Skip to main content

Stem Cell Niche

  • Chapter
  • First Online:
Regenerative Medicine

Abstract

The adult stem cells are essential for maintaining tissue homeostasis and commonly reside in specific local microenvironment named niche. The niche keeps stem cells in multipotent state, prevents them from precocious differentiation and positions them to undergo asymmetric division to produce differentiated ­progenies for tissue regeneration. The niches employ a variety of factors including cell adhesion molecules, extra cellular matrix, growth factors and cytokines in a tissue-specific manner to regulate the resident stem cells. Stem cells in turn may also contribute to niche integrity and function. Elucidation of stem cell niche regulation at the cellular and molecular level would help understand tissue homeostasis and disease mechanisms, and also provide useful strategies for therapeutic application of stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams GB, Martin RP, Alley IR et al (2007) Therapeutic targeting of a stem cell niche. Nat Biotechnol 25: 238–243.

    Article  CAS  PubMed  Google Scholar 

  • Andreu P, Colnot S, Godard C et al (2005) Crypt-restricted proliferation and commitment to the Paneth cell lineage following Apc loss in the mouse intestine. Development 132: 1443–1451.

    Article  CAS  PubMed  Google Scholar 

  • Arai F, Hirao A, Ohmura M et al (2004) Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118: 149–161.

    Article  CAS  PubMed  Google Scholar 

  • Austin J, Kimble J (1987) glp-1 is required in the germ line for regulation of the decision between mitosis and meiosis in C. elegans. Cell 51: 589–599.

    Article  CAS  PubMed  Google Scholar 

  • Barker N, van Es JH, Kuipers J et al (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449: 1003–1007.

    Article  CAS  PubMed  Google Scholar 

  • Berry LW, Westlund B, Schedl T (1997) Germ-line tumor formation caused by activation of glp-1, a Caenorhabditis elegans member of the Notch family of receptors. Development 124: 925–936.

    CAS  PubMed  Google Scholar 

  • Blanpain C, Fuchs E (2006) Epidermal stem cells of the skin. Annu Rev Cell Dev Biol 22: 339–373.

    Article  CAS  PubMed  Google Scholar 

  • Blanpain C, Fuchs E (2009) Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol 10: 207–217.

    Article  CAS  PubMed  Google Scholar 

  • Blanpain C, Lowry WE, Geoghegan A et al (2004) Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118: 635–648.

    Article  CAS  PubMed  Google Scholar 

  • Blanpain C, Lowry WE, Pasolli HA et al (2006) Canonical notch signaling functions as a commitment switch in the epidermal lineage. Genes Dev 20: 3022–3035.

    Article  CAS  PubMed  Google Scholar 

  • Blessing M, Nanney LB, King LE et al (1993) Transgenic mice as a model to study the role of TGF-beta-related molecules in hair follicles. Genes Dev 7: 204–215.

    Article  CAS  PubMed  Google Scholar 

  • Botchkarev VA, Botchkareva NV, Roth W et al (1999) Noggin is a mesenchymally derived stimulator of hair-follicle induction. Nat Cell Biol 1: 158–164.

    Article  CAS  PubMed  Google Scholar 

  • Boyle M, Wong C, Rocha M et al (2007) Decline in self-renewal factors contributes to aging of the stem cell niche in the Drosophila testis. Cell Stem Cell 1: 470–478.

    Article  CAS  PubMed  Google Scholar 

  • Brack AS, Conboy MJ, Roy S et al (2007) Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317: 807–810.

    Article  CAS  PubMed  Google Scholar 

  • Brawley C, Matunis E (2004) Regeneration of male germline stem cells by spermatogonial dedifferentiation in vivo. Science 304: 1331–1334.

    Article  CAS  PubMed  Google Scholar 

  • Calvi LM, Adams GB, Weibrecht KW et al (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425: 841–846.

    Article  CAS  PubMed  Google Scholar 

  • Carlson ME, Hsu M, Conboy IM (2008) Imbalance between pSmad3 and Notch induces CDK inhibitors in old muscle stem cells. Nature 454: 528–532.

    Article  CAS  PubMed  Google Scholar 

  • Chen D, McKearin D (2003) Dpp signaling silences bam transcription directly to establish asymmetric divisions of germline stem cells. Curr Biol 13: 1786–1791.

    Article  CAS  PubMed  Google Scholar 

  • Clarke MF, Fuller M (2006) Stem cells and cancer: two faces of eve. Cell 124: 1111–1115.

    Article  CAS  PubMed  Google Scholar 

  • Conboy IM, Conboy MJ, Smythe GM et al (2003) Notch-mediated restoration of regenerative potential to aged muscle. Science 302: 1575–1577.

    Article  CAS  PubMed  Google Scholar 

  • Conboy IM, Rando TA (2002) The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev Cell 3: 397–409.

    Article  CAS  PubMed  Google Scholar 

  • Cox DN, Chao A, Baker J et al (1998) A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev 12: 3715–3727.

    Article  CAS  PubMed  Google Scholar 

  • Crittenden SL, Leonhard KA, Byrd DT et al (2006) Cellular analyses of the mitotic region in the Caenorhabditis elegans adult germ line. Mol Biol Cell 17: 3051–3061.

    Article  CAS  PubMed  Google Scholar 

  • Crittenden SL, Troemel ER, Evans TC et al (1994) GLP-1 is localized to the mitotic region of the C. elegans germ line. Development 120: 2901–2911.

    CAS  PubMed  Google Scholar 

  • DasGupta R, Fuchs E (1999) Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development 126: 4557–4568.

    CAS  PubMed  Google Scholar 

  • Fleming HE, Janzen V, Lo Celso C et al (2008) Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell 2: 274–283.

    Article  CAS  PubMed  Google Scholar 

  • Forbes AJ, Lin H, Ingham PW et al (1996) Hedgehog is required for the proliferation and specification of ovarian somatic cells prior to egg chamber formation in Drosophila. Development 122: 1125–1135.

    CAS  PubMed  Google Scholar 

  • Fuchs E (2009) Finding one’s niche in the skin. Cell Stem Cell 4: 499–502.

    Article  CAS  PubMed  Google Scholar 

  • Gat U, DasGupta R, Degenstein L et al (1998) De Novo hair follicle morphogenesis and hair tumors in mice expressing a truncated beta-catenin in skin. Cell 95: 605–614.

    Article  CAS  PubMed  Google Scholar 

  • Girgenrath M, Weng S, Kostek CA et al (2006) TWEAK, via its receptor Fn14, is a novel regulator of mesenchymal progenitor cells and skeletal muscle regeneration. Embo J 25: 5826–5839.

    Article  CAS  PubMed  Google Scholar 

  • Gregorieff A, Pinto D, Begthel H et al (2005) Expression pattern of Wnt signaling components in the adult intestine. Gastroenterology 129: 626–638.

    CAS  PubMed  Google Scholar 

  • Haramis AP, Begthel H, van den Born M et al (2004) De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science 303: 1684–1686.

    Article  CAS  PubMed  Google Scholar 

  • He XC, Zhang J, Tong WG et al (2004) BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling. Nat Genet 36: 1117–1121.

    Article  CAS  PubMed  Google Scholar 

  • Henderson ST, Gao D, Lambie EJ et al (1994) Lag-2 may encode a signaling ligand for the GLP-1 and LIN-12 receptors of C. elegans. Development 120: 2913–2924.

    CAS  PubMed  Google Scholar 

  • Hooper AT, Butler JM, Nolan DJ et al (2009) Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell 4: 263–274.

    Article  CAS  PubMed  Google Scholar 

  • Huelsken J, Vogel R, Erdmann B et al (2001) Beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105: 533–545.

    Article  CAS  PubMed  Google Scholar 

  • Jin L, Hope KJ, Zhai Q et al (2006) Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 12: 1167–1174.

    Article  PubMed  CAS  Google Scholar 

  • Jin Z, Kirilly D, Weng C et al (2008) Differentiation-defective stem cells outcompete normal stem cells for niche occupancy in the Drosophila ovary. Cell Stem Cell 2: 39–49.

    Article  CAS  PubMed  Google Scholar 

  • Kai T, Spradling A (2004) Differentiating germ cells can revert into functional stem cells in Drosophila melanogaster ovaries. Nature 428: 564–569.

    Article  CAS  PubMed  Google Scholar 

  • Kawase E, Wong MD, Ding BC et al (2004) Gbb/Bmp signaling is essential for maintaining germline stem cells and for repressing bam transcription in the Drosophila testis. Development 131: 1365–1375.

    Article  CAS  PubMed  Google Scholar 

  • Kiel MJ, Yilmaz OH, Iwashita T et al (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121: 1109–1121.

    Article  CAS  PubMed  Google Scholar 

  • Kiger AA, Jones DL, Schulz C et al (2001) Stem cell self-renewal specified by JAK-STAT activation in response to a support cell cue. Science 294: 2542–2545.

    Article  CAS  PubMed  Google Scholar 

  • Kimble J, Crittenden SL (2007) Controls of germline stem cells, entry into meiosis, and the sperm/oocyte decision in Caenorhabditis elegans. Annu Rev Cell Dev Biol 23: 405–433.

    Article  CAS  PubMed  Google Scholar 

  • Kimble JE, White JG (1981) On the control of germ cell development in Caenorhabditis elegans. Dev Biol 81: 208–219.

    Article  CAS  PubMed  Google Scholar 

  • King FJ, Lin H (1999) Somatic signaling mediated by fs(1)Yb is essential for germline stem cell maintenance during Drosophila oogenesis. Development 126: 1833–1844.

    CAS  PubMed  Google Scholar 

  • Kirilly D, Spana EP, Perrimon N et al (2005) BMP signaling is required for controlling somatic stem cell self-renewal in the Drosophila ovary. Dev Cell 9: 651–662.

    Article  CAS  PubMed  Google Scholar 

  • Kobielak K, Stokes N, de la Cruz J et al (2007) Loss of a quiescent niche but not follicle stem cells in the absence of bone morphogenetic protein signaling. Proc Natl Acad Sci USA 104: 10063–10068.

    Article  CAS  PubMed  Google Scholar 

  • Korinek V, Barker N, Moerer P et al (1998) Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat Genet 19: 379–383.

    Article  CAS  PubMed  Google Scholar 

  • Kuang S, Gillespie MA, Rudnicki MA (2008) Niche regulation of muscle satellite cell ­self-renewal and differentiation. Cell Stem Cell 2: 22–31.

    Article  CAS  PubMed  Google Scholar 

  • Kuang S, Kuroda K, Le Grand F et al (2007) Asymmetric self-renewal and commitment of ­satellite stem cells in muscle. Cell 129: 999–1010.

    Article  CAS  PubMed  Google Scholar 

  • Lambie EJ, Kimble J (1991) Two homologous regulatory genes, lin-12 and glp-1, have overlapping functions. Development 112: 231–240.

    CAS  PubMed  Google Scholar 

  • Lane SW, Scadden DT, Gilliland DG (2009) The leukemic stem cell niche: current concepts and therapeutic opportunities. Blood 114: 1150–1157.

    Article  CAS  PubMed  Google Scholar 

  • Leatherman JL, Dinardo S (2008) Zfh-1 controls somatic stem cell self-renewal in the Drosophila testis and nonautonomously influences germline stem cell self-renewal. Cell Stem Cell 3: 44–54.

    Article  CAS  PubMed  Google Scholar 

  • Lin G, Xu N, Xi R (2008) Paracrine Wingless signalling controls self-renewal of Drosophila intestinal stem cells. Nature 455: 1119–1123.

    Article  CAS  PubMed  Google Scholar 

  • Lin G, Xu N, Xi R (2009) Paracrine Unpaired Signaling through the JAK/STAT Pathway Controls Self-renewal and Lineage Differentiation of Drosophila Intestinal Stem Cells. J Mol Cell Biol. doi:10.1093/jmcb/mjp028.

    Google Scholar 

  • Lopez-Onieva L, Fernandez-Minan A, Gonzalez-Reyes A (2008) Jak/Stat signalling in niche support cells regulates dpp transcription to control germline stem cell maintenance in the Drosophila ovary. Development 135: 533–540.

    Article  CAS  PubMed  Google Scholar 

  • Lowry WE, Blanpain C, Nowak JA et al (2005) Defining the impact of beta-catenin/Tcf transactivation on epithelial stem cells. Genes Dev 19: 1596–1611.

    Article  CAS  PubMed  Google Scholar 

  • Madison BB, Braunstein K, Kuizon E et al (2005) Epithelial hedgehog signals pattern the intestinal crypt-villus axis. Development 132: 279–289.

    Article  CAS  PubMed  Google Scholar 

  • Micchelli CA, Perrimon N (2006) Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature 439: 475–479.

    Article  CAS  PubMed  Google Scholar 

  • Miyagoe Y, Hanaoka K, Nonaka I et al (1997) Laminin alpha2 chain-null mutant mice by targeted disruption of the Lama2 gene: a new model of merosin (laminin 2)-deficient congenital muscular dystrophy. FEBS Lett 415: 33–39.

    Article  CAS  PubMed  Google Scholar 

  • Moriyama M, Durham AD, Moriyama H et al (2008) Multiple roles of Notch signaling in the regulation of epidermal development. Dev Cell 14: 594–604.

    Article  CAS  PubMed  Google Scholar 

  • Morrison SJ, Spradling AC (2008) Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132: 598–611.

    Article  CAS  PubMed  Google Scholar 

  • Nie Y, Han YC, Zou YR (2008) CXCR4 is required for the quiescence of primitive hematopoietic cells. J Exp Med 205: 777–783.

    Article  CAS  PubMed  Google Scholar 

  • Nilsson SK, Johnston HM, Whitty GA et al (2005) Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood 106: 1232–1239.

    Article  CAS  PubMed  Google Scholar 

  • Nystul T, Spradling A (2007) An epithelial niche in the Drosophila ovary undergoes long-range stem cell replacement. Cell Stem Cell 1: 277–285.

    Article  CAS  PubMed  Google Scholar 

  • O’Reilly AM, Lee HH, Simon MA (2008) Integrins control the positioning and proliferation of follicle stem cells in the Drosophila ovary. J Cell Biol 182: 801–815.

    Article  PubMed  CAS  Google Scholar 

  • Ohlstein B, Spradling A (2006) The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature 439: 470–474.

    Article  CAS  PubMed  Google Scholar 

  • Ohlstein B, Spradling A (2007) Multipotent Drosophila intestinal stem cells specify daughter cell fates by differential notch signaling. Science 315: 988–992.

    Article  CAS  PubMed  Google Scholar 

  • Pan L, Chen S, Weng C et al (2007) Stem cell aging is controlled both intrinsically and extrinsically in the Drosophila ovary. Cell Stem Cell 1: 458–469.

    Article  CAS  PubMed  Google Scholar 

  • Reddy S, Andl T, Bagasra A et al (2001) Characterization of Wnt gene expression in developing and postnatal hair follicles and identification of Wnt5a as a target of Sonic hedgehog in hair follicle morphogenesis. Mech Dev 107: 69–82.

    Article  CAS  PubMed  Google Scholar 

  • Rhiner C, Diaz B, Portela M et al (2009) Persistent competition among stem cells and their daughters in the Drosophila ovary germline niche. Development 136: 995–1006.

    Article  CAS  PubMed  Google Scholar 

  • Sangiorgi E, Capecchi MR (2008) Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet 40: 915–920.

    Article  CAS  PubMed  Google Scholar 

  • Sansom OJ, Reed KR, Hayes AJ et al (2004) Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes Dev 18: 1385–1390.

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Vries RG, Snippert HJ et al (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459: 262–265.

    Article  CAS  PubMed  Google Scholar 

  • Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4: 7–25.

    CAS  PubMed  Google Scholar 

  • Shivdasani AA, Ingham PW (2003) Regulation of stem cell maintenance and transit amplifying cell proliferation by tgf-beta signaling in Drosophila spermatogenesis. Curr Biol 13: 2065–2072.

    Article  CAS  PubMed  Google Scholar 

  • Sick S, Reinker S, Timmer J et al (2006) WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism. Science 314: 1447–1450.

    Article  CAS  PubMed  Google Scholar 

  • Sipkins DA, Wei X, Wu JW et al (2005) In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 435: 969–973.

    Article  CAS  PubMed  Google Scholar 

  • Song X, Call GB, Kirilly D et al (2007) Notch signaling controls germline stem cell niche formation in the Drosophila ovary. Development 134: 1071–1080.

    Article  CAS  PubMed  Google Scholar 

  • Song X, Wong MD, Kawase E et al (2004) Bmp signals from niche cells directly repress transcription of a differentiation-promoting gene, bag of marbles, in germline stem cells in the Drosophila ovary. Development 131: 1353–1364.

    Article  CAS  PubMed  Google Scholar 

  • Song X, Xie T (2003) Wingless signaling regulates the maintenance of ovarian somatic stem cells in Drosophila. Development 130: 3259–3268.

    Article  CAS  PubMed  Google Scholar 

  • Song X, Zhu CH, Doan C et al (2002) Germline stem cells anchored by adherens junctions in the Drosophila ovary niches. Science 296: 1855–1857.

    Article  CAS  PubMed  Google Scholar 

  • Stier S, Ko Y, Forkert R et al (2005) Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J Exp Med 201: 1781–1791.

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama T, Kohara H, Noda M et al (2006) Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25: 977–988.

    Article  CAS  PubMed  Google Scholar 

  • Taichman RS, Reilly MJ, Emerson SG (1996) Human osteoblasts support human hematopoietic progenitor cells in vitro bone marrow cultures. Blood 87: 518–524.

    CAS  PubMed  Google Scholar 

  • Tatsumi R, Anderson JE, Nevoret CJ et al (1998) HGF/SF is present in normal adult skeletal muscle and is capable of activating satellite cells. Dev Biol 194: 114–128.

    Article  CAS  PubMed  Google Scholar 

  • Tulina N, Matunis E (2001) Control of stem cell self-renewal in Drosophila spermatogenesis by JAK-STAT signaling. Science 294: 2546–2549.

    Article  CAS  PubMed  Google Scholar 

  • van den Brink GR, Bleuming SA, Hardwick JC et al (2004) Indian Hedgehog is an antagonist of Wnt signaling in colonic epithelial cell differentiation. Nat Genet 36: 277–282.

    Article  PubMed  CAS  Google Scholar 

  • van der Flier LG, Clevers H (2009) Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol 71: 241–260.

    Article  PubMed  CAS  Google Scholar 

  • Visnjic D, Kalajzic Z, Rowe DW et al (2004) Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood 103: 3258–3264.

    Article  CAS  PubMed  Google Scholar 

  • Voog J, D’Alterio C, Jones DL (2008) Multipotent somatic stem cells contribute to the stem cell niche in the Drosophila testis. Nature 454: 1132–1136.

    Article  CAS  PubMed  Google Scholar 

  • Walkley CR, Olsen GH, Dworkin S et al (2007) A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor gamma deficiency. Cell 129: 1097–1110.

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Li Z, Cai Y (2008) The JAK/STAT pathway positively regulates DPP signaling in the Drosophila germline stem cell niche. J Cell Biol 180: 721–728.

    Article  CAS  PubMed  Google Scholar 

  • Ward EJ, Shcherbata HR, Reynolds SH et al (2006) Stem cells signal to the niche through the Notch pathway in the Drosophila ovary. Curr Biol 16: 2352–2358.

    Article  CAS  PubMed  Google Scholar 

  • Watt FM (1998) Epidermal stem cells: markers, patterning and the control of stem cell fate. Philos Trans R Soc Lond B Biol Sci 353: 831–837.

    Article  CAS  PubMed  Google Scholar 

  • Xie T, Spradling AC (1998) Decapentaplegic is essential for the maintenance and division of germline stem cells in the Drosophila ovary. Cell 94: 251–260.

    Article  CAS  PubMed  Google Scholar 

  • Xie T, Spradling AC (2000) A niche maintaining germ line stem cells in the Drosophila ovary. Science 290: 328–330.

    Article  CAS  PubMed  Google Scholar 

  • Yamashita YM, Jones DL, Fuller MT (2003) Orientation of asymmetric stem cell division by the APC tumor suppressor and centrosome. Science 301: 1547–1550.

    Article  CAS  PubMed  Google Scholar 

  • Yamashita YM, Mahowald AP, Perlin JR et al (2007) Asymmetric inheritance of mother versus daughter centrosome in stem cell division. Science 315: 518–521.

    Article  CAS  PubMed  Google Scholar 

  • Yi R, Poy MN, Stoffel M et al (2008) A skin microRNA promotes differentiation by repressing ‘stemness’. Nature 452: 225–229.

    Article  CAS  PubMed  Google Scholar 

  • Yoshihara H, Arai F, Hosokawa K et al (2007) Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell 1: 685–697.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Li L (2008) Stem cell niche: microenvironment and beyond. J Biol Chem 283: 9499–9503.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Niu C, Ye L et al (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425: 836–841.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Kalderon D (2001) Hedgehog acts as a somatic stem cell factor in the Drosophila ovary. Nature 410: 599–604.

    Article  CAS  PubMed  Google Scholar 

  • Zhao R, Xuan Y, Li X et al (2008) Age-related changes of germline stem cell activity, niche signaling activity and egg production in Drosophila. Aging Cell 7: 344–354.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongwen Xi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Wen, P., Sun, P., Xi, R. (2011). Stem Cell Niche. In: Steinhoff, G. (eds) Regenerative Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9075-1_3

Download citation

Publish with us

Policies and ethics