Skip to main content

Assessing the Carbon Sequestration in Short Rotation Coppices of Robinia pseudoacacia L. on Marginal Sites in Northeast Germany

  • Chapter
  • First Online:
Book cover Carbon Sequestration Potential of Agroforestry Systems

Part of the book series: Advances in Agroforestry ((ADAG,volume 8))

Abstract

The assessment of the carbon (C) sequestration potential of different land use systems is receiving increasing attention within the European Union forced by aspects of optimum humus content of soils and the debate on climate change. Short rotation coppice crops (SRC) emerge as a promising land use option both for bioenergy production and C sequestration. In this study, C storage in the biomass and the soil under four SRC systems of Robinia pseudoacacia L. was investigated. The plantations were established on reclamation sites in the mining district of Lower Lusatia in 1995, 2005, 2006, and 2007. Samples were collected in the winter of 2007 and 2009. Average aboveground dry matter (DM) production ranged from 0.04 to 9.5 Mg ha−1 year−1 for 1–14 years of growth, respectively. Total stocks of soil organic carbon (SOC) at 0–60 cm depth after 2 and 14 years of growth were 22.2  ±  11.3 and 106.0  ±  11.7 Mg ha−1, respectively. Interpreting the data as a false chronosequence, the average rate of soil C sequestration in the 0–60 cm layer was 7.0 Mg ha−1 year−1. Hot water extractable carbon (HWC) that represents the labile fraction of SOC was highest in the oldest plantation (1.4 Mg ha−1 for the 0–30 cm layer). The relative proportion of HWC in SOC, however, did not change substantially between diffe­rent aged SRC, indicating that with time, because of increasing stocks, C became increa­singly stabilized within the soils. Overall, plantations of R. pseudoacacia seem to be a promising land use option for post-mining areas due to their high capacity for sequestering C within biomass as well as a high potential to increase soil C stocks on marginal sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Europ J Soil Sci 47:151–163

    Article  CAS  Google Scholar 

  • Blume H-P, Brümmer GW, Horn R, Kandeler E, Kögel-Knabner I, Kretzschmar R, Stahr K, Wilke B-M (2010) Scheffer-Schachtschabel: Lehrbuch der Bodenkunde. Spektrum Akademischer Verlag, Heidelberg, 569 pp

    Book  Google Scholar 

  • Böhm C, Landgraf D, Makeschin F (2009a) Changes in total and labile carbon and nitrogen contents in a sandy soil after the conversion of a succession fallow to cultivated land. J Plant Nutr Soil Sci 173:46–54

    Article  Google Scholar 

  • Böhm C, Quinkenstein A, Freese D, Hüttl RF (2009b) Wachstumsverlauf von vierjährigen Robinien. AFZ-DerWald 10:532–533

    Google Scholar 

  • Boring LR, Swank WT (1984) The role of black locust (Robinia pseudoacacia) in forest succession. J Ecol 72:749–766

    Article  Google Scholar 

  • Bross EL, Gold MA, Nguyen PV (1995) Quality and decomposition of black locust (Robinia pseudoacacia) and alfalfa (Medicago sativa) mulch for temperate alley cropping systems. Agroforest Syst 29:255–264

    Article  Google Scholar 

  • Bungart R, Hüttl RF (2004) Growth dynamics and biomass accumulation of 8-year-old hybrid poplar clones in a short-rotation plantation on a clayey-sandy mining substrate with respect to plant nutrition and water budget. Europ J For Res 123:105–115

    CAS  Google Scholar 

  • Chodak M, Khanna P, Beese F (2003) Hot water extractable C and N in relation to microbiological properties of soils under beech forests. Biol Fertil Soils 39:123–130

    Article  CAS  Google Scholar 

  • DIN (1998) Bodenbeschaffenheit: Bestimmung der Trockenrohdichte (ISO 11272:1998). Deutsches Institut für Normung e.V., 10 pp

    Google Scholar 

  • DIN (2007) Bodenbeschaffenheit: Bestimmung des Carbonatgehaltes-Volumetrisches Verfahren (DIN-ISO 10693). Deutsches Institut für Normung e.V., 6 pp

    Google Scholar 

  • Fettweis U, Bens O, Hüttl RF (2005) Accumulation and properties of soil organic carbon at reclaimed sites in the Lusatian lignite mining district afforested with Pinus sp. Geoderma 129:81–91

    Article  CAS  Google Scholar 

  • Ghani A, Dexter M, Perrott KW (2003) Hot-water extractable carbon in soils: a sensitive measurement for determining impacts of fertilisation, grazing and cultivation. Soil Biol Biochem 35:1231–1243

    Article  CAS  Google Scholar 

  • Grünewald H, Brandt BKV, Schneider BU, Bens O, Kendzia G, Hüttl RF (2007) Agroforestry systems for the production of woody biomass for energy transformation purposes. Ecol Eng 29:319–328

    Article  Google Scholar 

  • Grünewald H, Böhm C, Quinkenstein A, Grundmann P, Eberts J, von Wühlisch G (2009) Robinia pseudoacacia L.: a lesser known tree species for biomass production. Bioenerg Res 2:123–133

    Article  Google Scholar 

  • Ihaka R, Gentleman R (1996) R: a Language for data analysis and graphics. J Comput Graph Stat 5:299–314

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change. In: Pachauri RK, Reisinger A (eds) IPCC. Cambridge University Press, Geneva, 104 pp

    Google Scholar 

  • Katzur J, Haubold-Rosar M (1996) Amelioration and reforestation of sulfurous mine soils in Lusatia (Eastern Germany). Water Air Soil Pollut 91(1):17–32

    Article  CAS  Google Scholar 

  • Körschens M, Schulz E (1999) Die organische Bodensubstanz Dynamik - Reproduktion – ökonomisch und ökologisch begründete Richtwerte. Zentrum für Umweltforschung (UFZ), UFZ-Berichte 13, 46 pp

    Google Scholar 

  • Körschens M, Schulz E, Behm R (1990) Hot water extractable carbon and nitrogen of soils as a criterion for their ability of N-release. Zentralbl Mikrobiol 145:305–311

    Google Scholar 

  • Landgraf D, Leinweber P, Makeschin F (2006) Cold and hot water extractable organic matter as indicators of litter decomposition in forest soils. J Plant Nutr Soil Sci 169:76–82

    Article  CAS  Google Scholar 

  • Leinweber P, Schulten H-R, Körschens M (1995) Hot water extracted organic matter: chemical composition and temporal variations in a long-term field experiment. Biol Fertil Soils 20:17–23

    Article  CAS  Google Scholar 

  • Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18(1):50–60

    Article  Google Scholar 

  • Merbach W, Wittenmayer L (2004) Influence of plant rhizodeposition on C fluxes in soil. Arch Agron Soil Sci 50:99–113

    Article  Google Scholar 

  • Mitchell CP, Stevens EA, Watters MP (1999) Short-rotation forestry - operations, productivity and costs based on experience gained in the UK. For Ecol Manag 121:123–136

    Article  Google Scholar 

  • Nii-Annang S, Grünewald H, Freese D, Hüttl R, Dilly O (2009) Microbial activity, organic C accumulation and 13C abundance in soils under alley cropping systems after 9 years of recultivation of quaternary deposits. Biol Fertil Soils 45:531–538

    Article  CAS  Google Scholar 

  • Quinkenstein A, Jochheim H, Schneider BU, Hüttl RF (2009) Modellierung des Kohlenstoff­haushalts von Pappel-Kurzumtriebsplantagen in Brandenburg. In: Reeg T, Bemmann A, Konold W, Murach D, Spiecker H (eds) Anbau und Nutzung von Bäumen auf landwirtschaftlichen Flächen. Wiley-VCH, Weinheim, 379 pp

    Google Scholar 

  • Rédei K, Osváth-Bujtás Z, Veperdi I (2008) Black locust (Robinia pseudoacacia L.) improvement in Hungary: a review. Acta Silv et Lignaria Hung 4:127–132

    Google Scholar 

  • Rumpel C, Balesdent J, Grootes P, Weber E, Kögel-Knabner I (2003) Quantification of lignite- and vegetation-derived soil carbon using 14 C activity measurements in a forested chronosequence. Geoderma 112:155–166

    Article  CAS  Google Scholar 

  • Scholz V, Ellerbrock R (2002) The growth productivity, and environmental impact of the cultivation of energy crops on sandy soil in Germany. Biomass Bioenergy 23:81–92

    Article  CAS  Google Scholar 

  • Scholz V (2010) Umweltverträglichkeit von Pappeln und Weiden im Vergleich mit anderen Energiepflanzen. Proceedings of the Agrarholz 2010  –  Symposium held in Berlin, Germany, May 18–19. Agency for Renewable Resources (FNR), 15 pp

    Google Scholar 

  • Tiessen H, Cuevas E, Chacon P (2002) The role of soil organic matter in sustaining soil fertility. Nature 371:783–785

    Article  Google Scholar 

Download references

Acknowledgements

This study was part of the ANFOREK project supported by the Vattenfall Europe Mining AG and of the AgroForstEnergie project supported by the German Federal Ministry of Food, Agriculture, and Consumer Protection (project no 22009707).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ansgar Quinkenstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Quinkenstein, A., Böhm, C., Matos, E.d.S., Freese, D., Hüttl, R.F. (2011). Assessing the Carbon Sequestration in Short Rotation Coppices of Robinia pseudoacacia L. on Marginal Sites in Northeast Germany. In: Kumar, B., Nair, P. (eds) Carbon Sequestration Potential of Agroforestry Systems. Advances in Agroforestry, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1630-8_11

Download citation

Publish with us

Policies and ethics