Skip to main content

Molecular Modeling and Reengineering of A3 Adenosine Receptors

  • Chapter
  • First Online:
A3 Adenosine Receptors from Cell Biology to Pharmacology and Therapeutics

Abstract

The development of ligands for the A3 adenosine receptor (AR) has been directed mainly by traditional medicinal chemistry, but the influence of structure-based approaches is increasing. Rhodopsin-based homology modeling had been used for many years to obtain three-dimensional models of the A3AR, and different A3AR models have been published describing the hypothetical interactions with known A3AR ligands having different chemical scaffolds. The recently published structure of the human A2AAR provides a new template for GPCR modeling, however even use of the A2AAR as a template for modeling other AR subtypes is still imprecise. The models compared here are based on bovine rhodopsin, the human β2-adrenergic receptor, and the A2AAR as templates. The sequence of the human A3AR contains only one cysteine residue (Cys166) in the second extracellular loop (EL2), which putatively forms a conserved disulfide bridge with the respective cysteine residues of TM3 (Cys83). Homology models of the A3AR have been helpful in providing structural hypotheses for the design of new ligands. Site-directed mutagenesis of the A3AR shows an important role in ligand recognition for specific residues in TM3, TM6 and TM7. The approach of neoceptors is a means of reengineering a given GPCR, such as the A3AR, to recognize a chemically tailored agonist ligand, and to no longer recognize the native agonist. It can serve to validate a molecular model, by establishing proximity of functional groups in the pair of neoceptor and its complementary tailored agonist ligand, assuming that this pair is pharmacologically orthogonal with respect to the native species. The neoceptor approach may also be useful in mechanistic elucidation and is projected for future use in gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Becker OM, Marantz Y, Shacham S, Inbal B, Heifetz A, Kalid O, Bar-Haim S, Warshaviak D, Fichman M, Noiman S (2004) G protein-coupled receptors: in silico drug discovery in 3D. Proc Natl Acad Sci U S A 101:11304–11309

    Article  CAS  PubMed  Google Scholar 

  • Chen A, Gao Z, Barak D, Liang B, Jacobson K (2001) Constitutive activation of A3 adenosine receptors by site-directed mutagenesis. Biochem Biophys Res Commun 284:596–601

    Article  CAS  PubMed  Google Scholar 

  • Cherezov V, Rosenbaum D, Hanson M, Rasmussen S, Thian F, Kobilka T, Choi H, Kuhn P, Weis W, Kobilka B, Stevens R (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318:1258–1265

    Article  CAS  PubMed  Google Scholar 

  • Duong HT, Gao ZG, Jacobson KA (2005) Nucleoside modification and concerted mutagenesis of the human A3 adenosine receptor to probe interactions between the 2-position of adenosine analogs and Gln167 in the second extracellular loop. Nucleos Nucleot Nucleic Acids 24:1507–1517

    Article  CAS  Google Scholar 

  • Fanelli F, De Benedetti PG (2005) Computational modeling approaches to structure-function analysis of G protein-coupled receptors. Chem Rev 105:3297–3351

    Google Scholar 

  • Fishman P, Bar-Yehuda S (2003) Pharmacology and therapeutic applications of A3 receptor subtype. Curr Top Med Chem 3:463–469

    Article  CAS  PubMed  Google Scholar 

  • Fredholm BB, AP IJ, Jacobson KA, Klotz KN, Linden J (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53:527–552

    CAS  PubMed  Google Scholar 

  • Furlong T, Pierce K, Selbie L, Shine J (1992) Molecular characterization of a human brain adenosine A2 receptor. Brain Res Mol Brain Res 15:62–66

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, Chen A, Barak D, Kim S, Müller C, Jacobson K (2002a) Identification by site-directed mutagenesis of residues involved in ligand recognition and activation of the human A3 adenosine receptor. J Biol Chem 277:19056–19063

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, Kim S, Biadatti T, Chen W, Lee K, Barak D, Kim S, Johnson C, Jacobson K (2002b) Structural determinants of A3 adenosine receptor activation: nucleoside ligands at the agonist/antagonist boundary. J Med Chem 45:4471–4484

    Article  CAS  PubMed  Google Scholar 

  • Gao ZG, Kim SK, Gross AS, Chen A, Blaustein JB, Jacobson KA (2003) Identification of essential residues involved in the allosteric modulation of the human A3 adenosine receptor. Mol Pharmacol 63:1021–1031

    Article  CAS  PubMed  Google Scholar 

  • Gao ZG, Duong HT, Sonina T, Kim SK, Van Rompaey P, Van Calenbergh S, Mamedova L, Kim HO, Kim MJ, Kim AY, Liang BT, Jeong LS, Jacobson KA (2006) Orthogonal activation of the reengineered A3 adenosine receptor (neoceptor) using tailored nucleoside agonists. J Med Chem 49:2689–2702

    Google Scholar 

  • Jaakola V, Griffith M, Hanson M, Cherezov V, Chien E, Lane J, Ijzerman A, Stevens R (2008) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322:1211–1217.

    Google Scholar 

  • Jacobson KA (1998) Adenosine A3 receptors: novel ligands and paradoxical effects. Trends Pharmacol Sci 19:184–191

    Article  CAS  PubMed  Google Scholar 

  • Jacobson K, Gao Z, Chen A, Barak D, Kim S, Lee K, Link A, Rompaey P, Van Calenbergh S, Liang B (2001) Neoceptor concept based on molecular complementarity in GPCRs: a mutant adenosine A3 receptor with selectively enhanced affinity for amine-modified nucleosides. J Med Chem 44:4125–4136

    Google Scholar 

  • Jacobson KA, Ohno M, Duong HT, Kim SK, Tchilibon S, Cesnek M, Holy A, Gao ZG (2005) A neoceptor approach to unraveling microscopic interactions between the human A2A adenosine receptor and its agonists. Chem Biol 12:237–247

    Article  CAS  PubMed  Google Scholar 

  • Jacobson KA, Gao ZG (2006) Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 5:247–264

    Article  CAS  PubMed  Google Scholar 

  • Jacobson KA, Gao ZG, Liang BT (2007) Neoceptors: reengineering GPCRs to recognize tailored ligands. Trends Pharmacol Sci 28:111–116

    Article  CAS  PubMed  Google Scholar 

  • Kristiansen K (2004) Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G-protein-coupled receptors: molecular modeling and mutagenesis approaches to receptor structure and function. Pharmacol Ther 103:21–80

    Article  CAS  PubMed  Google Scholar 

  • Libert F, Van Sande J, Lefort A, Czernilofsky A, Dumont JE, Vassart G, Ensinger HA, Mendla KD (1992) Cloning and functional characterization of a human A1 adenosine receptor. Biochem Biophys Res Commun 187(2):919–926

    Google Scholar 

  • Linden J (2001) Molecular approach to adenosine receptors: receptor-mediated mechanisms of tissue protection. Annu Rev Pharmacol Toxicol 41:775–787

    Article  CAS  PubMed  Google Scholar 

  • Martinelli A, Tuccinardi T (2008) Molecular modeling of adenosine receptors: new results and trends. Med Res Rev 28(2):247–277

    Google Scholar 

  • Moro S, Hoffmann C, Jacobson KA (1999) Role of the extracellular loops of G protein-coupled receptors in ligand recognition: A molecular modeling study of the human P2Y1 receptor. Biochemistry 38:3498–3507

    Article  CAS  PubMed  Google Scholar 

  • Moro S, Spalluto G, Jacobson KA (2005) Techniques: Recent developments in computer-aided engineering of GPCR ligands using the human adenosine A3 receptor as an example. Trends Pharmacol Sci 26:44–51

    Article  CAS  PubMed  Google Scholar 

  • Muller CE (2003) Medicinal chemistry of adenosine A3 receptor ligands. Curr Top Med Chem 3:445–462

    Article  CAS  PubMed  Google Scholar 

  • Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745

    Google Scholar 

  • Palmer TM, Stiles GL (2000) Identification of threonine residues controlling the agonist-dependent phosphorylation and desensitization of the rat A3 adenosine receptor. Mol Pharmacol 57:539–545

    CAS  PubMed  Google Scholar 

  • Parsons M, Young L, Lee JE, Jacobson KA, Liang BT (2000) Distinct cardioprotective effects of adenosine mediated by differential coupling of receptor subtypes to phospholipases C and D. FASEB J 14:1423–1431

    Article  CAS  PubMed  Google Scholar 

  • Pierce K, Furlong T, Selbie L, Shine J (1992) Molecular cloning and expression of an adenosine A2b receptor from human brain. Biochem Biophys Res Commun 187:86–93

    Article  CAS  PubMed  Google Scholar 

  • Presland J (2005) Identifying novel modulators of G protein-coupled receptors via interaction at allosteric sites. Curr Opin Drug Discov Dev 8:567–576

    CAS  Google Scholar 

  • Rorke S, Holgate ST (2002) Targeting adenosine receptors: novel therapeutic targets in asthma and chronic obstructive pulmonary disease. Am J Respir Med 1:99–105

    CAS  PubMed  Google Scholar 

  • Rosenbaum D, Cherezov V, Hanson M, Rasmussen S, Thian F, Kobilka T, Choi H, Yao X, Weis W, Stevens R, Kobilka B (2007) GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science 318:1266–1273

    Article  CAS  PubMed  Google Scholar 

  • Salvatore CA, Jacobson MA, Taylor HE, Linden J, Johnson RG (1993) Molecular cloning and characterization of the human A3 adenosine receptor. Proc Natl Acad Sci U S A 90:10365–10369

    Article  CAS  PubMed  Google Scholar 

  • Stone TW (2002) Purines and neuroprotection. Adv Exp Med Biol 513:249–280

    CAS  PubMed  Google Scholar 

  • Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson R, Leslie AG, Tate CG, Schertler GF (2008) Structure of a beta1-adrenergic G-protein-coupled receptor. Nature 454:486–491

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Kenneth A Jacobson acknowledges support by the Intramural Research Program of the NIH, National Institute of Diabetes and Digestive and Kidney Diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Moro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Moro, S., Morizzo, E., Jacobson, K.A. (2010). Molecular Modeling and Reengineering of A3 Adenosine Receptors. In: Borea, P. (eds) A3 Adenosine Receptors from Cell Biology to Pharmacology and Therapeutics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3144-0_8

Download citation

Publish with us

Policies and ethics