Skip to main content

Double Stage Heat Transformer Controlled by Flow Ratio

  • Conference paper
  • First Online:
Book cover Innovations in Computing Sciences and Software Engineering

Abstract

this paper shows the values of Flow ratio (FR) for control of an absorption double stage heat transformer. The main parameters for the heat pump system are defined as COP, FR and GTL. The control of the entire system is based in a new definition of FR. The heat balance of the Double Stage Heat Transformer (DSHT) is used for the control. The mass flow is calculated for a HPVEE program and a second program control the mass flow. The mass flow is controlled by gear pumps connected to LabView program. The results show an increment in the fraction of the recovery energy. An example of oil distillation is used for the calculation. The waste heat energy is added at the system at 70 °C. Water ™ - Carrol mixture is used in the DSHT. The recover energy is obtained in a second absorber at 128 °C with two scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. J. Romero, Sotsil Silva – Sotelo, Comparison of instrumental methods for in-line determination of LiBr concentration in solar absorption thermal systems, Solar Energy Materials And Solar Cells, Vol. 90 ,Issue 15, 2006, pp. 2549 – 2555.

    Article  Google Scholar 

  2. Romero R. J.; Rivera W; Best R. Comparison of the theoretical performance of a solar air conditioning system operating with water / lithium bromide and an aqueous ternary hydroxide; Solar Energy Materials & solar Cells, Vol. 63, pp 387 – 399, 2000

    Article  Google Scholar 

  3. Romero R. J.; Rivera W.; Pilatowsky I.; Best R.; Comparison of the modeling of a solar absorption system for simultaneous cooling and heating operating with an aqueous ternary hydroxide and with water / lithium bromide; Solar Energy Materials & solar Cells, Vol. 70, pp 301 – 308, 2001

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank to the project: “Desarrollo y aplicación de un sistema de refrigeración termo solar autosuficiente y sustentable para conservación de productos perecederos en comunidades costeras alejas de la red” for partial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Romero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Silva-Sotelo, S., Romero, R.J., Rodríguez – Martínez, A. (2010). Double Stage Heat Transformer Controlled by Flow Ratio. In: Sobh, T., Elleithy, K. (eds) Innovations in Computing Sciences and Software Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9112-3_100

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9112-3_100

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9111-6

  • Online ISBN: 978-90-481-9112-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics