Skip to main content

Application of Artificial Intelligence Methods to Spot Welding of Commercial Aluminum Sheets (B.S. 1050)

  • Conference paper
  • First Online:
Proceedings of Fourth International Conference on Soft Computing for Problem Solving

Abstract

Artificial intelligence (AI) methods exhibit surprising ability to capture nonlinear relationship and interaction effect with great success. Due to complicacy during the welding and lots of interferential factors, especially short-time property of the spot welding process, of late, AI methods are used more frequently by the researchers to estimate output responses of the process. The present study is aimed at investigating failure load of spot-welded B.S. 1050 aluminum sheets using two most commonly used AI methods such as adaptive neuro-fuzzy inference system (ANFIS) and support vector machine (SVM). Data generated from an experimental study is fed into the paradigm of ANFIS and SVR for the formulation of mathematical model between input and output process parameters. Based on the input data, AI models estimate the failure load of welded joint and results are compared in terms of percentage of relative error. The details of experimentation, model development, and comparisons of modeling methods are summarized in this paper which will guide welders about the proper setting of the process parameters for a strong weld joint.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jou, M.: Real time monitoring weld quality of resistance spot welding for the fabrication of sheet metal assemblies. J. Mater. Process. Technol. 132, 102–113 (2003)

    Article  Google Scholar 

  2. Aslanlar, S., Ogur, A., Ozsarac, U., Ilhan, E.: Welding time effect on mechanical properties of automotive sheets in electrical resistance spot welding. J. Mater Des. 29, 1427–1431 (2008)

    Article  Google Scholar 

  3. Tsai, C.L., Jammal, O.A., Papritan, J.L., Dickinson, D.W.: Modelling of resistance spot weld nugget growth. Welding J. Res. Suppl. 71, 47–54 (1992)

    Google Scholar 

  4. Muhammad, N., Manurang, H.P.Y.: Design parameters selection and optimization of weld zone development in resistance spot welding. World Acad. Sci. Eng. Technol. 71, 1220 (2012)

    Google Scholar 

  5. Muhammad, N., Manurung, Y., Hafidzi, M., Abas, S.K., Tham, G., Rahim, M.R.: A quality improvement approach for resistance spot welding using multi-objective Taguchi method and response surface methodology. Int. J. Adv. Sci. Eng. Inf. Technol. 2, 2088–5334 (2012)

    Google Scholar 

  6. Muhammad, N., Manurung, Y., Hafidzi, M., Abas, S.K., Tham, G., Haruman, E.: Optimization and modeling of spot welding parameters with simultaneous multiple response consideration using multi-objective Taguchi method and RSM. J. Mech. Sci. Technol. 26(8), 2365–2370 (2012)

    Article  Google Scholar 

  7. Muhammad, N., Manurung, Y., Hafidzi, M., Abas, S.K., Tham, G., Haruman, E.: Model development for quality features of resistance spot welding using multi-objective Taguchi method and response surface methodology. J. Intell. Manuf. (2012). doi:10.1007/s1084506483

  8. Zhao, D., Wang, Y., Sheng, S., Lin, Z.: Multi-objective optimal design of small scale resistance spot welding process with principal component analysis and response surface methodology. J. Intell. Manuf. doi:10.1007/s10845(2013)0733-2

  9. Zhao, D., Wang, Y., Wang, X., Wang, X., Chen, F., Liang, D.: Process analysis and optimization for failure energy of spot welded titanium alloy. J. Mater. Des. 60, 479–489 (2014)

    Article  Google Scholar 

  10. Kim, I.S., Park, C.E., Jeong, Y.J., Son, J.S.: Development of an intelligent system for selection of the process variables in gas metal arc welding processes. Int. J. Adv. Manuf. Technol. 18, 98–102 (2001)

    Article  Google Scholar 

  11. Tzeng, Y.-F., Chen, F.-C.: Effects of operating parameters on the static properties of pulsed laser welded zinc-coated steel. Int. J. Adv. Manuf. Technol. 18, 641–647 (2001)

    Article  Google Scholar 

  12. Darwish, S.M., Al-Dekhial, S.D.: Statistical models for spot welding of commercial aluminium sheets. Int. J. Mach. Tools Manuf. 39, 1589–1610 (1999)

    Article  Google Scholar 

  13. Gunaraj, V., Murugan, N.: Application of response surface methodology for predicting weld bead quality in submerged arc welding of pipes. J. Mater. Process. Technol. 88, 266–275 (1999)

    Article  Google Scholar 

  14. Elangovan, K., Balasubramaniam, V., Babu, S.: Predicting tensile strength of friction stir welded AA6061 aluminium alloys joints by a mathematical model. Mater. Des. 30, 188–193 (2009)

    Article  Google Scholar 

  15. Gill, S., Singh, J.: Artificial intelligent modeling to predict tensile strength of inertia friction-welded pipe joints. Int. J. Adv. Manuf. Technol. 69, 2001–2009 (2013)

    Article  Google Scholar 

  16. Singh, J., Singh, S.G.: Modeling for tensile strength of friction welded aluminium pipes by ANFIS. J. Intell. Eng. Inf 1(1), 3–20 (2010)

    Google Scholar 

  17. Tran, H.T., Kim, K.Y., Yang, H.J.: Weldability prediction of AHSS stack ups using support vector machines. Int. J. Comput. Electr. Eng. 6(3), 207–210 (2014)

    Article  Google Scholar 

  18. Shuangsheng, G., Xingwei, T., Shude, J., Zhitao, Y.: Prediction of mechanical properties of welded joints based on support vector regression. J. Proc. Eng. 29, 1471–1475 (2012)

    Article  Google Scholar 

  19. Na, M.G., Kim, J.W., Lim, D.H., Kang, Y.: Residual stress prediction of dissimilar metals welding at NPPs using support vector regression. Nucl. Eng. Des. 238(7), 1503–1510 (2008)

    Article  Google Scholar 

  20. Nagesh, D.S., Datta, G.L.: Genetic algorithm for optimization of welding variables for height to width ratio and application of ANN for prediction of bead geometry for TIG welding process. Appl. Soft Comput. 10, 897–907 (2010)

    Article  Google Scholar 

  21. Ates, H.: Prediction of gas metal arc welding parameters based on artificial neural networks. J. Mater. Des. 28, 2015–2023 (2007)

    Article  Google Scholar 

  22. Cevika, A., Kutuk, A.M., Erklig, A., Guzelbey, I.H.: Neural network modeling of arc spot welding. J. Mater. Process Technol. 202, 137–449 (2008)

    Article  Google Scholar 

  23. Tseng, H.Y.: Welding parameters optimization for economic design using neural approximation and genetic algorithm. Int. J. Adv. Manuf. Technol. 27, 897–901 (2006)

    Article  Google Scholar 

  24. Bouyousfi, B., Sahraoui, T., Guessasma, S., Chaouch, K.T.: Effect of process parameter on physical characteristic of spot weld joints. J. Mater. Des. 28, 414–419 (2003)

    Article  Google Scholar 

  25. Nizamettin, K.: The influence of welding parameters on the joints of strength of resistance spot welded. J. Mater. Des. 28, 421–427 (2007)

    Google Scholar 

  26. Waller, D.N., Knowlson, P.M.: Electrode separation applied to quality control in resistance welding. Weld. J. 44(12), 168-s–174-s (1965)

    Google Scholar 

  27. Fratini, L., Buffa, G., Palmeri, D.: Using a neural network for predicting the average grain size in friction stir welding processes. J. Comput. Struct. 87, 1166–1174 (2009)

    Article  Google Scholar 

  28. Martin, O., Tiedra, P.D., Lopez, M.: Artificial neural networks for pitting potential prediction of resistance spot welding joints of AISI 304 austenitic stainless steel. J. Corros. Sci. 52, 2397–2402 (2010)

    Article  Google Scholar 

  29. Martin, O., Tiedra, P.D., Lopez, M., Manuel, S.J., Cristina, G., Fernando, M.: Quality prediction of resistance spot welding joints of 304 austenitic stainless steel. J. Mater. Des. 30, 68–77 (2009)

    Article  Google Scholar 

  30. Kennard, R.W., Stone, L.A.: Computer aided design of experiments. Technometrics 11, 137–148 (1969)

    Article  MATH  Google Scholar 

  31. Kecman, V.: Learning and Soft Computing: Support Vector Machines, Neural Networks, and Fuzzy Logic Models. MIT Press, Cambridge (2001)

    Google Scholar 

  32. Andrés, E., Salcedo-Sanz, S., Monge, F., Pérez-Bellido, A.M.: Efficient aero-dynamic design through evolutionary programming and support vector regression algorithms. Expert Syst. Appl. 39, 10700–10708 (2012)

    Article  Google Scholar 

  33. Pelckmans, K., Suykens, J.A.K., Vangestel, T., De Brabanter, J., Lukas, L., Hamers, B., et al.: LS SVMlab: a MATLAB/c toolbox for least squares support vector machines. Tutorial. KU Leuven-ESAT, Leuven (2002)

    Google Scholar 

  34. Jang, J.S.R.: Adaptive-network-based fuzzy inference system (ANFIS). IEEE Trans. Syst. Man Cybern. 23, 665–685 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biranchi Narayan Panda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this paper

Cite this paper

Panda, B.N., Babhubalendruni, M.V.A.R., Biswal, B.B., Rajput, D.S. (2015). Application of Artificial Intelligence Methods to Spot Welding of Commercial Aluminum Sheets (B.S. 1050). In: Das, K., Deep, K., Pant, M., Bansal, J., Nagar, A. (eds) Proceedings of Fourth International Conference on Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing, vol 335. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2217-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2217-0_3

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2216-3

  • Online ISBN: 978-81-322-2217-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics