Skip to main content

Cell-Based Regenerative Therapies: Role of Major Histocompatibility Complex-1 Antigen

  • Chapter
  • First Online:
Stem Cells and Cancer Stem Cells,Volume 3

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 3))

Abstract

Stem cell-based therapies hold promise for the treatment of various human diseases and disorders but also face hurdles that must be overcome to ensure their therapeutic success. Key issues determining the long-term outcome of stem cell therapies include improvements in the survival, engraftment, proliferation, and regeneration of transplanted cells. Although stem cells possess extensive replicative capacity and pluripotency that can be exploited for therapeutic use (Carpenter et al., 2009), immune rejection of donor cells by the host immune system post-transplantation is one of the most serious obstacles that must be cleared (Chidgey and Boyd, 2008). The majority of donor cell death occurs in the first hours to days after transplantation due to a combination of factors, including lack of matrix support to promote cell survival, exposure of transplanted cells to hypoxia/ischemia in host environment, and immune system-mediated cell death (Robey et al., 2008). Recent data have provided valuable insights as to why a majority of donor stem cells die in vivo, a phenomena that limits the efficacy and therapeutic potential of stem cell-based therapies. The expression of the major histocompatibility complex class I (MHC-I) molecules by donor stem cells has emerged as a key factor in determining whether or not a cell is targeted for host immune-mediated destruction post-transplantation (Bix et al., 1991) (Ma et al., 2010). The expression level of MHC-I not only depends on the source of the stem cells, such as embryonic versus adult stem cell populations, but also on the degree to which the cells have been manipulated prior to transplantation into host (Chidgey and Boyd, 2008). Such variation in MHC-I expression will influence the survival and engraftment potential post-transplantiation. Determining the mechanisms regulating donor graft tolerance by the host will be crucial for advancing the clinical application of stem cell-based therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Au P, Daheron LM, Duda DG, Cohen KS, Tyrrell JA, Lanning RM, Fukumura D, Scadden DT, Jain RK (2008) Differential in vivo potential of endothelial progenitor cells from human umbilical cord blood and adult peripheral blood to form functional long-lasting vessels. Blood 111:1302–1305

    Article  PubMed  CAS  Google Scholar 

  • Bauwens C, Yin T, Dang S, Peerani R, Zandstra PW (2005) Development of a perfusion fed bioreactor for embryonic stem cell-derived cardiomyocyte generation: oxygen-mediated enhancement of cardiomyocyte output. Biotechnol Bioeng 90:452–461

    Article  PubMed  CAS  Google Scholar 

  • Bix M, Liao NS, Zijlstra M, Loring J, Jaenisch R, Raulet D (1991) Rejection of class I MHC-deficient haemopoietic cells by irradiated MHC-matched mice. Nature 349:329–331

    Article  PubMed  CAS  Google Scholar 

  • Bryceson YT, March ME, Ljunggren HG, Long EO (2006) Activation, coactivation, and costimulation of resting human natural killer cells. Immunol Rev 214:73–91

    Article  PubMed  CAS  Google Scholar 

  • Cardone MH, Salvesen GS, Widmann C, Johnson G, Frisch SM (1997) The regulation of anoikis: MEKK-1 activation requires cleavage by caspases. Cell 90:315–323

    Article  PubMed  CAS  Google Scholar 

  • Carpenter MK, Frey-Vasconcells J, Rao MS (2009) Developing safe therapies from human pluripotent stem cells. Nat Biotechnol 27:606–613

    Article  PubMed  CAS  Google Scholar 

  • Chidgey AP, Boyd RL (2008) Immune privilege for stem cells: not as simple as it looked. Cell Stem Cell 3:357–358

    Article  PubMed  CAS  Google Scholar 

  • Drukker M, Katz G, Urbach A, Schuldiner M, Markel G, Itskovitz-Eldor J, Reubinoff B, Mandelboim O, Benvenisty N (2002) Characterization of the expression of MHC proteins in human embryonic stem cells. Proc Natl Acad Sci USA 99:9864–9869

    Article  PubMed  CAS  Google Scholar 

  • Elliott JM, Wahle JA, Yokoyama WM (2010) MHC class I-deficient natural killer cells acquire a licensed phenotype after transfer into an MHC class I-sufficient environment. J Exp Med 207:2073–2079

    Article  PubMed  CAS  Google Scholar 

  • Fandrich F, Lin X, Chai GX, Schulze M, Ganten D, Bader M, Holle J, Huang DS, Parwaresch R, Zavazava N, Binas B (2002) Preimplantation-stage stem cells induce long-term allogeneic graft acceptance without supplementary host conditioning. Nat Med 8:171–178

    Article  PubMed  CAS  Google Scholar 

  • Freimark D, Pino-Grace P, Pohl S, Weber C, Wallrapp C, Geigle P, Portner R, Czermak P (2010) Use of encapsulated stem cells to overcome the bottleneck of cell availability for cell therapy approaches. Transfus Med Hemother 37:66–73

    Article  PubMed  Google Scholar 

  • Grzywacz B, Miller JS, Verneris MR (2008) Use of natural killer cells as immunotherapy for leukaemia. Best Pract Res Clin Haematol 21:467–483

    Article  PubMed  CAS  Google Scholar 

  • Koch CA, Geraldes P, Platt JL (2008) Immunosuppression by embryonic stem cells. Stem Cells 26:89–98

    Article  PubMed  CAS  Google Scholar 

  • Kovacic JC, Harvey RP, Dimmeler S (2007) Cardiovascular regenerative medicine: digging in for the long haul. Cell Stem Cell 1:628–633

    Article  PubMed  CAS  Google Scholar 

  • Ma M, Ding S, Lundqvist A, San H, Fang F, Konoplyannikov M, Berry C, Beltran LE, Chen G, Kovacic JC, Boehm M (2010) Major histocompatibility complex-I expression on embryonic stem cell-derived vascular progenitor cells is critical for syngeneic transplant survival. Stem Cells 28:1465–1475

    Article  PubMed  CAS  Google Scholar 

  • Meyer D, Thomson G (2001) How selection shapes variation of the human major histocompatibility complex: a review. Ann Hum Genet 65:1–26

    Article  PubMed  CAS  Google Scholar 

  • Mooney DJ, Vandenburgh H (2008) Cell delivery mechanisms for tissue repair. Cell Stem Cell 2:205–213

    Article  PubMed  CAS  Google Scholar 

  • Newman RE, Yoo D, LeRoux MA, Danilkovitch-Miagkova A (2009) Treatment of inflammatory diseases with mesenchymal stem cells. Inflamm Allergy Drug Targets 8:110–123

    Article  PubMed  CAS  Google Scholar 

  • Robey TE, Saiget MK, Reinecke H, Murry CE (2008) Systems approaches to preventing transplanted cell death in cardiac repair. J Mol Cell Cardiol 45:567–581

    Article  PubMed  CAS  Google Scholar 

  • Ryan JM, Barry FP, Murphy JM, Mahon BP (2005) Mesenchymal stem cells avoid allogeneic rejection. J Inflamm (Lond) 2:8

    Article  Google Scholar 

  • Skuk D, Paradis M, Goulet M, Tremblay JP (2007) Ischemic central necrosis in pockets of transplanted myoblasts in nonhuman primates: implications for cell-transplantation strategies. Transplantation 84:1307–1315

    Article  PubMed  Google Scholar 

  • Sun C, Zhang H, Li J, Huang H, Cheng H, Wang Y, Li P, An Y (2010) Modulation of the major histocompatibility complex by neural stem cell-derived neurotrophic factors used for regenerative therapy in a rat model of stroke. J Transl Med 8:77

    Article  PubMed  Google Scholar 

  • Swijnenburg RJ, Tanaka M, Vogel H, Baker J, Kofidis T, Gunawan F, Lebl DR, Caffarelli AD, de Bruin JL, Fedoseyeva EV, Robbins RC (2005) Embryonic stem cell immunogenicity increases upon differentiation after transplantation into ischemic myocardium. Circulation 112:1166–1172

    Google Scholar 

  • Swijnenburg RJ, Schrepfer S, Cao F, Pearl JI, Xie X, Connolly AJ, Robbins RC, Wu JC (2008a) In vivo imaging of embryonic stem cells reveals patterns of survival and immune rejection following transplantation. Stem Cells Dev 17:1023–1029

    Article  PubMed  CAS  Google Scholar 

  • Swijnenburg RJ, Schrepfer S, Govaert JA, Cao F, Ransohoff K, Sheikh AY, Haddad M, Connolly AJ, Davis MM, Robbins RC, Wu JC (2008b) Immunosuppressive therapy mitigates immunological rejection of human embryonic stem cell xenografts. Proc Natl Acad Sci USA 105:12991–12996

    Article  PubMed  CAS  Google Scholar 

  • Tolar J, O’Shaughnessy MJ, Panoskaltsis-Mortari A, McElmurry RT, Bell S, Riddle M, McIvor RS, Yant SR, Kay MA, Krause D, Verfaillie CM, Blazar BR (2006) Host factors that impact the biodistribution and persistence of multipotent adult progenitor cells. Blood 107:4182–4188

    Article  PubMed  CAS  Google Scholar 

  • Vaananen HK (2005) Mesenchymal stem cells. Ann Med 37:469–479

    Article  PubMed  Google Scholar 

  • Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM, Ugolini S (2011) Innate or adaptive immunity? The example of natural killer cells. Science 331:44–49

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama WM (2008) Mistaken notions about natural killer cells. Nat Immunol 9:481–485

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Boehm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Negro, A., St. Hilaire, C., Boehm, M. (2012). Cell-Based Regenerative Therapies: Role of Major Histocompatibility Complex-1 Antigen. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells,Volume 3. Stem Cells and Cancer Stem Cells, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2415-0_16

Download citation

Publish with us

Policies and ethics