease. Expert Rev Neurother 6:695–704

    PubMed  CAS  Google Scholar 

  • Vassar R (2001) The β-secretase, BACE: a prime drug target for Alzheimer’s disease. J Mol Neurosci 17:157–170

    PubMed  CAS  Google Scholar 

  • Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S, Amarante P, Loeloff R, Luo Y, Fisher S, Fuller J, Edenson S, Lile J, Jarosinski MA, Biere AL, Curran E, Burgess T, Louis JC, Collins F, Treanor J, Rogers G, Citron M (1999) β-Secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286:735–741

    PubMed  CAS  Google Scholar 

  • Vassar R, Kovacs DM, Yan R, Wong PC (2009) The β-secretase enzyme BACE in health and Alzheimer’s disease: regulation, cell biology, function, and therapeutic potential. J Neurosci 29:12787–12794

    PubMed  CAS  Google Scholar 

  • Vatassery GT, Quach HT, Smith WE, Benson BA, Eckfeld JH (1991) A sensitive assay of transthyretin (prealbumin) in human cerebrospinal fluid in nanogram amount by ELISA. Clin Chim Acta 197:19–25

    PubMed  CAS  Google Scholar 

  • Vendrely C, Valadié H, Bednarova L, Cardin L, Pasdeloup M, Cappadoro J, Bednar J, Rinaudo M, Jamin M (2005) Assembly of the full-length recombinant mouse prion protein I. Formation of soluble oligomers. Biochim Biophys Acta 1724:355–366

    PubMed  CAS  Google Scholar 

  • Venkatraman J, Shankaramma SC, Balaram P (2001) Design of folded peptides. Chem Rev 101:3131–3152

    PubMed  CAS  Google Scholar 

  • Venneti S (2010) Prion diseases. Clin Lab Med 30:293–309

    PubMed  Google Scholar 

  • Verhoef LG, Lindsten K, Masucci MG, Dantuma NP (2002) Aggregate formation inhibits proteasomal degradation of polyglutamine proteins. Hum Mol Genet 11:2689–2700

    PubMed  CAS  Google Scholar 

  • Vidal R, Frangione B, Rostagno A, Mead S, Révész T, Plant G, Ghiso J (1999) A stop-codon mutation in the BRI gene associated with familial British dementia. Nature 399:776–781

    PubMed  CAS  Google Scholar 

  • Vieira EP, Hermel H, Möhwald H (2003) Change and stabilization of the amyloid-β(1–40) secondary structure by fluorocompounds. Biochim Biophys Acta 1645:6–14

    PubMed  CAS  Google Scholar 

  • Vilar M, Chou HT, Lührs T, Maji SK, Riek-Loher D, Verel R, Manning G, Stahlberg H, Riek R (2008) The fold of α-synuclein fibrils. Proc Natl Acad Sci USA 105:8637–8642

    PubMed  CAS  Google Scholar 

  • Villarroya M, García AG, Marco-Contelles J, López MG (2007) An update on the pharmacology of galantamine. Expert Opin Investig Drugs 16:1987–1998

    PubMed  CAS  Google Scholar 

  • Villaverde MC, Gonzalez-Louro L, Sussman F (2007) The search for drug leads targeted to the β-secretase: an example of the roles of computer assisted approaches in drug discovery. Curr Top Med Chem 7:980–990

    PubMed  CAS  Google Scholar 

  • Villegas V, Zurdo J, Filimonov VV, Avilés FX, Dobson CM, Serrano L (2000) Protein engineering as a strategy to avoid formation of amyloid fibrils. Protein Sci 9:1700–1708

    PubMed  CAS  Google Scholar 

  • Villoslada P, Moreno B, Melero I, Pablos JL, Martino G, Uccelli A, Montalban X, Avila J, Rivest S, Acarin L, Appel S, Khoury SJ, McGeer P, Ferrer I, Delgado M, Obeso J, Schwartz M (2008) Immunotherapy for neurological diseases. Clin Immunol 128:294–305

    PubMed  CAS  Google Scholar 

  • Vingtdeux V, Chandakkar P, Zhao H, d’Abramo C, Davies P, Marambaud P (2010a) Novel synthetic small-molecule activators of AMPK as enhancers of autophagy and amyloid-β peptide degradation. FASEB J 25:219–231

    PubMed  Google Scholar 

  • Vingtdeux V, Giliberto L, Zhao H, Chandakkar P, Wu Q, Simon JE, Janle EM, Lobo J, Ferruzzi MG, Davies P, Marambaud P (2010b) AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-β peptide metabolism. J Biol Chem 285:9100–9113

    PubMed  CAS  Google Scholar 

  • Vitoux B, Aubry A, Cung MT, Boussard G, Marraud M (1981) N-methyl peptides. III. Solution conformational study and crystal structure of N-pivaloyl-L-prolyl-N-methyl-N′-isopropyl-L-alaninamid. Int J Pept Protein Res 17:469–479

    PubMed  CAS  Google Scholar 

  • von Bernhardi R (2010) Immunotherapy in Alzheimer’s disease: where do we stand? Where should we go? J Alzheimers Dis 19:405–421

    Google Scholar 

  • Wakabayashi T, DeStrooper B (2008) Presenilins: members of the γ-secretase quartets, but part-time soloists too. Physiology 23:194–204

    PubMed  CAS  Google Scholar 

  • Walker FO (2007) Huntington’s disease. Lancet 369:218–228

    PubMed  CAS  Google Scholar 

  • Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539

    PubMed  CAS  Google Scholar 

  • Walsh P, Neudecker P, Sharpe S (2010) Structural properties and dynamic behavior of nonfibrillar oligomers formed by PrP(106–126). J Am Chem Soc 132:7684–7695

    PubMed  CAS  Google Scholar 

  • Wang M, Suzuki T, Kitada T, Asakawa S, Minoshima S, Shimizu N, Tanaka K, Mizuno Y, Hattori N (2001) Developmental changes in the expression of parkin and UbcR7, a parkin-interacting and ubiquitin-conjugating enzyme, in rat brain. J Neurochem 77:1561–1568

    PubMed  CAS  Google Scholar 

  • Wang HW, Pasternak JF, Kuo H, Ristic H, Lambert MP, Chromy B, Viola KL, Klein WL, Stine WB, Krafft GA, Trommer BL (2002) Soluble oligomers of β amyloid (1–42) inhibit long-term potentiation but not long-term depression in rat dentate gyrus. Brain Res 924:133–140

    PubMed  CAS  Google Scholar 

  • Wang J, Gines S, MacDonald ME, Gusella JF (2005) Reversal of a full-length mutant huntingtin neuronal cell phenotype by chemical inhibitors of polyglutamine-mediated aggregation. BMC Neurosci 6:1

    PubMed  Google Scholar 

  • Wang J, Ho L, Zhao Z, Seror I, Humala N, Dickstein DL, Thiyagarajan M, Percival SS, Talcott ST, Pasinetti GM (2006) Moderate consumption of Cabernet Sauvignon attenuates Aβ neuropathology in a mouse model of Alzheimer’s disease. FASEB J 20:2313–2320

    PubMed  CAS  Google Scholar 

  • Wang YP, Biernat J, Pickhardt M, Mandelkow E, Mandelkow EM (2007) Stepwise proteolysis liberates tau fragments that nucleate the Alzheimer-like aggregation of full-length tau in a neuronal cell model. Proc Natl Acad Sci USA 104:10252–10257

    PubMed  CAS  Google Scholar 

  • Wang J, Farr GW, Hall DH, Li F, Furtak K, Dreier L, Horwich AL (2009) An ALS-linked mutant SOD1 produces a locomotor defect associated with aggregation and synaptic dysfunction when expressed in neurons of Caenorhabditis elegans. PLoS Genet 5:e1000350

    PubMed  Google Scholar 

  • Wardle M, Morris HR, Robertson NP (2009) Clinical and genetic characteristics of non-Asian dentatorubral-pallidoluysian atrophy: A systematic review. Mov Disord 24:1636–1640

    PubMed  Google Scholar 

  • Watanabe K-I, Nakamura K, Akikusa S, Okada T, Kodaka M, Konakahara T, Okuno H (2002) Inhibitors of fibril formation and cytotoxicity of β-amyloid peptide composed of KLVFF recognition element and flexible hydrophilic disrupting element. Biochem Biophys Res Commun 290:121–124

    PubMed  CAS  Google Scholar 

  • Wegmann S, Jung YJ, Chinnathambi S, Mandelkow EM, Mandelkow E, Muller DJ (2010) Human Tau isoforms assemble into ribbon-like fibrils that display polymorphic structure and stability. J Biol Chem 285:27302–27313

    PubMed  CAS  Google Scholar 

  • Wei G, Jewett AI, Shea JE (2010) Structural diversity of dimers of the Alzheimer amyloid-β(25–35) peptide and polymorphism of the resulting fibrils. Phys Chem Chem Phys 12:3622–3629

    PubMed  CAS  Google Scholar 

  • Weiner HL, Lemere CA, Maron R, Spooner ET, Grenfell TJ, Mori C, Issazadeh S, Hancock WW, Selkoe DJ (2000) Nasal administration of amyloid-β peptide decreases cerebral amyloid burden in a mouse model of Alzheimer’s disease. Ann Neurol 48:567–579

    PubMed  CAS  Google Scholar 

  • Weissmann JS (2005) Birth of a prion: spontaneous generation revisited. Cell 122:165–168

    PubMed  CAS  Google Scholar 

  • Weksler ME, Gouras G, Relkin NR, Szabo P (2005) The immune system, amyloid-β peptide, and Alzheimer’s disease. Immunol Rev 205:244–256

    PubMed  CAS  Google Scholar 

  • Weksler ME, Pawelec G, Franceschi C (2009) Immune therapy for age-related diseases. Trends Immunol 30:344–350

    PubMed  CAS  Google Scholar 

  • Westerheide SD, Anckar J, Stevens SM Jr, Sistonen L, Morimoto RI (2009) Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science 323:1063–1066

    PubMed  CAS  Google Scholar 

  • Westermark P, Sletten K, Johansson B, Cornwell GG 3rd (1990) Fibril in senile systemic amyloidosis is derived from normal transthyretin. Proc Natl Acad Sci USA 87:2843–2845

    PubMed  CAS  Google Scholar 

  • Westermark P, Eriksson L, Engstrom U, Enestrom S, Sletten K (1997) Prolactin-derived amyloid in the aging pituitary gland. Am J Pathol 150:67–73

    PubMed  CAS  Google Scholar 

  • Westermark P, Benson MD, Buxbaum JN, Cohen AS, Frangione B, Ikeda S, Masters CL, Merlini G, Saraiva MJ, Sipe JD (2005) Nomenclature Committee of the International Society of Amyloidosis. Amyloid: toward terminology clarification. Report from the Nomenclature Committee of the International Society of Amyloidosis. Amyloid 12:1–4

    PubMed  CAS  Google Scholar 

  • Wetzel R (2006) Kinetics and thermodynamics of amyloid fibril assembly. Acc Chem Res 39:671–679

    PubMed  CAS  Google Scholar 

  • Wetzel R, Shivaprasad S, Williams AD (2007) Plasticity of amyloid fibrils. Biochemistry 46:1–10

    PubMed  CAS  Google Scholar 

  • Whitsett JA, Wert SE, Weaver TE (2010) Alveolar surfactant homeostasis and the pathogenesis of pulmonary disease. Annu Rev Med 61:105–119

    PubMed  CAS  Google Scholar 

  • Whittemore NA, Mishra R, Kheterpal I, Williams AD, Wetzel R, Serpersu EH (2005) Hydrogen–deuterium (H/D) exchange mapping of Aβ1–40 amyloid fibril secondary structure using nuclear magnetic resonance spectroscopy. Biochemistry 44:4434–4441

    PubMed  CAS  Google Scholar 

  • Wickner RB, Dyda F, Tycko R (2008) Amyloid of Rnq1p, the basis of the [PIN +] prion, has a parallel in-register β-sheet structure. Proc Natl Acad Sci USA 105:2403–2408

    PubMed  CAS  Google Scholar 

  • Wilcock DM, Rojiani A, Rosenthal A, Subbarao S, Freeman MJ, Gordon MN, Morgan D (2004) Passive immunotherapy against Aβ in aged APP-transgenic mice reverses cognitive deficits and depletes parenchymal amyloid deposits in spite of increased vascular amyloid and microhemorrhage. J Neuroinflammation 1:24

    PubMed  Google Scholar 

  • Willem M, Garratt AN, Novak B, Citron M, Kaufmann S, Rittger A, DeStrooper B, Saftig P, Birchmeier C, Haass C (2006) Control of peripheral nerve myelination by the β-secretase BACE-1. Science 314:664–666

    PubMed  CAS  Google Scholar 

  • Williams AD, Portelius E, Kheterpal I, Guo JT, Cook KD, Xu Y, Wetzel R (2004) Mapping Aβ amyloid fibril secondary structure using scanning proline mutagenesis. J Mol Biol 335:833–842

    PubMed  CAS  Google Scholar 

  • Williamson JA, Loria JP, Miranker AD (2009) Helix stabilization precedes aqueous and bilayer-catalyzed fiber formation in islet amyloid polypeptide. J Mol Biol 393:383–396

    PubMed  CAS  Google Scholar 

  • Wilson MR, Yerbury JJ, Poon S (2008) Potential roles of abundant extracellular chaperones in the control of amyloid formation and toxicity. Mol Biosyst 4:42–52

    PubMed  CAS  Google Scholar 

  • Wiseman RL, Johnson SM, Kelker MS, Foss T, Wilson IA, Kelly JW (2005) Kinetic stabilization of an oligomeric protein by a single ligand binding event. J Am Chem Soc 127:5540–5551

    PubMed  CAS  Google Scholar 

  • Wisniewski T (2009) AD vaccines: conclusions and future directions. CNS Neurol Disord Drug Targets 8:160–166

    PubMed  CAS  Google Scholar 

  • Wojtczak A, Neumann P, Cody V (2001) Structure of a new polymorphic monoclinic form of human transthyretin at 3 A resolution reveals a mixed complex between unliganded and T4-bound tetramers of TTR. Acta Crystallogr D Biol Crystallogr 57:957–967

    PubMed  CAS  Google Scholar 

  • Wong GT (2007) FDA deems U.S. Alzhemed trial results inconclusive, Alzheimer Research Forum, http://www.alzforum.org/new/detail.asp?id=1647, Posted 28 Aug 2007

  • Wong CW, Quaranta V, Glenner GG (1985) Neuritic plaques and cerebrovascular amyloid in Alzheimer disease are antigenically related. Proc Natl Acad Sci USA 82:8729–8732

    PubMed  CAS  Google Scholar 

  • Wong GT, Manfra D, Poulet FM, Zhang Q, Josien H, Bara T, Engstrom L, Pinzon-Ortiz M, Fine JS, Lee HJ, Zhang L, Higgins GA, Parker EM (2004) Chronic treatment with the γ-secretase inhibitor LY-411,575 inhibits β-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation. J Biol Chem 279:12876–12882

    PubMed  CAS  Google Scholar 

  • Wong HK, Bauer PO, Kurosawa M, Goswami A, Washizu C, Machida Y, Tosaki A, Yamada M, Knöpfel T, Nakamura T, Nukina N (2008) Blocking acid-sensing ion channel 1 alleviates Huntington’s disease pathology via an ubiquitin–proteasome system-dependent mechanism. Hum Mol Genet 17:3223–3235

    PubMed  CAS  Google Scholar 

  • Wood SJ, Wetzel R, Martin JD, Hurle MR (1995) Prolines and amyloidogenicity in fragments of the Alzheimer’s peptide β/A4. Biochemistry 34:724–730

    PubMed  CAS  Google Scholar 

  • Wood SJ, MacKenzie L, Maleeff B, Hurle MR, Wetzel R (1996) Selective inhibition of Aβ fibril formation. J Biol Chem 271:4086–4092

    PubMed  CAS  Google Scholar 

  • Wu JW, Breydo L, Isas JM, Lee J, Kuznetsov YG, Langen R, Glabe C (2010) Fibrillar oligomers nucleate the oligomerization of monomeric amyloid-β but do not seed fibril formation. J Biol Chem 285:6071–6079

    PubMed  CAS  Google Scholar 

  • Xie Q, Guo T, Lu J, Zhou HM (2004) The guanidine like effects of arginine on aminoacylase and salt-induced molten globule state. Int J Biochem Cell Biol 36:296–306

    PubMed  CAS  Google Scholar 

  • Yamada M, Shimohata M, Sato T, Tsuji S, Takahashi H (2006) Polyglutamine disease: recent advances in the neuropathology of dentatorubral-pallidoluysian atrophy. Neuropathology 26:346–351

    PubMed  Google Scholar 

  • Yamin G, Ono K, Inayathullah M, Teplow DB (2008) Amyloid β-protein assembly as a therapeutic target of Alzheimer’s disease. Curr Pharm Des 14:3231–3246

    PubMed  CAS  Google Scholar 

  • Yan R, Bienkowski MJ, Shuck ME, Miao H, Tory MC, Pauley AM, Brashier JR, Stratman NC, Mathews WR, Buhl AE, Carter DB, Tomasselli AG, Parodi LA, Heinrikson RL, Gurney ME (1999) Membrane-anchored aspartyl protease with Alzheimer’s disease β-secretase activity. Nature 402:533–537

    PubMed  CAS  Google Scholar 

  • Yan L-M, Tatrek-Nossol M, Velkova A, Kazantzis A, Kapurniotu A (2006) Design of a mimic of nonamyloidogenic and bioactive human islet amyloid polypeptide (IAPP) as nanomolar inhibitor of IAPP cytotoxic fibrillogenesis. Proc Natl Acad Sci USA 103:2046–2051

    PubMed  CAS  Google Scholar 

  • Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen PP, Kayed R, Glabe CG, Frautschy SA, Cole GM (2005) Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280:5892–5901

    PubMed  CAS  Google Scholar 

  • Yao Z, Drieu K, Papadopoulos V (2001) The Ginkgo biloba extract EGb 761 rescues the PC12 neuronal cells from β-amyloid-induced cell death by inhibiting the formation of β-amyloid-derived diffusible neurotoxic ligands. Brain Res 889:181–190

    PubMed  CAS  Google Scholar 

  • Yazaki M, Liepnieks JJ, Barats MS, Cohen AH, Benson MD (2003) Hereditary systemic amyloidosis associated with a new apolipoprotein AII stop codon mutation Stop78Arg. Kidney Int 64:11–16

    PubMed  CAS  Google Scholar 

  • Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, Mayo MW (2004) Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 23:2369–2380

    PubMed  CAS  Google Scholar 

  • Young AB (2003) Huntingtin in health and disease. J Clin Invest 111:299–302

    PubMed  CAS  Google Scholar 

  • Zeng H, Zhang Y, Peng L, Shao H, Menon NK, Yang J, Salomon AR, Freidland RP, Zagorski MG (2001) Nicotine and amyloid formation. Biol Psychiatry 49:248–257

    PubMed  CAS  Google Scholar 

  • Zepik H, Shavit E, Tang M, Jensen TR, Kjaer K, Bolbach G, Leiserowitz L, Weissbuch I, Lahav M (2002) Chiral amplification of oligopeptides in two-dimensional crystalline self-assemblies on water. Science 295:1266–1269

    PubMed  CAS  Google Scholar 

  • Zhang YQ, Sarge KD (2007) Celastrol inhibits polyglutamine aggregation and toxicity though induction of the heat shock response. J Mol Med 85:1421–1428

    PubMed  CAS  Google Scholar 

  • Zhang Y, Gao J, Chung KK, Huang H, Dawson VL, Dawson TM (2000) Parkin functions as an E2-dependent ubiquitin- protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc Natl Acad Sci USA 97:13354–13359

    PubMed  CAS  Google Scholar 

  • Zhang X, Smith DL, Meriin AB, Engemann S, Russel DE, Roark M, Washington SL, Maxwell MM, Marsh JL, Thompson LM, Wanker EE, Young AB, Housman DE, Bates GP, Sherman MY, Kazantsev AG (2005) A potent small molecule inhibits polyglutamine aggregation in Huntington’s disease neurons and suppresses neurodegeneration in vivo. Proc Natl Acad Sci USA 102:892–897

    PubMed  CAS  Google Scholar 

  • Zhu M, Fink AL (2003) Lipid binding inhibits α-synuclein fibril formation. J Biol Chem 278:16873–16877

    PubMed  CAS  Google Scholar 

  • Zoghbi HY, Orr HT (2009) Pathogenic mechanisms of a polyglutamine-mediated neurodegenerative disease, spinocerebellar ataxia type 1. J Biol Chem 284:7425–7429

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen C. Meredith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lanning, J.D., Meredith, S.C. (2012). Strategies for Inhibiting Protein Aggregation: Therapeutic Approaches to Protein-Aggregation Diseases. In: Rahimi, F., Bitan, G. (eds) Non-fibrillar Amyloidogenic Protein Assemblies - Common Cytotoxins Underlying Degenerative Diseases. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2774-8_14

Download citation

Publish with us

Policies and ethics