Skip to main content

Research Trends for Flexor Tendon Repair

  • Chapter
  • 1342 Accesses

Abstract

Basic science research on the biology, repair, and rehabilitation of intrasynovial flexor tendon injuries has led to major advances in the clinical management of these injuries. Clinically applicable animal models have been developed to test novel treatments prior to clinical use. Initial research efforts focused on improving the biomechanics of the suture repair and reducing adhesions during healing through passive motion rehabilitation. Recent trends for flexor tendon repair include biological and biomaterial approaches to improve healing. Treatment of the tendon surface with natural and synthetic materials has led to dramatic improvements in the gliding properties of the tendons, and hence the function of the digit. Development of biofactor delivery systems has allowed investigators to test the effects of growth factors for enhanced flexor tendon healing. Application of these new biomaterials to intrasynovial flexor tendon repair has the potential to improve both tendon function (by improving the gliding properties of the tendon) and tendon strength (by enhancing extracellular matrix synthesis).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beredjiklian PK (2003) Biologic aspects of flexor tendon laceration and repair. J Bone Joint Surg Am. American Volume 85-A:539–550

    Google Scholar 

  2. Gelberman RH, Vandeberg JS, Manske PR, Akeson WH (1985) The early stages of flexor tendon healing: a morphologic study of the first fourteen days. J Hand Surg Am 10:776–784

    PubMed  CAS  Google Scholar 

  3. Tanaka T, Amadio PC, Zhao C, Zobitz ME, Yang C, An KN (2004) Gliding characteristics and gap formation for locking and grasping tendon repairs: a biomechanical study in a human cadaver model. J Hand Surg 29:6–14.

    Article  Google Scholar 

  4. Zhao C, Amadio PC, Paillard P et al (2004) Digital resistance and tendon strength during the first week after flexor digitorum profundus tendon repair in a canine model in vivo. J Bone Joint Surg Am 86-A:320–327.

    PubMed  Google Scholar 

  5. Khan U, Kakar S, Akali A et al (2000) Modulation of the formation of adhesions during the healing of injured tendons. J Bone Joint Surg Am 82:1054–1058.

    Article  CAS  Google Scholar 

  6. Gelberman RH, Boyer MI, Brodt MD et al (1999) The effect of gap formation at the repair site on the strength and excursion of intrasynovial flexor tendons. An experimental study on the early stages of tendon-healing in dogs. J Bone Joint Surg Am 81:975–982.

    Article  PubMed  CAS  Google Scholar 

  7. Molloy T, Wang Y, Murrell G (2003) The roles of growth factors in tendon and ligament healing. Sports Medicine 33:381–394.

    Article  PubMed  Google Scholar 

  8. Albright J (1987) The scientific basis of orthopaedics. Appleton and Lange, Norwalk, CT.

    Google Scholar 

  9. Mast BA (1997) Healing in other tissues. Surgical Clinics of North America 77:529–547.

    Article  PubMed  CAS  Google Scholar 

  10. Hyman J, Rodeo SA (2000) Injury and repair of tendons and ligaments. Physical Medicine and Rehabilitation Clinics of North America 11:267–288.

    PubMed  CAS  Google Scholar 

  11. Woo SL, Hildebrand K, Watanabe N et al (1999) Tissue engineering of ligament and tendon healing. Clin Orthop Relat Res 367(suppl):S312–323.

    Article  Google Scholar 

  12. Gelberman RH, Khabie V, Cahill CJ (1991) The revascularization of healing flexor tendons in the digital sheath. A vascular injection study in dogs. J Bone Joint Surg Am 73:868–881.

    PubMed  CAS  Google Scholar 

  13. Silva MJ, Brodt MD, Boyer MI et al (1999) Effects of increased in vivo excursion on digital range of motion and tendon strength following flexor tendon repair. J Orthop Res 17:777–783.

    Article  PubMed  CAS  Google Scholar 

  14. Lieber RL, Amiel D, Kaufman KR et al (1996) Relationship between joint motion and flexor tendon force in the canine forelimb. J Hand Surg Am 21:957–962.

    Article  PubMed  CAS  Google Scholar 

  15. Lieber RL, Silva MJ, Amiel D, Gelberman RH (1999) Wrist and digital joint motion produce unique flexor tendon force and excursion in the canine forelimb. J Biomech 32:175–181.

    Article  PubMed  CAS  Google Scholar 

  16. Boyer MI, Gelberman RH, Burns ME et al (2001) Intrasynovial flexor tendon repair. An experimental study comparing low and high levels of in vivo force during rehabilitation in canines. J Bone Joint Surg Am 83-A:891–899.

    PubMed  CAS  Google Scholar 

  17. Chan BP, Chan KM, Maffulli N et al (1997) Effect of basic fibroblast growth factor. An in vitro study of tendon healing. Clin Orthop Relat Res 342:239–247.

    Article  PubMed  Google Scholar 

  18. Chan BP, Fu S, Qin L et al (2000) Effects of basic fibroblast growth factor (bFGF) on early stages of tendon healing: a rat patellar tendon model. Acta Orthopaedica Scandinavica 71:513–518.

    Article  PubMed  CAS  Google Scholar 

  19. Chang J, Thunder R, Most D et al (2000) Studies in flexor tendon wound healing: neutralizing antibody to TGF-betal increases postoperative range of motion. Plastic and Reconstructive Surgery 105:148–155.

    Article  PubMed  CAS  Google Scholar 

  20. Yoshikawa Y, Abrahamsson SO (2001) Dose-related cellular effects of platelet-derived growth factor-BB differ in various types of rabbit tendons in vitro. Acta Orthopaedica Scandinavica 72:287–292.

    Article  PubMed  CAS  Google Scholar 

  21. Matthews P, Richards H (1974) The repair potential of digital flexor tendons. An experimental study. Journal of Bone and Joint Surgery. British Volume 56-B:618–625.

    PubMed  CAS  Google Scholar 

  22. Thomas SC, Jones LC, Hungerford DS (1986) Hyaluronic acid and its effect on postoperative adhesions in the rabbit flexor tendon. A preliminary look. Clin Orthop Relat Res 206:281–289.

    PubMed  CAS  Google Scholar 

  23. Daniel JC, Mills DK (1988) Proteoglycan synthesis by cells cultured from regions of the rabbit flexor tendor. Connective Tissue Research 17:215–230.

    Article  PubMed  CAS  Google Scholar 

  24. Abrahamsson SO, Lundborg G, Lohmander LS (1989) Tendon healing in vivo. An experimental model. Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery 23:199–205.

    Article  PubMed  CAS  Google Scholar 

  25. Abrahamsson SO, Lundborg G, Lohmander LS (1991) Long-term explant culture of rabbit flexor tendon: effects of recombinant human insulin-like growth factor-I and serum on matrix metabolism. J Orthop Res 9:503–515.

    Article  PubMed  CAS  Google Scholar 

  26. Salti NI, Tuel RJ, Mass DP (1993) Effect of hyaluronic acid on rabbit profundus flexor tendon healing in vitro. Journal of Surgical Research 55:411–415.

    Article  PubMed  CAS  Google Scholar 

  27. Chang J, Most D, Stelnicki E et al (1997) Gene expression of transforming growth factor beta-1 in rabbit zone II flexor tendon wound healing: evidence for dual mechanisms of repair. Plastic and Reconstructive Surgery 100:937–944.

    Article  PubMed  CAS  Google Scholar 

  28. Chang J, Most D, Thunder R et al (1998) Molecular studies in flexor tendon wound healing: the role of basic fibroblast growth factor gene expression. J Bone Joint Surg Am 23:1052–1058.

    CAS  Google Scholar 

  29. Moro-oka T, Miura H, Higaki H et al (1999) A new friction tester of the flexor tendon. J Biomech 32:1131–1134.

    Article  PubMed  CAS  Google Scholar 

  30. Chang J, Thunder R, Most D et al (2000) Studies in flexor tendon wound healing: neutralizing antibody to TGF-betal increases postoperative range of motion. Plastic and Reconstructive Surgery 105:148–155.

    Article  PubMed  CAS  Google Scholar 

  31. Moro-oka T, Miura H, Mawatari T et al (2000) Mixture of hyaluronic acid and phospholipid prevents adhesion formation on the injured flexor tendon in rabbits. J Orthop Res 18:835–840.

    Article  PubMed  CAS  Google Scholar 

  32. Ngo M, Pham H, Longaker MT, Chang J (2001) Differential expression of transforming growth factor-beta receptors in a rabbit zone II flexor tendon wound healing model. Plastic and Reconstructive Surgery 108:1260–1267.

    Article  PubMed  CAS  Google Scholar 

  33. Klein MB, Yalamanchi N, Pham H et al (2002) Flexor tendon healing in vitro: effects of TGF-beta on tendon cell collagen production. J Bone Joint Surg Am 27:615–620.

    Google Scholar 

  34. Zhang AY, Pham H, Ho F et al (2004) Inhibition of TGF-beta-induced collagen production in rabbit flexor tendons. J Hand Surg Am 29:230–235.

    Article  PubMed  Google Scholar 

  35. Mehta V, Kang Q, Luo J et al (2005) Characterization of adenovirus-mediated gene transfer in rabbit flexor tendons. J Hand Surg Am 30:136–141.

    Article  PubMed  Google Scholar 

  36. Namba J, Shimada K, Saito M et al (2007) Modulation of peritendinous adhesion formation by alginate solution in a rabbit flexor tendon model. J Biomed Mater Res B Appl Biomater 80:273–279.

    PubMed  Google Scholar 

  37. de Wit T, de Putter D, Tra WM et al (2008) Auto-crosslinked hyaluronic acid gel accelerates healing of rabbit flexor tendons in vivo. J Orthop Res 28 August, epub ahead of print.

    Google Scholar 

  38. Liu Y, Skardal A, Shu XZ, Prestwich GD (2008) Prevention of peritendinous adhesions using a hyaluronan-derived hydrogel film following partial-thickness flexor tendon injury. J Orthop Res 26:562–569.

    Article  PubMed  Google Scholar 

  39. Woo SL, Gelberman RH, Cobb NG et al (1981) the importance of controlled passive mobilization on flexor tendon healing. A biomechanical study. Acta Orthopaedica Scandinavica 52:615–622.

    PubMed  CAS  Google Scholar 

  40. Gelberman RH, Woo SL, Lothringer K et al (1982) Effects of early intermittent passive mobilization on healing canine flexor tendons. J Bone Joint Surg Am 7:170–175.

    CAS  Google Scholar 

  41. Duffy FJ, Jr., Seiler JG, Gelberman RH, Hergrueter CA (1995) Growth factors and canine flexor tendon healing: initial studies in uninjured and repair models. J Bone Joint Surg Am 20:645–649.

    Google Scholar 

  42. Bidder M, Towler DA, Gelberman RH, Boyer MI (2000) Expression of mRNA for vascular endothelial growth factor at the repair site of healing canine flexor tendon. J Orthop Res 18:247–252.

    Article  PubMed  CAS  Google Scholar 

  43. Silva MJ, Boyer MI, Ditsios K et al (2002) The insertion site of the canine flexor digitorum profundus tendon heals slowly following injury and suture repair. J Orthop Res 20:447–453.

    Article  PubMed  Google Scholar 

  44. Ditsios K, Leversedge FJ, Gelberman RH et al (2003) Neovascularization of the flexor digitorum profundus tendon after avulsion injury: an in vivo canine study. J Bone Joint Surg Am 28:231–236.

    Google Scholar 

  45. Boyer MI, Harwood F, Ditsios K et al (2003) Two-portal repair of canine flexor tendon insertion site injuries: histologicaand immunohistochemical characterization of healing during the early postoperative period. J Bone Joint Surg Am 28:469–474.

    Google Scholar 

  46. Ditsios K, Boyer MI, Kusano N et al (2003) Bone loss following tendon laceration, repair and passive mobilization. J Orthop Res 21:990–996.

    Article  PubMed  Google Scholar 

  47. Thomopoulos S, Harwood FL, Silva MJ et al (2005) Effect of several growth factors on canine flexor tendon fibroblast proliferation and collagen synthesis in vitro. J Hand Surg Am 30:441–447.

    Article  PubMed  Google Scholar 

  48. Silva MJ, Thomopoulos S, Kusano N et al (2006) Early healing of flexor tendon insertion site injuries: Tunnel repair is mechanically and histologically inferior to surface repair in a canine model. J Orthop Res 24:990–1000.

    Article  PubMed  Google Scholar 

  49. Gelberman RH, Thomopoulos S, Sakiyama-Elbert SE et al (2007) The early effect of sustained platelet-derived growth factor administration on the functional and structural properties of repaired intrasynovial flexor tendons: an in vivo biomechanic study at 3 weeks in canines. J Hand Surg Am 32:373–379.

    Article  PubMed  Google Scholar 

  50. Thomopoulos S, Matsuzaki H, Zaegel M et al (2007) Alendronate prevents bone loss and improves tendon-to-bone repair strength in a canine model. J Orthop Res 25:473–479.

    Article  PubMed  CAS  Google Scholar 

  51. Thomopoulos S, Zaegel M, Das R et al (2007) PDGF-BB released in tendon repair using a novel delivery system promotes cell proliferation and collagen remodeling. J Orthop Res 25:1358–1368.

    Article  PubMed  CAS  Google Scholar 

  52. Thomopoulos S, Zampiakis E, Das R et al (2008) The effect of muscle loading on flexor tendon-to-bone healing in a canine model. J Orthop Res 26:1611–1617.

    Article  PubMed  Google Scholar 

  53. Okuda Y, Gorski JP, An KN, Amadio PC (1987) Biochemical, histological, and biomechanical analyses of canine tendon. J Orthop Res 5:60–68.

    Article  PubMed  CAS  Google Scholar 

  54. Nishida J, Araki S, Akasaka T et al (2004) Effect of hyaluronic acid on the excursion resistance of tendon grafts. A biomechanical study in a canine model in vitro. Journal of Bone and Joint Surgery. British Volume 86:918–924.

    Article  PubMed  CAS  Google Scholar 

  55. Sun YL, Yang C, Amadio PC et al (2004) Reducing friction by chemically modifying the surface of extrasynovial tendon grafts. J Orthop Res 22:984–989.

    Article  PubMed  CAS  Google Scholar 

  56. Tsubone T, Moran SL, Amadio PC et al (2004) Expression of growth factors in canine flexor tendon after laceration in vivo. Annals of Plastic Surgery 53:393–397.

    Article  PubMed  Google Scholar 

  57. Akasaka T, Nishida J, Araki S et al (2005) Hyaluronic acid diminishe the resistance to excursion after flexor tendon repair: an in vitro biomechanical study. J Biomech 38:503–507.

    Article  PubMed  CAS  Google Scholar 

  58. Tanaka T, Amadio PC, Zhao C et al (2005) Effect of elbow position on canine flexor digitorum profundus tendon tension. J Orthop Res 23:249–253.

    Article  PubMed  Google Scholar 

  59. Sun Y, Berger EJ, Zhao C et al (2006) Mapping lubricin in canine musculoskeletal tissues. Connective Tissue Research 47:215–221.

    Article  PubMed  Google Scholar 

  60. Sun Y, Berger EJ, Zhao C et al (2006) Expression and mapping of lubricin in canine flexor tendon. J Orthop Res 24:1861–1868.

    Article  PubMed  CAS  Google Scholar 

  61. Zhao C, Sun YL, Amadio PC et al (2006) Surface treatment of flexor tendon autografts with carbodiimide-derivatized hyaluronic Acid. An in vivo canine model. J Bone Joint Surg Am 88:2181–2191.

    Article  PubMed  Google Scholar 

  62. Sun Y, Chen MY, Zhao C et al. (2008) The effect of hyaluronidase, phospholipase, lipid solvent and trypsin on the lubrication of canine flexor digitorum profundus tendon. J Orthop Res 26:1225–1229.

    Article  PubMed  CAS  Google Scholar 

  63. Taguchi M, Sun YL, Zhao C et al (2008) Lubricin surface modification improves tendon gliding after tendon repair in a canine model in vitro. J Orthop Res 6 August 2008, epub ahead of print.

    Google Scholar 

  64. Taguchi M, Sun YL, Zhao C et al (2008) Lubricin surface modification improves extrasynovial tendon gliding in a canine model in vitro. J Bone Joint Surg Am 90:129–135.

    Article  PubMed  Google Scholar 

  65. Potenza AD, Herte MC (1982) The synovial cavity as a “tissue culture in situ” — science or nonsense? J Bone Joint Surg Am 7:196–199.

    CAS  Google Scholar 

  66. Hannafin JA, Arnoczky SP, Hoonjan A, Torzilli PA (1995) Effect of stress deprivation and cyclic tensile loading on the material and morphologic properties of canine flexor digitorum profundus tendon: an in vitro study. J Orthop Res 13:907–914.

    Article  PubMed  CAS  Google Scholar 

  67. Ritty TM, Herzog J (2003) Tendon cells produce gelatinases in response to type I collagen attachment. J Orthop Res 21:442–450.

    Article  PubMed  CAS  Google Scholar 

  68. Baker AR, Abren EL, Mascha E, Derwin KA (2004) Homotypic variation of canine flexor tendons: implications for the design of experimental studies in animal models. J Biomech 37:959–968.

    Article  PubMed  CAS  Google Scholar 

  69. Potenza AD (1962) Detailed evaluation of healing processes in canine flexor digital tendons. Military Medicine 127:34–47.

    PubMed  CAS  Google Scholar 

  70. Potenza AD (1962) Tendon healing within the flexor digital sheath in the dog. J Bone Joint Surg Am 44-A:49–64.

    PubMed  CAS  Google Scholar 

  71. Potenza AD (1963) Critical evaluation of flexor-tendon healing and adhesion formation within artificial digital sheaths. J Bone Joint Surg Am 45:1217–1233.

    PubMed  CAS  Google Scholar 

  72. Potenza AD (1964) The Healing of Autogenous Tendon Grafts within the Flexor Digital Sheath in Dogs. J Bone Joint Surg Am 46:1462–1484.

    PubMed  CAS  Google Scholar 

  73. Potenza AD (1964) Prevention of Adhesions to Healing Digital Flexor Tendons. JAMA 187:187–191.

    PubMed  CAS  Google Scholar 

  74. Boyer MI, Goldfarb CA, Gelberman RH (2005) Recent progress in flexor tendon healing. The modulation of tendon healing with rehabilitation variables. Journal of Hand Therapy 18:80–85; quiz 86.

    Article  PubMed  Google Scholar 

  75. Slack C, Flint MH, Thompson BM (1984) The effect of tensional load on isolated embryonic chick tendons in organ culture. Connective Tissue Research 12:229–247.

    Article  PubMed  CAS  Google Scholar 

  76. Small JO, Brennen MD, Colville J (1989) Early active mobilisation following flexor tendon repair in zone 2. J Hand Surg Am (Edinburgh, Scotland) 14:383–391.

    CAS  Google Scholar 

  77. Schuind F, Garcia-Elias M, Cooney WP, 3rd, An KN (1992) Flexor tendon forces: in vivo measurements. J Hand Surg Am 17:291–298.

    Article  PubMed  CAS  Google Scholar 

  78. Takai S, Woo SL, Horibe S, Tung DK, Gelberman RH (1991) The effects of frequency and duration of controlled passive mobilization on tendon healing. J Orthop Res 9:705–713.

    Article  PubMed  CAS  Google Scholar 

  79. Uchiyama S, Amadio PC, Ishikawa J, An KN (1997) Boundary lubrication between the tendon and the pulley in the finger. J Bone Joint Surg Am 79:213–218.

    Article  PubMed  CAS  Google Scholar 

  80. Momose T, Amadio PC, Sun YL et al (2002) Surface modification of extrasynovial tendon by chemically modified hyaluronic acid coating. J Biomed Mater Res 59:219–224.

    Article  PubMed  CAS  Google Scholar 

  81. Tanaka T, Sun YL, Zhao C et al (2006) Optimization of surface modifications of extrasynovial tendon to improve its gliding ability in a canine model in vitro. J Orthop Res 24:1555–1561.

    Article  PubMed  CAS  Google Scholar 

  82. Tanaka T, Sun YL, Zhao C et al (2006) Effect of curing time and concentration for a chemical treatment that improves surface gliding for extrasynovial tendon grafts in vitro. J Biomed Mater Res. Part A 79:451–455.

    Google Scholar 

  83. Tanaka T, Zhao C, Sun YL et al (2007) The effect of carbodiimide-derivatized hyaluronic acid and gelatin surface modification on peroneus longus tendon graft in a short-term canine model in vivo. J Hand Surg Am 32:876–881.

    Article  PubMed  Google Scholar 

  84. Amiel D, Ishizue K, Billings E, Jr. et al (1989) Hyaluronan in flexor tendon repair. J Hand Surg Am 14:837–843.

    Article  PubMed  CAS  Google Scholar 

  85. Yang C, Amadio PC, Sun YL et al (2004) Tendon surface modification by chemically modified HA coating after flexor digitorum profundus tendon repair. J Biomed Mater Res B Appl Biomater 68:15–20.

    Article  PubMed  CAS  Google Scholar 

  86. McCombe D, Kubicki M, Witschi C et al (2006) A collagen prolyl 4-hydroxylase inhibitor reduces adhesions after tendon injury. Clin Orthop Relat Res 451:251–256.

    Article  PubMed  CAS  Google Scholar 

  87. Hagberg L (1992) Exogenous hyaluronate as an adjunct in the prevention of adhesions after flexor tendon surgery: a controlled clinical trial. J Hand Surg Am 17:132–136.

    Article  PubMed  CAS  Google Scholar 

  88. Meyers SA, Seaber AV, Glisson RR, Nunley JA (1989) Effect of hyaluronic acid/chondroitin sulfate on healing of full-thickness tendon lacerations in rabbits. J Orthop Res 7:683–689.

    Article  PubMed  CAS  Google Scholar 

  89. Miller JA, Ferguson RL, Powers DL et al (1997), Efficacy of hyaluronic acid/nonsteroidal anti-inflammatory drug systems in preventing postsurgical tendon adhesions. J Biomed Mater Res 38:25–33.

    Article  PubMed  CAS  Google Scholar 

  90. Tzianabos AO, Cisneros RL, Gershkovich J et al (1999) Effect of surgical adhesion reduction devices on the propagation of experimental intra-abdominal infection. Archives of Surgery 134:1254–1259.

    Article  PubMed  CAS  Google Scholar 

  91. Murphy PG, Loitz BJ, Frank CB, Hart DA (1994) Influence of exogenous growth factors on the synthesis and secretion of collagen types I and III by explants of normal and healing rabbit ligaments. Biochemistry and Cell Biology 72:403–409.

    Article  PubMed  CAS  Google Scholar 

  92. Schmidt CC, Georgescu HI, Kwoh CK et al (1995) Effect of growth factors on the proliferation of fibroblasts from the medial collateral and anterior cruciate ligaments. J Orthop Res 13:184–190.

    Article  PubMed  CAS  Google Scholar 

  93. Spindler KP, Dawson JM, Stahlman GC et al (2002) Collagen expression and biomechanical response to human recombinant transforming growth factor beta (rhTGF-beta2) in the healing rabbit MCL. J Orthop Res 20:318–324.

    Article  PubMed  CAS  Google Scholar 

  94. Woo SL, Smith DW, Hildebrand KA et al (1998) Engineering the healing of the rabbit medial collateral ligament. Medical and Biological Engineering and Computing 36:359–364.

    Article  PubMed  CAS  Google Scholar 

  95. Letson AK, Dahners LE (1994) The effect of combinations of growth factors on ligament healing. Clin Orthop Relat Res 308:207–212.

    PubMed  Google Scholar 

  96. Pierce GF, Mustoe TA, Lingelbach J et al (1989) Platelet-derived growth factor and transforming growth factor-beta enhance tissue repair activities by unique mechanisms. Journal of Cell Biology 109:429–440.

    Article  PubMed  CAS  Google Scholar 

  97. Kobayashi D, Kurosaka M, Yoshiya S, Mizuno K (1997) Effect of basic fibroblast growth factor on the healing of defects in the canine anterior cruciate ligament. [see comments.]. Knee Surgery, Sports Traumatology, Arthroscopy 5:189–194.

    Article  PubMed  CAS  Google Scholar 

  98. Hildebrand KA, Woo SL, Smith DW et al (1998) The effects of platelet-deriyed growth factor-BB on healing of the rabbit medial collateral ligament. An in vivo study. American Journal of Sports Medicine 26:549–554.

    PubMed  CAS  Google Scholar 

  99. Robinson SN, Talmadge JE (2002) Sustained release of growth factors. In vivo 16:535–540.

    PubMed  CAS  Google Scholar 

  100. Edwards RB, 3rd, Seeherman HJ, Bogdanske JJ et al (2004) Percutaneous injection of recombinant human bone morphogenetic protein-2 in a calcium phosphate paste accelerates healing of a canine tibial osteotomy. J Bone Joint Surg Am 86-A:1425–1438.

    PubMed  Google Scholar 

  101. Mercier NR, Costantino HR, Tracy MA, Bonassar LJ (2004) A novel injectable approach for cartilage formation in vivo using PLG microspheres. Annals of Biomedical Engineering 32:418–429.

    Article  PubMed  Google Scholar 

  102. Burdick JA, Mason MN, Hinman AD et al (2002) Delivery of osteoinductive growth factors from degradable PEG hydrogels influences osteoblast differentiation and mineralization. Journal of Controlled Release 83:53–63.

    Article  PubMed  CAS  Google Scholar 

  103. Lam XM, Duenas ET, Cleland JL (2001) Encapsulation and stabilization of nerve growth factor into poly(lactic-co-glycolic) acid microspheres. Journal of Pharmaceutical Sciences 90:1356–1365.

    Article  PubMed  CAS  Google Scholar 

  104. Azuma H, Yasuda K, Tohyama H et al (2003) Timing of administration of transforming growth factor-beta and epidermal growth factor influences the effect on material properties of the in situ frozen-thawed anterior cruciate ligament. J Biomech 36:373–381.

    Article  PubMed  Google Scholar 

  105. Tabata Y, Miyao M, Yamamoto M, Ikada Y (1999) Vascularization into a porous sponge by sustained release of basic fibroblast growth factor. Journal of Biomaterials Science. Polymer Edition 10:957–968.

    Article  PubMed  CAS  Google Scholar 

  106. Batten ML, Hansen JC, Dahners LE (1996) Influence of dosage and timing of application of platelet-derived growth factor on early healing of the rat medial collateral ligament. J Orthop Res 14:736–741.

    Article  PubMed  CAS  Google Scholar 

  107. Kawai K, Suzuki S, Tabata Y et al (2000) Accelerated tissue regeneration through incorporation of basic fibroblast growth factor-impregnated gelatin microspheres into artificial dermis. Biomaterials 21:489–499.

    Article  PubMed  CAS  Google Scholar 

  108. Downs EC, Robertson NE, Riss TL, Plunkett ML (1992) Calcium alginate beads as a slowrelease system for delivering angiogenic molecules in vivo and in vitro. Journal of Cell Physiology 152:422–429.

    Article  CAS  Google Scholar 

  109. Inui K, Maeda M, Sano A et al (1998) Local, application of basic fibroblast growth factor minipellet induces the healing of segmental bony defects in rabbits. Calcif Tissue Int 63:490–495.

    Article  PubMed  CAS  Google Scholar 

  110. Kanematsu A, Yamamoto S, Noguchi T et al (2003) Bladder regeneration by bladder acellular matrix combined with sustained release of exogenous growth factor. Journal of Urology 170:1633–1638.

    Article  PubMed  CAS  Google Scholar 

  111. Lee AC, Yu VM, Lowe JB, 3rd, et al (2003) Controlled release of nerve growth factor enhances sciatic nerve regeneration. Experimental Neurology 184:295–303.

    Article  PubMed  CAS  Google Scholar 

  112. Murphy WL, Peters MC, Kohn DH, Mooney DJ (2000) Sustained release of vascular endothelial growth factor from mineralized poly (lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials 21: 2521–2527.

    Article  PubMed  CAS  Google Scholar 

  113. Tanihara, M., Suzuki Y, Yamamoto E et al (2001) Sustained release of basic fibroblast growth factor and angiogenesis in a novel covalently, crosslinked gel of heparin and alginate. J Biomed Mater Res 56:216–221.

    Article  PubMed  CAS  Google Scholar 

  114. Sakiyama-Elbert SE, Hubbell JA (2000) Development of fibrin derivatives for controlled release of heparin-binding growth factors. Journal of Controlled Release 65:389–402.

    Article  PubMed  CAS  Google Scholar 

  115. Sakiyama-Elbert SE, Hubbell JA (2000) Controlled release of nerve growth factor from a heparin-containing fibrin-based cell ingrowth matrix. Journal of Controlled Release 69:149–158.

    Article  PubMed  CAS  Google Scholar 

  116. Sakiyama-Elbert S, Das R, Gelberman RH et al (2008) Controlled release kinetics and biologic activity of PDGF-BB for use in flexor tendon repair. J Hand Surg Am 33:1548–1557.

    Article  PubMed  Google Scholar 

  117. Suzuki M, Asplund T, Yamashita H et al (1995) Stimulation of hyaluronan biosynthesis by platelet-derived growth factor-BB and transforming growth factor-beta 1 involves activation of protein kinase C. Biochemical Journal 307:817–821.

    PubMed  CAS  Google Scholar 

  118. Bartold PM (1993) Platelet-derived growth factor stimulates hyaluronate but not proteoglycan synthesis by human gingival fibroblasts in vitro. Journal of Dental Research 72:1473–1480.

    PubMed  CAS  Google Scholar 

  119. Heldin P, Pertoft H (1993) Synthesis and assembly of the hyaluronan-containing coats around normal human mesothelial cells. Experimental Cell Research 208:422–429.

    Article  PubMed  CAS  Google Scholar 

  120. Papakonstantinou E, Karakiulakis G, Roth M, Block LH (1995) Platelet-derived growth factor stimulates the secretion of hyaluronic acid by proliferating human vascular smooth muscle cells. Proceedings of the Nationall Academy of Sciences of the USA 92:9881–9885.

    Article  CAS  Google Scholar 

  121. Evanko SP, Johnson PY, Braun KR et al (2001) Platelet-derived growth factor stimulates the formation of versican-hyaluronan aggregates and pericellular matrix expansion in arterial smooth muscle cells. Archives of Biochemistry and Biophysics 394:29–38.

    Article  PubMed  CAS  Google Scholar 

  122. Pullen M, Thomas K, Wu H, Nambi P (2001) Stimulation of Hyaluronan synthetase by platelet-derived growth factor bb in human prostate smooth muscle cells. Pharmacology 62:103–106.

    Article  PubMed  CAS  Google Scholar 

  123. Dunlop ME, Clark S, Mahadevan P et al (1996) Production of hyaluronan by glomerular mesangial cells in response to fibronectin and platelet-derived growth factor. Kidney International 50:40–44.

    Article  PubMed  CAS  Google Scholar 

  124. Tiedemann K, Malmstrom A, Westergren-Thorsson G (1997) Cytokine regulation of proteoglycan production in fibroblasts: separate and synergistic effects. Matrix Biology 15:469–478.

    Article  PubMed  CAS  Google Scholar 

  125. Asplund T, Versnel MA, Laurent TC, Heldin P (1993) Human mesothelioma cells produce factors that stimulate the production of hyaluronan by mesothelial cells and fibroblasts. Cancer Research 53:388–392.

    PubMed  CAS  Google Scholar 

  126. Hamada Y, Katoh S, Hibino N et al (2006) Effects of monofilament nylon coated with basic fibroblast growth factor on endogenous intrasynovial flexor tendon healing. J Hand Surg Am 31:530–540.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Italia

About this chapter

Cite this chapter

Thomopoulos, S. (2009). Research Trends for Flexor Tendon Repair. In: Merolli, A., Joyce, T.J. (eds) Biomaterials in Hand Surgery. Springer, Milano. https://doi.org/10.1007/978-88-470-1195-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-1195-3_8

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-1194-6

  • Online ISBN: 978-88-470-1195-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics