Skip to main content

Abstract

Spatial data management and handling is very important in precision crop protection. Such data is collected by remote and proximal sensing. Additionally, soil, elevation, topographical, weather, management data is needed. Here, external data providers play an important role. Nowadays, farmers have to handle huge amount of data which is used for spatial decision support . Besides the farmer’s domain, we identified in this contribution, four important domains to develop spatial data management concepts: (I) spatial data service domain, (II) precision farming service domain, (III) spatial modeling and analysis domain, and (IV) communication and server domain. Considering communication and data flow between the domains, the design for a potential data management architecture for precision crop management is introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ambrosio L, Marín C, lglesias L et al(2009) Agricultural and environmental information systems: the integrating role of area samples. Span J Agric Res 7:957–973

    Google Scholar 

  • Bachmaier M, Gandorfer M (2009) A conceptual framework for judging the precision agriculture hypothesis with regard to site-specific nitrogen application. Prec Agric 10:95–110

    Article  Google Scholar 

  • Bareth G (2009) GIS- and RS-based spatial decision support: structure of a spatial environmental information system (SEIS). Int J Digital Earth 2:134–154

    Article  Google Scholar 

  • Bareth G, Yu Z (2002) Benefits of linking agricultural statistics to GIS. Proceedings of Geoinformatics ’02, 1–3 June 2002, Nanjing, CD-ROM

    Google Scholar 

  • Bill R (1999) Grundlagen der Geo-Informationssysteme, Band 1 und 2. Wichmann, Heidelberg

    Google Scholar 

  • Birkin M, Turner A, Wu B, Townend P, Arshad J, Xu J (2009) MoSeS a grid-enabled spatial decision support system. Soc Sci Comput Rev 27:493–508

    Google Scholar 

  • Bogena HR, Huisman JA, Meier H et al (2009) Hybrid wireless underground sensor networks: quantification of signal attenuation in soil. Vadose Zone J 8:755–761

    Article  Google Scholar 

  • Bramley RGV (2009) Lessons from nearly 20 years of Precision Agriculture research, development, and adoption as a guide to its appropriate application. Crop Pasture Sci 60:197–217

    Article  Google Scholar 

  • Curdt C, Bareth G (2010) Proceedings of the Data Management Workshop, 29–30 Oct 2009, University of Cologne, Germany

    Google Scholar 

  • Curdt C, Hoffmeister D, Jekel C et al (2010) Implementation of a centralized data management system for the CRC Transregio 32 “Patterns in soil-vegetation-atmosphere-systems”. In: Curdt C, Bareth G (eds) Proceedings of the Data Management Workshop, 29–30 Oct 2009, University of Cologne, Germany

    Google Scholar 

  • Curdt C, Hoffmeister D, Waldhoff G, Bareth G (2009) Implementierung eines Projektdaten-managements für das interdisziplinäre Forschungsprojekt TR32 ,Patterns in soil-vegetation-atmosphere systems: monitoring, modelling, and data assimilation‘. In: Bill R, Korduan P, Theuvsen L, Morgenstern M (eds) Anforderungen an die Agrarinformatik durch Globalisierung und Klimaveränderung, Referate der 29. GIL-Jahrestagung, 9 – 10 März 2009. GI-Edition – Lecture Notes in Informatics 142:37–40

    Google Scholar 

  • Doluschitz R (2007) Die Rolle der Informationstechnologie in der Landwirtschaft. In: KTBL (ed) agroXML – Informationstechnik für die zukunftsorientierte Landwirtschaft. Beitrag zur KTBL-Tagung am, München, pp 9–32, 17./18. April 2007

    Google Scholar 

  • Doluschitz R, Kunisch M (2004) agroXML – Ein standardisiertes Datenformat für den Informationsfluss entlang der Produktions- und Lieferkette. Z Agrarinformatik 12:65–67

    Google Scholar 

  • Doluschitz R, Kunisch M, Jungbluth T, Eider C (2005) agroXML – a standardized data format for information flow in agriculture. Proceedings of EFITA/WCCA 2005, Portugal, pp 26–31, July 2005

    Google Scholar 

  • ESRI (2009) GIS for Agribusiness. ESRI Newsletter Fall 2009, http://www.esri.com/agriculture

  • Fountas S, Kyhn M, Lipczak Jakobsen H et al (2009) A systems analysis of information system requirements for an experimental farm. Prec Agric 10:247–261

    Article  Google Scholar 

  • Hoffmeister D, Bolten A, Curdt C et al (2009) High resolution crop surface models (CSM) and crop volume models (CVM) on field level by terrestrial laser scanning. Proceedings of the 6th International Symposium on Digital Earth (ISDE6), 9–12 Sept 2009, Beijing, CD-ROM

    Google Scholar 

  • Jiang JA, Tseng CL, Lu FM et al (2008) A GSM-based remote wireless automatic monitoring system for field information: a case study for ecological monitoring of the oriental fruit fly, Bactrocera dorsalis (Hendel). Comput Electron Agric 62:243–259

    Article  Google Scholar 

  • Kielhorn A, Biermann J, Gervens T et al (2007) Precision farming mit freiem OpenSource. In: Böttinger S, Theuvsen L, Rank S, Morgenstern M (eds) Agrarinformatik im Spannungsfeld zwischen Regionalisierung und globalen Wertschöpfungsketten, Referate der 27. GIL Jahrestagung, 05.-07. März 2007, Stuttgart. GI-Edition – Lecture Notes in Informatics 101:107–110

    Google Scholar 

  • KTBL (2007) Geodateninfrastruktur und Geodienste für die Landwirtschaft. KTBL-Heft 66, Darmstadt

    Google Scholar 

  • KTBL (2004) Geographische Informationssysteme in der Landwirtschaft und im ländlichen Raum – Defizite und Entwicklungspotenziale. KTBL-Schrift 428, Darmstadt

    Google Scholar 

  • Kunisch M, Frisch J, Martini D, Böttinger S (2009) Stand der Entwicklung von agroXML. In: Bill R, Korduan P, Theuvsen L, Morgenstern M (eds) Anforderungen an die Agrarinformatik durch Globalisierung und Klimaveränderung, Referate der 29. GIL-Jahrestagung, 9.-10. März 2009. GI-Edition – Lecture Notes in Informatics 142:93–96

    Google Scholar 

  • Lambert DM, Lowenberg-DeBoer J, Malzer GL (2006) Economic analysis of spatial-temporal patterns in corn and soybean response to nitrogen and phosphorus. Agron J 98:43–54

    Article  Google Scholar 

  • Li D (2008) On generalised and specialised spatial information grids: are geo-services ready? Int J Digital Earth 1:315–325

    Article  Google Scholar 

  • Matese A, Di Gennaro SF, Zaldei A et al (2009) A wireless sensor network for precision viticulture: The NAV system source. Comput Electron Agric 69:51–58

    Article  Google Scholar 

  • Morais R, Fernandes MA, Matos SG et al (2008) A ZigBee multi-powered wireless acquisition device for remote sensing applications in precision viticulture. Comput Electron Agric 62:94–106

    Article  Google Scholar 

  • Nash E, Dreger F, Schwarz J et al (2009a) Development of a model of data-flows for precision agriculture based on a collaborative research project. Comput Electron Agric 66:25–37

    Article  Google Scholar 

  • Nash E, Korduan P, Bill R (2009b) Applications of open geospatial web services in precision agriculture: a review. Prec Agric 10:546–560

    Article  Google Scholar 

  • Noack PO (2007) Ertragskartierung im Getreidebau. KTBL-Heft 70, Darmstadt

    Google Scholar 

  • Oetzel K (2008) Concepts and interfaces with the standardization of office software to integrate process documentation with precision framing. In: Werner A, Dreger F, Schwarz J (eds) Informationsgeleitete Pflanzenproduktion mit Precision Farming als zentrale inhaltliche und technische Voraussetzung für eine nachhaltige Entwicklung der landwirtschaftlichen Landnutzung – pre agro II:. http://www.preagro.de/Veroeff/preagro_Abschlussbericht_2008.pdf, pp 379–397

  • OGC (2005) Web Feature Service implementation specification. Reference number OGC document: OGC 04-094

    Google Scholar 

  • OGC (2006) OpenGIS® Web Map Server implementation specification. Reference number OGC document: OGC 06-042

    Google Scholar 

  • OGC (2007a) OpenGIS® Web Processing Service. Reference number OGC Document: OGC 05-007r7

    Google Scholar 

  • OGC (2007b) Sensor Observation Service. Reference number OGC Document: OGC 06-009r6

    Google Scholar 

  • OGC (2007c) OpenGIS® Catalogue Services Specification. Reference number OGC Document: OGC 07-006r1

    Google Scholar 

  • OGC (2008a) Web Coverage Service (WCS) implementation standard. Reference number OGC document: OGC 07-067r5, p 133

    Google Scholar 

  • OGC (2008b) OGC® KML. Reference number OGC document: OGC 07-147r2

    Google Scholar 

  • OGC (2008c) OpenGIS® Location Services (OpenLS): Core Services. Reference number OGC document: OGC 07-074

    Google Scholar 

  • Padberg A, Greve K (2009) Gridification of OGC web services: challenges and potential. GIS Sci14:77–81

    Google Scholar 

  • Peng ZR, Tsou MH (2003) Internet GIS: distributed geographic information services for the internet and wireless networks. Wiley, Hoboken

    Google Scholar 

  • Pokrajac D, Fiez T, Oobradovic Z (2002) A data generator for evaluating spatial issues in precision agriculture. Prec Agric 3:259–281

    Article  Google Scholar 

  • Procari EM (2009) Ubiquitous networks and cloud computing May 10th 2009. CIGAR: connecting people, technology and knowledge for agricultural innovation. http://ictkm.cgiar.org/other_activities/2252_Porcari_Ubiquitous_neworks_and_cloud_comput ing__2_pdf

  • Rösch C, Dusseldorp M, Meyer R (2007) Precision agriculture: Landwirtschaft mit Satellit und Sensor. Deutscher Fachverlag, Frankfurt

    Google Scholar 

  • Ruiz-Garcia L, Lunadei L, Barreiro P, Robla I (2009) A review of wireless sensor technologies and applications in agriculture and food industry: state of the art and current trends. Sensors 9:4728–4750

    Article  PubMed  Google Scholar 

  • Srinivasan A (2006) Handbook of precision agriculture: principles and applications. Haworth Press, Binghamton

    Google Scholar 

  • Stanoevska-Slabeva K, Wozniak T, Ribol S (2010) Grid and cloud computing – a business perspective of technology applications. Springer, Heidelberg

    Book  Google Scholar 

  • Steinberger G, Rothmund M, Auernhammer H (2009) Mobile farm equipment as a data source in an agricultural service architecture. Comput Electron Agric 65:238–246

    Article  Google Scholar 

  • Tozer PR (2009) Uncertainty and investment in precision agriculture – is it worth the money? Agric Syst 100:80–87

    Article  Google Scholar 

  • Watermeier N (2006) Computerized software and mapping technologies for crop management. http://geospatial.osu.edu/resources/cropsoftware.html

  • Werder S, Krüger A (2009) Parallelizing geospatial tasks in grid computing. GIS Sci 2009(3):71–76

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Bareth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bareth, G., Doluschitz, R. (2010). Spatial Data Handling and Management. In: Oerke, EC., Gerhards, R., Menz, G., Sikora, R. (eds) Precision Crop Protection - the Challenge and Use of Heterogeneity. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9277-9_13

Download citation

Publish with us

Policies and ethics