Skip to main content

Unrealized Potential of Seed Biopriming for Versatile Agriculture

  • Chapter
  • First Online:
Nutrient Use Efficiency: from Basics to Advances

Abstract

Seeds are the crucial input in agriculture as most of the world food crops are grown from seeds and they are circulated at large scale in international trade. However, many plant pathogens can be seed transmitted, and seed distribution is an extremely capable way of introducing plant pathogens into fresh areas as well as a means of endurance of the pathogen between growing seasons. In past decades, chemicals are widely used for seed treatment as a potent approach towards disease control; however, rising concern about their negative impact on the environment and human health minimizes their use and promotes biological control for plant pathogens. Biopriming is a currently popular approach of seed treatment which includes inoculation of seed with beneficial microorganisms (biological aspect) and seed hydration (physiological aspect) to protect the seed from various seed- and soilborne diseases. Biopriming treatment is able to incite changes in plant characteristics and facilitate uniform seed germination and growth associated with microorganism inoculation. Seed priming and osmo-priming are commonly being used in many horticultural crops to amplify the growth and uniformity of germination. However, it may be used alone or in combination with biocontrol agents to advance the rate of seed emergence and minimize soilborne diseases. On the other hand, some biocontrol agents are used as seed dressers and are able to colonize the rhizosphere, helping seeds to resist various abiotic stresses such as salinity, drought, low fertility and heavy metal stress, etc. Therefore, biopriming is becoming a viable alternative for inorganic chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adesemoye AO, Egamberdieva D (2013) Beneficial effects of plant growth promoting rhizobacteria on improved crop production: the prospects for developing economies. In: Maheshwari DK (ed) Bacteria in agrobiology: crop productivity. Springer, Berlin/Heidelberg

    Google Scholar 

  • Alami Y, Achouak W, Marol C, Heulin T (2000) Rhizosphere soil aggregation and plant growth promotion of sunflowers by exopolysaccharide producing Rhizobium sp. strain isolated from sunflower roots. Appl Environ Microbiol 66:3393–3398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amellal N, Burtin G, Bartoli F, Heulin T (1998) Colonization of wheat rhizosphere by EPS producing Pantoea agglomerans and its effect on soil aggregation. Appl Environ Microbiol 64:3740–3747

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arshad M, Sharoona B, Mahmood T (2008) Inoculation with Pseudomonas spp. containing ACC deaminase partially eliminate the effects of drought stress on growth, yield and ripening of pea (Pisum sativum L.). Pedosphere 18:611–620

    Article  Google Scholar 

  • Bashan Y, Holguin G, de-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50:521–577

    Article  CAS  PubMed  Google Scholar 

  • Bazzaz FA, Carlson RW, Rolfe GL (1974) The effect of heavy metals on plants: Part I. Inhibition of gas exchange in sunflower by Pb, Cd, Ni and Tl. Environ Pollut 7:241–246

    Article  CAS  Google Scholar 

  • Bell FG, Bullock SET, Halbich TFJ, Lindsay P (2001) Environmental impacts associated with an abandoned mine in the Witbank Coalfield, South Africa. Int J Coal Geol 45:195–216

    Article  CAS  Google Scholar 

  • Berg G, Egamberdieva D, Lugtenberg B, Hagemann M (2010) Symbiotic plant-microbe interactions: stress protection, plant growth promotion and biocontrol by stenotrophomonas. In: Seckbach JMG, Grube M (eds) Symbiosis and stress. Springer, Dordrecht/Heidelberg/London/New York, pp 445–460

    Chapter  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Bresson J (2013) The PGPR strain Phyllobacterium brassicacearum STM196 induces a reproductive delay and physiological changes that result in improved drought tolerance in Arabidopsis. New Phytol 200:558–569

    Article  CAS  PubMed  Google Scholar 

  • Broos K, Beyens H, Smolders E (2005) Survival of rhizobia in soil is sensitive to elevated zinc in the absence of the host plant. Soil Biol Biochem 37:573–579

    Article  CAS  Google Scholar 

  • Burr TJ, Caesar AJ (1984) Beneficial plant bacteria. CRC Crit Rev Plant Sci 2:1–20

    Article  Google Scholar 

  • Callaghan M, Swaminathan J, Lottmann J, Wright D (2006) Seed coating with biocontrol strain Pseudomonas fluorescens F113. N Z Plant Prot 59:80–85

    Google Scholar 

  • Callen NW, Mathre DE (2000) Biopriming seed treatment. Encyclopedia of plant pathology. John Wiley and Sons, New York

    Google Scholar 

  • Callen NW, Mathre DE, Miller JB (1990) Biopriming seed treatment for biological control of Pythium ultimum pre emergence damping-off in sh2 sweet corn. Plant Dis 74:368–372

    Article  Google Scholar 

  • Carsolio C, Gutierrez A, Jimenez B, Van Montgu M, Herrera Estrells A (1994) Characterization of ech 42 and Trichoderma harzianum endochitinase gene expressed during mycoparasitism. Proc Natl Acad Sci USA 91(23):10903–10907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudri AM, Allain CMC, Barbosa-Jafferson VL, Nicholson FA, Chambers BJ, McGrath SP (2000) A study of the impacts of Zn and Cu on two rhizobial species in soils of a long term field experiment. Plant Soil 22:167–179

    Article  Google Scholar 

  • Chet I (1987) Trichoderma: application, mode of action and potential as a biocontrol agent of soil borne plant pathogenic fungi. In: Chet I (ed) Innovative approaches to plant disease control. Wiley, New York, pp 137–160

    Google Scholar 

  • Cho K, Toler H, Lee J, Ownley B, Stutz JC, Moore JL, Auge RM (2006) Mycorrhizal symbiosis and response of sorghum plants to combined drought and salinity stresses. J Plant Physiol 163:517–528

    Article  CAS  PubMed  Google Scholar 

  • De la Cruz J, Hidalgo-Gallego A, Lora JM, Benitez T, Pintor-Toro JA, Llobell A (1992) Isolation and characterization of three chitinases from Trichoderma harzianum. Eur J Biochem 206:859–867

    Article  PubMed  Google Scholar 

  • de Rosa CT, Johnson BL, Fay M, Hansen H, Mumtaz MM (2006) Public health implications of hazardous waste sites: findings assessment and research. Food Chem Toxicol 34:1131–1138

    Article  Google Scholar 

  • Deaker R, Roughly RJ, Kennedy IR (2004) Legume seed inoculation technology – a review. Soil Biol Biochem 36:1275–1288

    Article  CAS  Google Scholar 

  • Deaker R, Hartley E, Gemell G (2012) Conditions affecting shelf-life of inoculated seed. Agriculture 2:38–51

    Article  Google Scholar 

  • Dimkpa C, Weinand T, Asch F (2009) Plant-rhizobacteria interactions alleviate abiotic conditions. Plant Cell Environ 32:1682–1694

    Article  CAS  PubMed  Google Scholar 

  • Duijff BJ, Bakker PAHM, Schippers B (1994) Ferric pseudobactin 358 as an iron source for carnation. J Plant Nutr 17:2069–2078

    Article  CAS  Google Scholar 

  • Entesari M, Sharifzadeh F, Ahmadzadeh M, Farhangfar M (2013) Seed biopriming with Trichoderma species and Pseudomonas fluorescent on growth parameters, enzymes activity and nutritional status of soybean. Int J Agron Plant Prod 4:610–619

    Google Scholar 

  • Errasquín EL, Vazquez C (2003) Tolerance and uptake of heavy metals by Trichoderma atroviride isolated from sludge. Chemosphere 50(1):137–143

    Article  Google Scholar 

  • Feng G, Zhang FS, Li XL, Tian CY, Tang C, Renegal Z (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of leaf P-concentration of soluble sugars in roots. Mycorrhiza 12:185–190

    Article  CAS  PubMed  Google Scholar 

  • Feng K, Lu HM, Sheng HJ, Wang XL, Mao J (2004) Effect of organic ligands on biological availability of inorganic phosphorus in soils. Pedosphere 14:85–92

    CAS  Google Scholar 

  • Figueiredo MVB, Burity HA, Martinez CR, Chanway CP (2008) Alleviation of drought stress in common bean (Phaseolus vulgaris L.) by co-inoculation of Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 40:182–188

    Article  Google Scholar 

  • Gardener BBMS, Fravel DR (2002) Biological control of plant pathogens: research, commercialization, and application in the USA. Plant Health Prog. doi:10.1094/PHP-2002-0510-01-RV

    Google Scholar 

  • Geremia RA, Goldman GH, Jacobs D, Ardiles W, Vila SB, Van Montagu M, Herrera-Estrella A (1993) Molecular characterization of the proteinase encoding gene, prb1, related to mycoparasitism by Trichoderma harzianum. Mol Microbiol 8:603–613

    Article  CAS  PubMed  Google Scholar 

  • Gerhardson B (2002) Biological substitute for pesticides. Trends Biotechnol 20:338–343

    Article  CAS  PubMed  Google Scholar 

  • Ghassemi-Golezani K, Sheikhzadeh-Mosaddeg P, Valizadeh M (2008) Effect of hydropriming duration and limited irrigation on field performance of chickpea. Res J Seed Sci 1(1):34–40

    Article  Google Scholar 

  • Giri B, Mukerji KG (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14:307–312

    Article  PubMed  Google Scholar 

  • Glare T, Caradus J, Gelernter W, Jackson T, Keyhani N, Kohl J, Marrone P, Morin L, Stewart A (2012) Have biopesticides come of age? Trends Biotechnol 30:250–258

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Hindawi Publishing Corporation, Scientifica, Article ID 963401, p 15. http://dx.doi.org/10.6064/2012/963401

  • Glick BR, Cheng Z, Czamy J, Duan J (2007) Promotion of plant growth by ACC deaminase-containing soil bacteria. Crit Rev Plant Sci 26:227–242

    Article  CAS  Google Scholar 

  • Goggi AS (2011) Evolution, purpose and advantages of seed treatments. III seed congress of the Americas, Santiago, Chile, pp 27–29

    Google Scholar 

  • Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2010) Role of microorganisms in adaptation of agriculture crops to abiotic stress. World J Microbiol Biotechnol 30:312–321

    Google Scholar 

  • Haran S, Schickler H, Oppenheim A, Chet I (1995) New components of the chitinolytic system of Trichoderma harzianum. Mycol Res 99(4):441–446

    Article  CAS  Google Scholar 

  • Harman GE, Taylor AG (1988) Improved seedling performance by integration of biological control agents at favorable pH levels with solid matrix priming. Phytopathology 78:520–525

    Article  Google Scholar 

  • Harman GE, Hayes CK, Lorito M, Broadway RM, DiPietro A, Peterbauer CK, Tronsmo A (1993) Chitinolytic enzymes of Trichoderma harzianum: purification of chitobiosidase and endochitinase. Phytopathology 83:313–318

    Article  CAS  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species-opportunistic, avirulent plant symbionts. A reviews. Nat Rev Microbiol 2:43–56

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam M, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14:9643–9684

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussein H, Moawad H, Farag S (2004) Isolation and characterization of Pseudomonas resistant to heavy metals contaminants. Arab J Biotechnol 7(1):13–22

    Google Scholar 

  • Jain A, Singh S, Sarma BK, Singh HB (2012) Microbial consortium–mediated reprogramming of defence network in pea to enhance tolerance against Sclerotinia sclerotiorum. J Appl Microbiol 112(3):537–550

    Article  CAS  PubMed  Google Scholar 

  • Jin CW, He YF, Tang P, Zheng SJ (2006) Mechanisms of microbially enhanced Fe acquisition in red clover (Trifolium pratense L.). Plant Cell Environ 29:888–897

    Article  PubMed  Google Scholar 

  • Joo GJ, Kim YM, Lee IJ, Song KS, Rhee IK (2004) Growth promotion of red pepper plug seedlings and the production of gibberellins by Bacillus cereus, Bacillus macroides and Bacillus pumilus. Biotechnol Lett 26:487–491

    Article  CAS  PubMed  Google Scholar 

  • Kacprzak M, Malina G (2005) The tolerance and Zn2+, Ba2+ and Fe3+ accumulation by Trichoderma atroviride and Mortierella exigua isolated from contaminated soil. Can J Soil Sci 85(2):283–290

    Article  CAS  Google Scholar 

  • Keswani C, Mishra S, Sarma BK, Singh SP, Singh HB (2014) Unraveling the efficient applications of secondary metabolites of various Trichoderma spp. Appl Microbiol Biotechnol 98(2):533–544

    Article  CAS  PubMed  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2007) Role of phosphate-solubilizing microorganisms in sustainable agriculture—a review. Agron Sustain Dev 27:29–43

    Article  Google Scholar 

  • Kloepper JW, Schippers B, Bakker PAHM (1992) Proposed elimination of the term endorhizosphere. Phytopathology 82:726–727

    Google Scholar 

  • Kohler J, Herna´ndez JA, Caravaca F, Rolda´n A (2008) Plant-growth promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Funct Plant Biol 35:141–151

    Article  CAS  Google Scholar 

  • Krantz-Rülcker C, Allard B, Schnürer J (1993) Interactions between a soil fungus, Trichoderma harzianum, and IIb metals—adsorption to mycelium and production of complexing metabolites. Biometals 6:223–230

    Article  Google Scholar 

  • Leong J (1986) Siderophores: their biochemistry and possible role in the biocontrol of plant pathogens. Annu Rev Phytopathol 24:187–209

    Article  CAS  Google Scholar 

  • Leopold AC, Vertucci CW (1989) Moisture as a regulator of physiological reactions in seeds. In: Stanwood PC, McDonald MB (eds) Seed moisture, CSSA special publication number 14. Crop Science Society of America, Madison, pp 51–69

    Google Scholar 

  • Liao JP, Lin XG, Cao ZH, Shi YQ, Wong MH (2003) Interactions between arbuscular mycorrhizae and heavy metals under sand culture experiment. Chemosphere 50:847–853

    Article  CAS  PubMed  Google Scholar 

  • Lope JE, Buyer JS (1991) Siderophore in microbial interaction on plant surfaces. Mol Plant Microbe Interact 4:5–13

    Article  Google Scholar 

  • Lora JM, De La Cruz J, Benitez T, Pintor-Toro JA (1995) A putative catabolite-repressed cell wall protein from the mycoparasitic fungus Trichoderma harzianum. Mol Gen Genet 247:639–645

    Article  CAS  PubMed  Google Scholar 

  • Lorito M, Harman CK, DiPietro A, Woo SL, Harman GE (1994) Purification, characterization and synergistic activity of a glucan-1, 3-β glucosidase and an N-acetylglucosaminidase from Trichoderma harzianum. Phytopathology 84:398–405

    Article  CAS  Google Scholar 

  • Mathre DE, Cook RJ, Callan NW (1999) From discovery to use: traversing the world of commercializing biocontrol agents for plant disease control. Plant Dis 83:972–983

    Article  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  PubMed  Google Scholar 

  • McQuilken MP, Halmer P, Rhodes DJ (1998) Application of microorganisms to seeds. Microbiol Rev Can Microbiol 44:162–167

    Article  Google Scholar 

  • MiloÅ¡ević N, Govedarica M, Kastori R, Petrović N (2002) Effect of nickel on wheat plants, soil microorganisms and enzymes. Biologia XLVII:177–181

    Google Scholar 

  • Mishra S, Singh BR, Singh A, Keswani C, Naqvi AH et al (2014) Biofabricated silver nanoparticles act as a strong fungicide against bipolaris sorokiniana causing spot blotch disease in wheat. PLoS One 9(5):e97881

    Article  PubMed  PubMed Central  Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670

    Article  Google Scholar 

  • Nautiyal CS (1999) Bioinoculants for sustainable agriculture: recent status and constraints. In: Rajak RC (ed) Microbial biotechnology for sustainable development and productivity, Scientific Publisher, Jodhpur, pp 1–11

    Google Scholar 

  • Nayaka SC, Niranjana SR, Uday Shankar AC, Niranjan Raj S, Reddy MS, Prakash HS, Mortensen CN (2009) Seed biopriming with novel strain of Trichoderma harzianum for the control of toxigenic Fusarium verticillioides and fumonisins in maize. Arch Phytopathol Plant Protect 43(3):264–282

    Article  Google Scholar 

  • Neergaard P (1979) Seed pathology. The MacMillan Press, London

    Google Scholar 

  • Niranjan Raj S, Shetty NP, Shetty HS (2004) Seed biopriming with Pseudomonas fluorescens isolates enhance growth of pearl millet plants and induces resistance against downy mildew. Int J Pest Manag 50:41–48

    Article  Google Scholar 

  • Papavizas GC (1985) Trichoderma and Gliocladium biology, ecology, and potential for biocontrol. Annu Rev Phytopathol 23:23–54

    Article  Google Scholar 

  • Rajapaksha RM, Tobor – KapÅ‚on MA, Baath E (2004) Metal toxicity affects fungal and bacterial activities in soil differently. Appl Environ Microbiol 70:2966–2973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy ASR, Madhavi GB, Reddy KG, Yellareddygari SK, Reddy MS (2011) Effect of seed biopriming with Trichoderma viride and Pseudomonas fluorescens in chickpea (Cicer arietinum) in Andhra Pradesh, India. In: Reddy MS, Wang Q, Li Y, Zhang L, Du B, Yellareddygari SKR (eds) Plant growth-promoting rhizobacteria (PGPR) for sustainable agriculture, Proceedings of the 2nd Asian PGPR conference, Beijing, China, pp 324–429

    Google Scholar 

  • Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Funct Plant Biol 28:897–906

    Article  Google Scholar 

  • Roberson E, Firestone M (1992) Relationship between desiccation and exopolysaccharide production in soil Pseudomonas sp. Appl Environ Microbiol 58:1284–1291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  PubMed  Google Scholar 

  • Sandhya V, Ali SKZ, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by exopolysaccharides producing Pseudomonas putida strain P45. Biol Fertil Soil 46:17–26

    Article  CAS  Google Scholar 

  • Saravanakumar D, Samiyappan R (2007) Effects of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase from Pseudomonas fluorescence against saline stress under in vitro and field conditions in groundnut (Arachis hypogea) plants. J Appl Microbiol 102:1283–1292

    Article  CAS  PubMed  Google Scholar 

  • Schwartz C, Gerard E, Perronnet K, Morel JL (2001) Measurement of in situ phytoextraction of zinc by spontaneous metallophytes growing on a former smelter site. Sci Total Environ 279:215–221

    Article  CAS  PubMed  Google Scholar 

  • Schwinn F (1994) Seed treatment – a panacea for plant protection? In: Martin TJ (ed) Seed treatment: progress and prospects, BCPC monograph no. 57. British Crop Protection Council, Farnham, pp 3–14

    Google Scholar 

  • Selvakumar G, Panneerselvam P, Ganeshamurthy AN (2012) Bacterial mediated alleviation of abiotic stress in crops. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer, Berlin/Heidelberg, pp 205–224

    Chapter  Google Scholar 

  • Sharma A, Johri BN, Sharma AK, Glick BR (2003) Plant growth-promoting bacterium Pseudomonas sp. strain GRP3 influences iron acquisition in mung bean (Vigna radiata L. Wilczek). Soil Biol Biochem 35:887–894

    Article  CAS  Google Scholar 

  • Sheng XF, He LY (2006) Solubilization of potassium-bearing minerals by a wild-type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Can J Microbiol 52(1):66–72

    Article  CAS  PubMed  Google Scholar 

  • Siebner-Freibach H, Hadar Y, Chen Y (2003) Siderophores sorbed on Ca-montmorillonite as an iron source for plants. Plant Soil 251:115–124

    Article  CAS  Google Scholar 

  • Singh BN, Singh A, Singh SP, Singh HB (2011) Trichoderma harzianum-mediated reprogramming of oxidative stress response in root apoplast of sunflower enhances defense against Rhizoctonia solani. Eur J Plant Pathol 131:121–134

    Article  CAS  Google Scholar 

  • Singh A, Jain A, Sarma BK, Upadhyay RS, Singh HB (2014) Rhizosphere competent microbial consortium mediates rapid changes in phenolic profiles in chickpea during Sclerotium rolfsii infection. Microbiol Res 169:353–360

    Article  CAS  PubMed  Google Scholar 

  • Srivastava PK, Vaish A, Dwivedi S, Chakrabarty D, Singh N, Tripathi RD (2011) Biological removal of arsenic pollution by soil fungi. Sci Total Environ 409:2430–2442

    Article  CAS  PubMed  Google Scholar 

  • Taylor AG (1997) Seed storage germination and quality. In: Wien HC (ed) The physiology of vegetable crops. CAB International, Wallingford, pp 1–36

    Google Scholar 

  • Tisdall JM, Oadea JM (1982) Organic matter and water stable aggregates in soils. J Soil Sci 33:141–163

    Article  CAS  Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Van Peer R, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81:728–734

    Article  Google Scholar 

  • Vansuyt G, Robin A, Briat JF, Curie C, Lemanceau P (2007) Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana. Mol Plant-Microbe Interact 20:441–447

    Article  CAS  PubMed  Google Scholar 

  • Viterbo A, Ramot O, Leonid C, Chet I (2002) Significance of lytic enzymes from Trichoderma spp. in the biocontrol of fungal plant pathogen. Antonie Van Leeuwenhoek 81(4):549–556

    Article  CAS  PubMed  Google Scholar 

  • Wei L, Kloepper JW, Tuzun S (1991) Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81:508–1512

    Article  Google Scholar 

  • Wilson CL, Wisniewski ME (1994) Biological control of postharvest diseases of fruits and vegetables– theory and practices. CRC Press, Boca Raton

    Google Scholar 

  • Wright B, Rowse HR, Whipps JM (2003) Microbial populations on seeds during drum and steeping priming. Plant Soil 255:631–640

    Article  CAS  Google Scholar 

  • Yao L, Wu Z, Zheng Y, Kaleem I, Li C (2010) Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. Eur J Soil Biol 46:49–54

    Article  CAS  Google Scholar 

  • Yazdani M, Yap CK, Abdullah F, Tan SG (2009) Trichoderma atroviride as a bioremediator of Cu pollution: an in vitro study. Toxicol Environ Chem 91:1305–1314

    Article  CAS  Google Scholar 

  • Zaidi A, Khan MS, Ahemad M, Oves M (2009) Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiol Immunol Hung 56:263–284

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

SM is highly grateful to the University Grants Commission, New Delhi, India, for providing Dr. D. S. Kothari postdoctoral fellowship. CK and KB thank Banaras Hindu University, Varanasi, Uttar Pradesh, India, for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. B. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Bisen, K., Keswani, C., Mishra, S., Saxena, A., Rakshit, A., Singh, H.B. (2015). Unrealized Potential of Seed Biopriming for Versatile Agriculture. In: Rakshit, A., Singh, H.B., Sen, A. (eds) Nutrient Use Efficiency: from Basics to Advances. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2169-2_13

Download citation

Publish with us

Policies and ethics