Skip to main content

LMS-Based Digital Assisting for Data Converters

  • Chapter
  • First Online:
Analog Circuit Design
  • 2263 Accesses

Abstract

Aggressive device scaling down to the nano-meter range offers IC designers both opportunities and challenges. Digital designers benefit greatly from the system flexibility and affordability, but analog/RF designers are struggling with flawed devices. Since scaled devices are faster and smaller, the incentive to use such strengths advantageously has prompted many efforts to overcome analog imperfection by digital means. Designers are introducing more DSP functionality to enhance the performance of analog/RF systems. More intelligence is being built into analog/RF designs as in linear PA, RF receiver front-end, ADC/DAC, digital PLL, etc. Such pervasive design techniques with digital assisting will prevail in the future SOC design. After a brief overview of the trend, examples of the LMS-based calibration algorithm applied to the pipeline and CT cascaded ΔΣ modulator are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Z. Boyacigiller, B. Weir, and P. Bradshaw, “An error-correcting 14 b ∕ 20 μs CMOS A/D converter,” ISSCC Dig. Tech. Papers, pp. 62–63, Feb. 1981.

    Google Scholar 

  2. J. Domogalla, “Combination of analog to digital converter and error correction circuit,” US Patent, 4451821, May 1984.

    Google Scholar 

  3. H. S. Lee, D. A. Hodges, and P. R. Gray, “A self-calibrating 15 bit CMOS A/D converter,” IEEE J. Solid-State Circuits, vol. SC-19, pp. 813–819, Dec. 1984.

    Article  Google Scholar 

  4. S. H. Lewis and P. R. Gray, “A pipelined 5-Msample/s 9-bit analog-to digital converter,” IEEE J. Solid-State Circuits, vol. SC-22, pp. 954–961, Dec. 1987.

    Article  Google Scholar 

  5. B. S. Song, M. F. Tompsett, and K. R. Lakshmikumar, “A 12-bit 1 Msample/s capacitor error-averaging pipelined A/D converter,” IEEE J. Solid-State Circuits, vol. SC-23, pp. 1324–1333, Dec. 1988.

    Article  Google Scholar 

  6. B. S. Song, S. H. Lee, and M. F. Tompsett, “A 10-b 15-MHz CMOS recycling two-step A/D converter,” IEEE J. Solid-State Circuits, vol. SC-25, pp. 1328–1338, Dec. 1990.

    Article  Google Scholar 

  7. Y. Lin, B. Kim, and P. Gray, “A 13-b 2.5-MHz self-calibrated pipelined A/D converter in 3 μ CMOS,” IEEE J. Solid-State Circuits, vol. SC-26, pp. 628–636, Apr. 1991.

    Article  Google Scholar 

  8. MAX1200, “ + 5 V Single-Supply, 1MS/s, 16-Bit Self-Calibrating ADC,” Maxim, 1998.

    Google Scholar 

  9. S. H. Lee and B. S. Song, “Digital-domain calibration of multistep analog-to-digital converters,” IEEE J. Solid-State Circuits, vol. SC-27, pp. 1679–1688, Dec. 1992.

    Article  Google Scholar 

  10. A. N. Karanicolas, H. S. Lee, and K. L. Bacrania, “A 15-b 1-Msample/s digitally self-calibrated pipeline ADC,” IEEE J. Solid-State Circuits, vol. SC-28, pp. 1207–1215, Dec. 1993.

    Article  Google Scholar 

  11. T. H. Shu, B. S. Song, and K. Bacrania, “A 13-b 10-Msample/sec ADC digitally calibrated with real-time oversampling calibrator,” IEEE J. Solid-State Circuits, vol. SC-30, pp. 443–452, Apr. 1995.

    Google Scholar 

  12. U. K. Moon and B. S. Song, “Background digital calibration techniques for pipelined ADCs,” IEEE Trans. Circuits Syst. II, vol. 44, pp. 102–109, Feb. 1997.

    Article  Google Scholar 

  13. S. U. Kwak, B. S. Song, and K. Bacrania, “A 15-b, 5-Msample/s low-spurious CMOS ADC,” IEEE J. Solid-State Circuits, vol. SC-32, pp. 1866–1875, Dec. 1997.

    Article  Google Scholar 

  14. J. Ingimo and B. Wooley, “A continuously calibrated 12-b, 10-MS/s, 3.3-V A/D converter,” IEEE J. Solid-State Circuits, vol. SC-33, pp. 1920–1930, Dec. 1998.

    Article  Google Scholar 

  15. O. E. Erdogan, P. J. Hurst, and S. H. Lewis, “A 12-b digital-background-calibrated algorithmic ADC with − 90-dB THD,” IEEE J. Solid-State Circuits, vol. SC-34, pp. 1812–1820, Dec. 1999.

    Article  Google Scholar 

  16. R. C. Dixon, “Spread Spectrum Systems,” New York: Wiley, 1976.

    Google Scholar 

  17. R. Jewett, K. Poulton, K. C. Hsieh, and J. Doernberg, “A 12b 128 Msample/s ADC with 0.05LSB DNL,” ISSCC Dig. Tech. Papers, pp. 138–139, Feb. 1997.

    Google Scholar 

  18. J. Ming and S. H. Lewis, “An 8-bit 80-Msample/s pipelined analog-to-digital converter with background calibration,” IEEE J. Solid-State Circuits, vol. 36, pp. 1489–1497, Oct. 2001.

    Article  Google Scholar 

  19. E. Siragursa and I. Galton, “A digitally enhanced 1.8-V 15-bit 40-MSample/s CMOS pipelined ADC,” IEEE J. Solid-State Circuits, vol. 39, pp. 2126–2138, Dec. 2004.

    Article  Google Scholar 

  20. H. C. Liu, Z. M. Lee, and J. T. Wu, “A 15-b 40-MS/s CMOS pipelined analog-to-digital converter with digital background calibration,” IEEE J. Solid-State Circuits, vol. SC-40, pp. 1047–1056, May 2005.

    Google Scholar 

  21. B. Widrow, J. McCool, and M. Ball, “The complex LMS algorithm,” IEEE Proc., vol. 59, p. 719, Apr. 1971.

    Article  Google Scholar 

  22. C. H. Heng, M. Gupta, S. H. Lee, D. Kang, and B. S. Song, “A CMOS TV tuner/demodulator IC with digital image rejection,” IEEE J. Solid-State Circuits, vol. SC-40, pp. 2525–2535, Dec. 2005.

    Article  Google Scholar 

  23. S. Lerstaveesin and B. S. Song, “A complex image rejection circuit using sign detection only,” IEEE J. Solid-State Circuits, vol. SC-41, pp. 2693–2702, Dec. 2006.

    Article  Google Scholar 

  24. M. Gupta and B. S. Song, “A 1.8 GHz spur-cancelled fractional-N frequency synthesizer with LMS-based DAC gain calibration,” IEEE J. Solid-State Circuits, vol. SC-41, pp. 2842–2851, Dec. 2006.

    Article  Google Scholar 

  25. S. T. Ryu, S. Ray, B. S. Song, G. H. Cho, and K. Bacrania, “A 14-b linear capacitor self-trimming pipelined ADC,” IEEE J. Solid-State Circuits, vol. SC-39, pp. 2046–2051, Nov. 2004.

    Google Scholar 

  26. Y. S. Shu and B. S. Song, “A 15 b-linear, 20 MS/s, 1.5 b/stage pipelined ADC digitally calibrated with signal-dependent dithering,” IEEE J. Solid-State Circuits, vol. SC-43, pp. 342–350, Feb. 2008.

    Article  Google Scholar 

  27. B. Murman and B. Boser, “A 12 b 75 MS/s pipelined ADC using open-loop residue amplification,” IEEE J. Solid-State Circuits, vol. SC-39, pp. 2040–2050, Dec. 2003.

    Article  Google Scholar 

  28. J. P. Keane, P. J. Hurst and S. H. Lewis “Background interstage gain calibration technique for pipelined ADCs,” IEEE Trans. Circuits Syst. I, vol. 52, pp. 32–43, Jan. 2005.

    Article  Google Scholar 

  29. A. Panigada and I. Galton, “A 130 mW 100 MS/s pipelined ADC with 69 dB SNDR enabled by digital harmonic distortion correction,” ISSCC Dig. Tech. Papers, pp. 162–163, Feb. 2009.

    Google Scholar 

  30. O. Oliaei, “Design of continuous-time sigma-delta modulators with arbitrary feedback waveform,” IEEE Trans. Circuits Syst. II, vol. 50, no. 8, pp. 437–444, Aug. 2003.

    Article  Google Scholar 

  31. L.J. Breems, R. Rutten, and G. Wetzker, “A cascaded continuous-time ΣΔ modulator with 67-dB dynamic range in 10-MHz bandwidth,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2152–2160, Feb. 2004.

    Article  Google Scholar 

  32. L.J. Breems, R. Rutten, R.H.M. van Veldhoven, and G. van der Weide, “A 56 mW continuous-time quadrature cascaded ΣΔ Modulator with 77 dB DR in a near zero-IF 20 MHz band,” IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2696–2705, Dec. 2007.

    Article  Google Scholar 

  33. Y. S. Shu, B. S. Song, and K. Bacrania, “A 65 nm CMOS CT ΔΣ modulator with 81 dB DR and 8 MHz BW auto-tuned by pulse injection,” ISSCC Dig. Tech. Papers, pp. 500–501, Feb. 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bang-Sup Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Song, BS. (2010). LMS-Based Digital Assisting for Data Converters. In: Roermund, A., Casier, H., Steyaert, M. (eds) Analog Circuit Design. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3083-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3083-2_1

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3082-5

  • Online ISBN: 978-90-481-3083-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics