Skip to main content

Cholesterol Effects on Nicotinic Acetylcholine Receptor: Cellular Aspects

  • Chapter
  • First Online:

Part of the book series: Subcellular Biochemistry ((SCBI,volume 51))

Abstract

Cholesterol is an essential partner of the nicotinic acetylcholine receptor (AChR). It is not only an abundant component of the postsynaptic membrane but also affects the stability of the receptor protein in the membrane, its supramolecular organization and function. In the absence of innervation, early on in ontogenetic development of the muscle cell, embryonic AChRs occur in the form of diffusely dispersed molecules. At embryonic day 13, receptors organize in the form of small aggregates. This organization can be mimicked in mammalian cells in culture.

Trafficking to the plasmalemma is a cholesterol-dependent process. Receptors acquire association with the sterol as early as the endoplasmic reticulum and the Golgi apparatus. Once AChRs reach the cell surface, their stability is also highly dependent on cholesterol levels. Acute cholesterol depletion reduces the number of receptor domains by accelerating the rate of endocytosis. In muscle cells, AChRs are internalized via a recently discovered dynamin- and clathrin-independent, cytoskeleton-dependent endocytic mechanism. Unlike other endocytic pathways, cholesterol depletion accelerates internalization and re-routes AChR endocytosis to an Arf6-dependent pathway. Cholesterol depletion also results in ion channel gain-of-function of the remaining cell-surface AChRs, whereas cholesterol enrichment has the opposite effect.

Wide-field microscopy shows AChR clusters as diffraction-limited puncta of ∼200 nm diameter. Stimulated emission depletion (STED) fluorescence microscopy resolves these puncta into nanoclusters with an average diameter of ∼55 nm. Exploiting the enhanced resolution, the effect of acute cholesterol depletion can be shown to alter the short- and long-range organization of AChR nanoclusters. In the short range, AChRs form bigger nanoclusters. On larger scales (0.5–3.5 μm) nanocluster distribution becomes non-random, attributable to the cholesterol-related abolition of cytoskeletal physical barriers normally preventing the lateral diffusion of AChR nanoclusters. The dependence of AChR numbers at the cell surface on membrane cholesterol raises the possibility that cholesterol depletion leads to AChR conformational changes that alter its stability and its long-range dynamic association with other AChR nanoclusters, accelerate its endocytosis, and transiently affect the channel kinetics of those receptors remaining at the surface. Cholesterol content at the plasmalemma may thus homeostatically modulate AChR dynamics, cell-surface organization and lifetime of receptor nanodomains, and fine tune the ion permeation process.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AChR:

nicotinic acetylcholine receptor

αBTX:

α-bungarotoxin

Chol:

cholesterol

GP:

generalized polarization

M-β-CDx:

methyl-β-cyclodextrin

Chol- M-β-CDx:

cholesterol-methyl-β-cyclodextrin

NMJ:

neuromuscular junction

STED:

stimulated emission depletion

References

  • Antollini, S.S., Soto, M.A., Bonini de Romanelli, I.C., Gutierrez-Merino C., Sotomayor, P., Barrantes, F.J., 1996, Physical state of bulk and protein-associated lipid in nicotinic acetylcholine receptor-rich membrane studied by laurdan generalized polarization and fluorescence energy transfer. Biophys. J. 70: 1275–1284.

    Article  CAS  PubMed  Google Scholar 

  • Artigues, A., Villar, M.T., Fernández, A.M., Ferragut, J.A., Gonzalez-Ros, J.M., 1989, Cholesterol stabilizes the structure of the nicotinic acetylcholine receptor reconstituted in lipid vesicles. Biochim. Biophys. Acta 985: 325–330.

    Article  CAS  Google Scholar 

  • Barrantes, F. J., 1979, Endogenous chemical receptors: some physical aspects. Annu. Rev. Biophys. Bioeng. 8: 287–321.

    Article  CAS  PubMed  Google Scholar 

  • Barrantes, F.J., 1982, Oligomeric forms of the membrane-bound acetylcholine receptor disclosed upon extraction of the Mr 43,000 nonreceptor peptide. J. Cell Biol. 92: 60–68.

    Article  CAS  PubMed  Google Scholar 

  • Barrantes, F.J., 1983, Recent developments in the structure and function of the acetylcholine receptor. Int. Rev. Neurobiol. 24: 259–341.

    Article  CAS  PubMed  Google Scholar 

  • Barrantes, F.J., 1989, The lipid environment of the nicotinic acetylcholine receptor in native and reconstituted membranes. Crit. Rev. Biochem. Mol. Biol. 24: 437–478.

    Article  CAS  PubMed  Google Scholar 

  • Barrantes, F.J., 1993a, The lipid annulus of the nicotinic acetylcholine receptor as a locus of structural-functional interactions. In: Watts, A. (ed.), New Comprehensive Biochemistry, Elsevier, Amsterdam, pp. 231–257.

    Google Scholar 

  • Barrantes, F.J., 1993b, Structural-functional correlates of the nicotinic acetylcholine receptor and its lipid microenvironment. FASEB J. 7: 1460–1467.

    CAS  PubMed  Google Scholar 

  • Barrantes, F.J., 2002, Lipid matters: nicotinic acetylcholine receptor-lipid interactions. Molec. Membr. Biol. 19: 277–284.

    Article  CAS  Google Scholar 

  • Barrantes, F.J., 2003, Modulation of nicotinic acetylcholine receptor function through the outer and middle rings of transmembrane domains. Current Opinion in Drug Discovery & Development 6: 620–632.

    CAS  Google Scholar 

  • Barrantes, F.J., 2004, Structural basis for lipid modulation of nicotinic acetylcholine receptor function. Brain Res. Rev. Brain Res. Rev. 47: 71–95.

    Article  CAS  Google Scholar 

  • Barrantes, F.J, 2007, Cholesterol effects on nicotinic acetylcholine receptor. J. Neurochem. 103 (Suppl. 1): 72–80.

    Article  CAS  PubMed  Google Scholar 

  • Blanton, M.P., Xie, Y., Dangott, L.J., Cohen, J.B., 1999, The steroid promegestone is a noncompetitive antagonist of the Torpedo nicotinic acetylcholine receptor that interacts with the lipid-protein interface. Mol. Pharmacol. 55: 269–278.

    CAS  PubMed  Google Scholar 

  • Bolotina, V., Omelyanenko, V., Heyes, B., Ryan, U., Bregestovski, P., 1989, Variations of membrane cholesterol alter the kinetics of Ca2+- dependent K+ channels and membrane fluidity in vascular smooth muscle cells. Pflügers Archiv.-Eur. J. Physiol. 415: 262–268.

    Article  CAS  Google Scholar 

  • Borroni, V., Baier, C.J., Lang, T., Bonini, I., White, M.M., Garbus I., Barrantes, F.J., 2007, Cholesterol depletion activates rapid internalization of submicron.sized acetylcholine receptor domains at the cell membrane. Molec. Membr. Biol. 24: 1–15.

    Article  CAS  Google Scholar 

  • Brannigan, G., Hénin, J., Law, R., Eckenhoff, R., Klein, M.L., 2008, Embedded cholesterol in the nicotinic acetylcholine receptor. Proc. Natl. Acad. Sci. USA 105: 14418–14423.

    Article  CAS  PubMed  Google Scholar 

  • Brown, D.A., London, E., 1998, Functions of lipid rafts in biological membranes. Annu. Rev. Cell Dev. Biol. 14: 111–136.

    Article  CAS  PubMed  Google Scholar 

  • Brown, D.A., London, E., 2000, Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J. Biol. Chem. 275: 17221–17224.

    Article  CAS  PubMed  Google Scholar 

  • Bruses, J., Chauvet, N., Rutishauser, U., 2001, Membrane lipid rafts are necessary for the maintenance of the (alpha)7 nicotinic acetylcholine receptor in somatic spines of ciliary neurons. J. Neurosci. 21: 504–512.

    CAS  PubMed  Google Scholar 

  • Campagna, J.A., Fallon, J. (2006), Lipid rafts are involved in C95 (4,8) agrin fragment-induced acetylcholine receptor clustering. Neuroscience 138: 123–132.

    Article  CAS  PubMed  Google Scholar 

  • Castresana, J., Fernandez-Ballester, G., Fernández, A.M., Laynez, J.L., Arrondo, J.-L.R., Ferragut, J.A., González-Ros, J.M., 1992, Protein structural effects of agonist binding to the nicotinic acetylcholine receptor. FEBS Lett. 314: 171–175.

    Article  CAS  PubMed  Google Scholar 

  • Chen, F., Quian, L., Yang, Z.H., Huan, Y., Ngo, S.T., Ruan, N.J., Wang, J., Schneider, C., Noakes, P.G., Ding, Y.Q., Mei, L., Luo, Z.G., 2007, Rapsyn interaction with calpain stabilizes AChR clusters at the neuromuscular junction. Neuron 55: 247–260.

    Article  CAS  PubMed  Google Scholar 

  • Corbin, J., Wang, H.H., Blanton, M.P., 1998, Identifying the cholesterol binding domain in the nicotinic acetylcholine receptor with [125I]azido-cholesterol. Biochim. Biophys. Acta 1414: 65–74.

    Article  CAS  PubMed  Google Scholar 

  • Criado, M., Eibl, H., Barrantes, F.J., 1982, Effects of lipids on acetylcholine receptor. Essential need of cholesterol for maintenance of agonist-induced state transitions in lipid vesicles. Biochemistry 21: 3622–3629.

    Article  CAS  PubMed  Google Scholar 

  • Criado, M., Eibl, H., Barrantes, F.J., 1984, Functional properties of the acetylcholine receptor incorporated in model lipid membranes. Differential effects of chain length and head group of phospholipids on receptor affinity states and receptor-mediated ion translocation. J. Biol. Chem. 259: 9188–9198.

    CAS  PubMed  Google Scholar 

  • da Costa, C.J., Baezinger, J.E., 2009, A lipid-dependent uncoupled conformation of the acetylcholine receptor. J. Biol. Chem. 284: 17819–17825.

    Article  CAS  Google Scholar 

  • Dalziel, A.W., Rollins, E.S., McNamee, M.G., 1980, The effect of cholesterol on agonist-induced flux reconstituted acetylcholine receptor vesicles. FEBS Lett. 122: 193–196.

    Article  CAS  PubMed  Google Scholar 

  • Dreger, M., Krauss, M., Herrmann, A., Hucho, F., 1997, Interactions of the nicotinic acetylcholine receptor transmembrane segments with the lipid bilayer in native receptor-rich membranes. Biochemistry 36: 839–847.

    Article  CAS  PubMed  Google Scholar 

  • Edidin, M., 1997, Lipid microdomains in cell surface membranes. Curr. Opin. Struct. Biol. 7: 528–532.

    Article  CAS  PubMed  Google Scholar 

  • Ellena, J.F., Blazing, M.A., McNamee, M.G., 1983, Lipid-protein interactions in reconstituted membranes containing acetylcholine receptor. Biochemistry 22: 5523–5535.

    Article  CAS  PubMed  Google Scholar 

  • Fernández, A.M., Fernandez-Ballester, G., Ferragut, J.A., González-Ros, J.M. 1993, Labeling of the nicotinic acetylcholine receptor by a photoactivatable steroid probe: effects of cholesterol and cholinergic ligands. Biochim. Biophys. Acta Bio-Membr. 1149: 135–144.

    Article  Google Scholar 

  • Fernandez-Ballester, G., Castresana, J., Fernandez, A.M., Arrondo, J.-L.R., Ferragut, J. A., Gonzalez-Ros, J.M., 1994, A role for cholesterol as a structural effector of the nicotinic acetylcholine receptor. Biochemistry 33: 4065–4071.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Ballester, G., Castresana, J., Arrondo, J.-.L.R., Ferragut, J.A., Gonzalez-Ros, J.M., 1992, Protein stability and interaction of the nicotinic acetylcholine receptor with cholinergic ligands studied by Fourier-transform infrared spectroscopy. Biochem. J. 288: 421–426.

    CAS  PubMed  Google Scholar 

  • Hall, Z.W., Lubit, B.W., Schwartz, J.H., 1981, Cytoplasmic actin in postsynaptic structures at the neuromuscular junction. J. Cell Biol. 90: 789–792.

    Article  CAS  PubMed  Google Scholar 

  • Hamouda, A.K., Chiara, D.C., Sauls, D., Cohen, J.B., Blanton, M.P. 2006, Cholesterol interacts with transmembrane alpha-helices M1, M3, and M4 of the Torpedo nicotinic acetylcholine receptor: photolabeling studies using [3H]Azicholesterol. Biochemistry 45: 976–986.

    Article  CAS  PubMed  Google Scholar 

  • Hancock, J. F., 2006, Lipid rafts: contentious only from simplistic standpoints. Nature Rev. Molec. Cell Biol. 7: 456–462.

    Article  CAS  Google Scholar 

  • Harder, T., Simons, K., 1999, Clusters of glycolipid and glycosylphosphatidyl inositol-anchored proteins in lymphoid cells: accumulation of actin regulated by local tyrosine phosphorylation. Eur. J. Immunol. 29: 556–562.

    Article  CAS  PubMed  Google Scholar 

  • Hell, S.W., 1997, Increasing the resolution of far-field fluorescence light microscopy by point-spread-function engineering. In: Lakowicz J. R. (ed), Topics in fluorescence spectroscopy, Plenum Press, New York, pp. 361–422.

    Google Scholar 

  • Hell, S.W., 2004, Strategy for far-field optical imaging and writing without diffraction limit. Phys. Lett. A 326: 140–145.

    Article  CAS  Google Scholar 

  • Hell, S.W., 2009, Microscopy and its focal switch. Nat. Meth. 6: 24–32.

    Article  CAS  Google Scholar 

  • Holmgren, J., Lonnroth, I., Svennerholm, L., 1973, Tissue receptor for cholera exotoxin: postulated structure from studies with GM1gangliosidea and related glycolipids. Infect. Immunol. 8: 208–214.

    CAS  Google Scholar 

  • Jacobson K., Dietrich, C., 1999, Looking at lipid rafts? Trends Cell Biol. 9: 87–91.

    Article  CAS  PubMed  Google Scholar 

  • Jones, O.T., McNamee, M.G., 1988, Annular and nonannular binding sites for cholesterol associated with the nicotinic acetylcholine receptor. Biochemistry 27: 2364–2374.

    Article  CAS  PubMed  Google Scholar 

  • Kellner, R., Baier, J., Willig, K.I., Hell, S.W., Barrantes, F.J., 2007, Nanoscale organization of nicotinic acetylcholine receptors revealed by STED microscopy. Neuroscience 144: 135–143.

    Article  CAS  PubMed  Google Scholar 

  • Kirkham, M., Fujita, A., Chadda, R., Nixon, S.J., Kurzchalia, T.V., Sharma, D.K., Pagano, R.E., Hancock, J.F., Mayor, S., Parton, R.G., 2005, Ultrastructural identification of uncoated caveolin-independent early endocytic vehicles. J. Cell Biol. 168: 465–476.

    Article  CAS  PubMed  Google Scholar 

  • Kishi, M., Kummer, T.T., Eglen, S.J., Sanes, J.R., 2005, LL5beta: a regulator of postsynaptic differentiation identified in a screen for synaptically enriched transcripts at the neuromuscular junction. J. Cell Biol. 169: 355–366.

    Article  CAS  PubMed  Google Scholar 

  • Kumari, S., Borroni, V., Chaudhry, A., Chanda, B., Massol, R., Mayor, S., Barrantes, F.J., 2008, Nicotinic acetylcholine receptor is internalized via a Rac-dependent dynamin-independent endocytic pathway. J. Cell Biol. 181: 1179–1193.

    Article  CAS  PubMed  Google Scholar 

  • Kummer, T.T., Misgeld, T., Lichtman, J.W., Sanes, J.R., 2004, Nerve independent formation of a topologically complex postsynaptic apparatus. J.Cell Biol. 164: 1077–1087.

    Article  CAS  PubMed  Google Scholar 

  • Kusumi, A., Suzuki, K., 2003, Toward understanding the dynamics of membrane-raft-based molecular interactions. Biochim Biophys. Acta 1746: 234–251.

    Article  Google Scholar 

  • Kwik, J., Boyle, S., Fooksman, D., Margolis, L., Sheetz, M.P., Edidin, M., 2003, Membrane cholesterol, lateral mobility, and the phosphatidylinositol 4,5-bisphosphate-dependent organization of cell actin. Proc. Natl Acad. Sci. U.S.A. 100: 13964–13969.

    Article  CAS  PubMed  Google Scholar 

  • Le, P.U., Guay, G., Altschuler, Y., Nabi, I.R., 2002, Caveolin-1 is a negative regulator of caveolae-mediated endocytosis to the endoplasmic reticulum. J. Biol. Chem. 277: 371–3379.

    Google Scholar 

  • Lichtenberg, D., Goñi, F.M., Heerklotz, H., 2005, Detergent-resistant membranes should not be identified with membrane rafts. Trends Biochem. Sci. 30: 430–436.

    Article  CAS  PubMed  Google Scholar 

  • Lin, W., Dominguez, B., Yang, J., Aryal, P., Brandon, E.P., Gage, F.H., Lee, K.F., 2005, Neurotransmitter acetylcholine negatively regulates neuromuscular synapse formation by a Cdk5-dependent mechanism. Neuron 46: 569–579.

    Article  CAS  PubMed  Google Scholar 

  • Mantipragada, S.B., Horvath, L.I., Arias, H.R., Schwarzmann, G., Sandhoff, K., Barrantes, F.J., Marsh, D., 2003, Lipid-protein interactions and effect of local anesthetics in acetylcholine receptor-rich membranes from Torpedo marmorata electric organ. Biochemistry 42: 9167–9175.

    Article  CAS  PubMed  Google Scholar 

  • Marchand, S., Devillers-Thiery, A., Pons, S., Changeux, J. P., Cartaud, J., 2002, Rapsyn escorts the nicotinic acetylcholine receptor along the exocytic pathway via association with lipid rafts. J. Neurosci. 22: 8891–8901.

    CAS  PubMed  Google Scholar 

  • Marcheselli, V., Daniotti, J.L., Vidal, A.C., Maccioni, H., Marsh, D., Barrantes F.J., 1993, Gangliosides in acetylcholine receptor-rich membranes from Torpedo marmorata and Discopyge tschudii. Neurochem Res. 18: 599–603.

    Article  CAS  PubMed  Google Scholar 

  • Marsh, D., Barrantes, F.J. (1978), Immobilized lipid in acetylcholine receptor-rich membranes from Torpedo marmorata. Proc. Natl Acad. Sci. U.S.A. 75: 4329–4333.

    Article  CAS  PubMed  Google Scholar 

  • Marsh, D., Watts, A., Barrantes, F.J., 1981, Phospholipid chain immobilization and steroid rotational immobilization in acetylcholine receptor-rich membranes from Torpedo marmorata. Biochim. Biophys. Acta 645: 97–101.

    Article  CAS  PubMed  Google Scholar 

  • Maxfield, F.R., 2002, Plasma membrane microdomains. Curr. Opin. Cell Biol. 14: 483–487.

    Article  CAS  PubMed  Google Scholar 

  • McNamee, M.G., Ellena, J. F., Dalziel, A.W., 1982, Lipid-protein interactions in membranes containing the acetylcholine receptor. Biophys. J. 37: 103–104.

    Article  CAS  PubMed  Google Scholar 

  • Middlemas, D.S., Raftery, M.A., 1987, Identification of subunits of acetylcholine receptor that interact with a cholesterol photoaffinity probe. Biochemistry 26: 1219–1223.

    Article  CAS  PubMed  Google Scholar 

  • Mittaud, P., Marangi, P.A., Erb-Vögtli, S., Fuhrer, C., 2001, Agrin-induced activation of acetylcholine receptor-bound src family kinases requires rapsyn and correlates with acetylcholine receptor clustering. J. Biol. Chem. 276: 14505–14513.

    CAS  PubMed  Google Scholar 

  • Moransard, M., Borges, L.S., Willmann, R., Marangi, P.A., Brenner, H.R., Ferns, M.J., Fuhrer, C., 2003, Agrin regulates rapsyn interaction with surface acetylcholine receptors, and this underlies cytoskeletal anchoring and clustering. J. Biol. Chem. 278: 7350–7359.

    Article  CAS  PubMed  Google Scholar 

  • Pediconi, M.F., Gallegos, C.E., De los Santos, E.B., Barrantes, F.J., 2004, Metabolic cholesterol depletion hinders cell-surface trafficking of the nicotinic acetylcholine receptor. Neuroscience 128: 239–249.

    Article  CAS  PubMed  Google Scholar 

  • Phillips, D.W., Vladeta, D., Han, H., Noakes P.G., 1997, Rapsyn and agrin slow the metabolic degradation of the acetylcholine receptor. Mol. Cel. Neurosci. 10: 16–26.

    Article  CAS  Google Scholar 

  • Pichler, H., Riezman, H., 2004, Where sterols are required for endocytosis. Biochim. Biophys. Acta 1666: 51–61.

    Article  CAS  PubMed  Google Scholar 

  • Popot, J.L., Demel, R.A., Sobel, A., van Deenen, L.L., Changeux, J.P., 1978, Interaction of the acetylcholine (nicotinic) receptor protein from Torpedo marmorata electric organ with monolayers of pure lipids. Eur..J. Biochem. 85: 27–42.

    Article  CAS  PubMed  Google Scholar 

  • Prives, J., Fulton, A.B., Penman, S., Daniels, M.P., Christian, C.N., 1982, Interaction of the cytoskeletal framework with acetylcholine receptor on the surface of embryonic muscle cells in culture. J. Cell Biol. 92: 231–236.

    Article  CAS  PubMed  Google Scholar 

  • Rankin, S.E., Addona, G.H., Kloczewiak, M.A., Bugge, B., Miller, K.W., 1997, The cholesterol dependence of activation and fast desensitization of the nicotinic acetylcholine receptor. Biophys J. 73: 2446–2455.

    Article  CAS  PubMed  Google Scholar 

  • Ripley, B.D., 1979, Test of randomness for spatial point patterns. J. R. Stat. Soc. B 41: 368–374.

    Google Scholar 

  • Roccamo, A.M., Pediconi, M.F., Aztiria, E., Zanello, L., Wolstenholme, A., Barrantes F.J., 1999, Cells defective in sphingolipids biosynthesis express low amounts of muscle nicotinic acetylcholine receptor. Eur. J. Neurosci. 11: 1615–1623.

    Article  CAS  PubMed  Google Scholar 

  • Sanes, J.R., Lichtman, J.W., 2001, Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nat. Rev. Neurosci. 2: 791–805.

    Article  CAS  PubMed  Google Scholar 

  • Schutz, G.J., Kada, G., Pastushenko, V.P., Schindler, H., 2000, Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J 19: 892–901.

    Article  CAS  PubMed  Google Scholar 

  • Simons, K., Ikonen, E., 1997, Functional rafts in cell membranes. Nature 387: 569–572.

    Article  CAS  PubMed  Google Scholar 

  • Stetzkowski-Marden, F., Gaus, K., Recouvreur, M., Cartaud, A., Cartaud, J., 2006, Agrin elicits membrane lipid condensation at sites of acetylcholine receptor clusters in C2C12 myotubes. J. Lipid Res. 47: 2121–2133.

    Article  CAS  PubMed  Google Scholar 

  • Subtil, A., Gaidarov, I., Kobylarz, K., Lampson, M.A., Keen, J.H., McGraw, T.E., 1999, Acute cholesterol depletion inhibits clathrin-coated pit budding. Proc. Natl Acad. Sci. U.S.A. 96: 6775–6780.

    Article  CAS  PubMed  Google Scholar 

  • Turner, M.S., Sens, P., Socci, N.D., 2005, Nonequilibrium raft-like domains under continuous recycling. Phys. Rev. Lett. 95: 168301.

    Article  PubMed  CAS  Google Scholar 

  • Vrljic, M., Nishimura, S.Y., Moerner, W. E., McConnell, H.M., 2005, Cholesterol depletion suppresses the translational diffusion of class II major histocompatibility complex proteins in the plasma membrane. Biophys J. 88: 334–347.

    Article  CAS  PubMed  Google Scholar 

  • Wallace, B.G., 1992, Mechanism of agrin-induced acetylcholine receptor aggregation. J. Neurobiol. 23: 592–604.

    Article  CAS  PubMed  Google Scholar 

  • Warnock, D.E., Roberts, C., Lutz, M.S., Blackburn, W.A., Young, W.W. Jr, Baenziger, J.U., 1993, Determination of plasma membrane lipid mass and composition in cultured Chinese hamster ovary cells using high gradient magnetic affinity chromatography. J. Biol. Chem. 268: 10145–10153.

    CAS  PubMed  Google Scholar 

  • Willmann, R., Fuhrer, C., 2002, Neuromuscular synaptogenesis: clustering of acetylcholine receptors revisited. Cell Mol Life Sci 59: 1296–1316.

    Article  CAS  PubMed  Google Scholar 

  • Willmann, R., Pun, S., Stallmach, L., Sadasivam, G., Santos, A.F., Caroni, P., Fuhrer, C., 2006, Cholesterol and lipid microdomains stabilize the postsynapse at the neuromuscular junction. EMBO. J. 25: 4050–4060.

    Article  CAS  PubMed  Google Scholar 

  • Xu, X., Bittman. R., Duportail, G., Heissler, D., Vilcheze, C., London, E., 2001, Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). Comparison of cholesterol to plant, fungal, and disease-associated sterols and comparison of sphingomyelin, cerebrosides, and ceramide. J. Biol. Chem. 276: 33540–33546.

    Article  CAS  PubMed  Google Scholar 

  • Zanello, L.P., Aztiria, E., Antollini, S., Barrantes, F.J., 1996, Nicotinic acetylcholine receptor channels are influenced by the physical state of their membrane environment. Biophys. J. 70, 2155–2164.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, D., Xiong, W.C., Mei, L., 2006, Lipid rafts serve as a signaling platform for nicotinic acetylcholine receptor clustering. J. Neurosci. 26: 4841–4851.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Experimental work described in this Chapter was supported in part by PICT 5-20155 from the Ministry of Science and Technology of Argentina; PIP No. 6367 from the Argentinian Scientific Research Council (CONICET); Philip Morris USA Inc. and Philip Morris International; and PGI No. 24/B135 from Universidad Nacional del Sur, Argentina, to F.J.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Barrantes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Barrantes, F.J. (2010). Cholesterol Effects on Nicotinic Acetylcholine Receptor: Cellular Aspects. In: Harris, J. (eds) Cholesterol Binding and Cholesterol Transport Proteins:. Subcellular Biochemistry, vol 51. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8622-8_17

Download citation

Publish with us

Policies and ethics