Skip to main content

Linking Toll-Like Receptors Signaling to Oxidative Damage: Potential Role in Cancer Therapy

  • Chapter
  • First Online:
Free Radicals in Human Health and Disease

Abstract

Inflammation either promotes host defense or damages organs. Endogenous molecules generated upon oxidative damage can activate TLRs (toll-like receptors) that ultimately alert the innate immune system of danger. Although role of TLRs in the regulation of tissue injury is well established, however, their role in carcinogenesis is still obscure. In this chapter the main emphasis is to open new roads concerning the role of TLRs in devising new opportunities for drug development in cancer through manipulating immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kawai T, Akira S (2006) TLR signaling. Cell Death Differ 13:816–825

    Article  CAS  PubMed  Google Scholar 

  2. Anderson KV, Jürgens G, Nüsslein-Volhard C (1985) Establishment of dorsal-ventral polarity in the Drosophila embryo: genetic studies on the role of the Toll gene product. Cell 42:779–789

    Article  CAS  PubMed  Google Scholar 

  3. Hansson GK, Edfeldt K (2005) Toll to be paid at the gateway to the vessel wall. Arterioscler Thromb Vasc Biol 25:1085–1087

    Article  CAS  PubMed  Google Scholar 

  4. Gill R, Tsung A, Billiar T (2010) Linking oxidative stress to inflammation: toll-like receptors. Free Radic Biol Med 48:1121–1132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Uematsu AS, Takeuchi SO (2006) Pathogen recognition and innate immunity. Cell 124:783–801

    Article  PubMed  Google Scholar 

  6. Janeway C, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216

    Article  CAS  PubMed  Google Scholar 

  7. Akira S, Takeda K (2004) Toll-like receptor signaling. Nat Rev Immunol 4:499–511

    Article  CAS  PubMed  Google Scholar 

  8. Stanley MA, Pett MR, Coleman N (2007) HPV: from infection to cancer. Biochem Soc Trans 35:1456–1460

    Article  CAS  PubMed  Google Scholar 

  9. Galamb O, Sipos F, Spisák S (2009) Potential biomarkers of colorectal adenoma-dysplasia-carcinoma progression: mRNA expression profiling and in situ protein detection on TMAs reveal 15 sequentially upregulated and 2 downregulated genes. Cell Oncol 31:19–29

    CAS  PubMed  Google Scholar 

  10. Muehleisen B, Jiang SB, Gladsjo JA et al (2012) Distinct innate immune gene expression profiles in non-melanoma skin cancer of immunocompetent and immunosuppressed patients. PLoS One 7:40754

    Article  Google Scholar 

  11. Wang B, Li GX, Zhang SG et al (2011) Biglycan expression correlates with aggressiveness and poor prognosis of gastric cancer. Exp Biol Med 236:1247–1253

    Article  CAS  Google Scholar 

  12. Smiley ST, King JA, Hancock WW (2001) Fibrinogen stimulates macrophage chemokine secretion through toll-like receptor 4. J Immunol 167:2887–2894

    Article  CAS  PubMed  Google Scholar 

  13. Rybarczyk BJ, Simpson-Haidaris PJ (2000) Fibrinogen assembly, secretion, and deposition into extracellular matrix by MCF-7 human breast carcinoma cells. Cancer Res 60:2033–2039

    CAS  PubMed  Google Scholar 

  14. Vollmer J, Tluk S (2005) Immune stimulation mediated by autoantigen binding sites within small nuclear RNAs involves toll -like receptors 7 and 8. J Exp Med 202:1575–1585

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Cohen E, Doweck I, Doweck I (2008) Heparanase is overexpressed in lung cancer and correlates inversely with patient survival. Cancer 113:1004–1011

    Article  PubMed Central  PubMed  Google Scholar 

  16. McKenzie EA (2007) Heparanase: a target for drug discovery in cancer and inflammation. Br J Pharmacol 151:1–14

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Park JS, Svetkauskaite D, He Q et al (2004) Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem 279:7370–7377

    Article  CAS  PubMed  Google Scholar 

  18. Vogl T, Tenbrock K, Ludwig S et al (2007) Mrp8 and Mrp14 are endogenous activators of toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med 13:1042–1049

    Article  CAS  PubMed  Google Scholar 

  19. Ivanov S, Dragoi AM, Wang X et al (2007) A novel role for HMGB1 in TLR9-mediated inflammatory responses to CpG-DNA. Blood 110:1970–1981

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Beijnum JR, Nowak-Sliwinska P, Van den Boezem E et al (2012) Tumor angiogenesis is enforced by autocrine regulation of high-mobility group box 1. Oncogene 32:363–374

    Article  PubMed  Google Scholar 

  21. Vakkila J, Lotze MT (2004) Inflammation and necrosis promote tumor growth. Nat Rev Immunol 4:641–648

    Article  CAS  PubMed  Google Scholar 

  22. Yan Y, Xie M, Kang R et al (2012) HMGB1 is a therapeutic target for leukemia. Am J Blood Res 2:36–43

    Google Scholar 

  23. Xie W, Huang Y, Xie W et al (2010) Bacteria peptidoglycan promoted breast cancer cell invasiveness and adhesiveness by targeting toll-like receptor 2 in the cancer cells. PLoS One 5:e10850

    Article  PubMed Central  PubMed  Google Scholar 

  24. Messaoudi S, Peyrat JF, Brion JD et al (2008) Recent advances in Hsp90 inhibitors as antitumor agents. Anti Cancer Agents Med Chem 8:761–782

    Article  CAS  Google Scholar 

  25. Luo W, Rodina A, Chiosis G (2008) Heat shock protein 90: translation from cancer to Alzheimer’s disease treatment? BMC Neurosci 9:S7

    Article  PubMed Central  PubMed  Google Scholar 

  26. Schaeffler A, Gross P (2009) Fatty acid-induced induction of Toll-like receptor-4/nuclear factor-κB pathway in adipocytes links nutritional signalling with innate immunity. Immunology 126:233–245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Sugahara KN, Hirata T, Hayasaka H et al (2006) Tumor cells enhance their own CD44 cleavage and motility by generating hyaluronan fragments. J Biol Chem 281:5861–5868

    Article  CAS  PubMed  Google Scholar 

  28. Foell D, Wittkowski H, Vogl T et al (2007) S100 proteins expressed in phagocytes: a novel group of damage-associated molecular pattern molecules. J Leukoc Biol 81:28–37

    Article  CAS  PubMed  Google Scholar 

  29. Kim HM, Park BS, Kim JI et al (2007) Crystal structure of the TLR4–MD-2 complex with bound endotoxin antagonist eritoran. Cell 130:906–917

    Article  CAS  PubMed  Google Scholar 

  30. Orend G, Chiquet-Ehrismann R (2006) Tenascin-C induced signaling in cancer. Cancer Lett 244:143–163

    Article  CAS  PubMed  Google Scholar 

  31. Kim S, Takahashi H (2009) Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457:102–106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Ricciardelli C (2009) The biological role and regulation of versican levels in cancer. Cancer Metastasis Rev 28:233–245

    Article  PubMed  Google Scholar 

  33. Kono H, Rock KL (2008) How dying cells alert the immune system to danger. Nat Rev Immunol 8:279–289

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Toyokuni S, Okamoto K, Yodoi J et al (1995) Persistent oxidative stress in cancer. FEBS Lett 358:1–3

    Article  CAS  PubMed  Google Scholar 

  35. Fialkow L, Wang Y, Downey GP (2007) Reactive oxygen and nitrogen species as signaling molecules regulating neutrophil function. Free Radic Biol Med 42:153–164

    Article  CAS  PubMed  Google Scholar 

  36. Shin DM, Yang CS, Jo EU (2008) Mycobacterium tuberculosis lipoprotein-induced association of TLR2 with protein kinase C ζ in lipid rafts contributes to reactive oxygen species-dependent inflammatory signaling in macrophages. Cell Microbiol 10:1893–1905

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Ioannou S, Voulgarelis M (2010) Toll-like receptors, tissue injury, and tumourigenesis. Mediat Inflamm 2010:581837

    Article  Google Scholar 

  38. Kim WY, Lee JW, Choi JJ et al (2008) Increased expression of toll-like receptor 5 during progression of cervical neoplasia. Int J Gynecol Cancer 18:300–305

    Article  CAS  PubMed  Google Scholar 

  39. Lee JW, Choi JJ, Seo ES et al (2007) Increased toll-like receptor 9 expression in cervical neoplasia. Mol Carcinog 46:941–947

    Article  CAS  PubMed  Google Scholar 

  40. Koski GK, Czerniecki BJ (2005) Combining innate immunity with radiation therapy for cancer treatment. Clin Cancer Res 11:7–11

    CAS  PubMed  Google Scholar 

  41. Kelly MG, Alvero AB, Chen R et al (2006) TLR-4 signaling promotes tumor growth and paclitaxel chemoresistance in ovarian cancer. Cancer Res 66:3859–3868

    Article  CAS  PubMed  Google Scholar 

  42. O’Connell RM, Taganov KD, Boldin MP et al (2007) MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci U S A 104:1604–1609

    Article  PubMed Central  PubMed  Google Scholar 

  43. Pasare C, Medzhitov R (2004) Toll-like receptors and acquired immunity. Semin Immunol 16:23–26

    Article  CAS  PubMed  Google Scholar 

  44. Janeway CA (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54:1–13

    Article  CAS  PubMed  Google Scholar 

  45. Matzinger P (2002) The danger model: a renewed sense of self. Science 296:301–305

    Article  CAS  PubMed  Google Scholar 

  46. Shi Y, Evans JE, Rock KL (2003) Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425:516–521

    Article  CAS  PubMed  Google Scholar 

  47. Apetoh L, Ghiringhelli F, Tesniere A et al (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13:1050–1059

    Article  CAS  PubMed  Google Scholar 

  48. Tahara T, Arisawa T, Wang F et al (2007) Toll-like receptor 2 −196 to −174 del polymorphism influences the susceptibility of Japanese people to gastric cancer. Cancer Sci 98:1790–1794

    Article  CAS  PubMed  Google Scholar 

  49. Nieters A, Beckmann L, Deeg E et al (2006) Gene polymorphisms in toll-like receptors, interleukin-10, and interleukin-10 receptor alpha and lymphoma risk. Genes Immun 7:615–624

    Article  CAS  PubMed  Google Scholar 

  50. Woodgett JR, Ohashi PS (2005) GSK3: an in-toll-erant protein kinase? Nat Immunol 6:751–742

    Article  CAS  PubMed  Google Scholar 

  51. Re F, Strominger JL (2004) Heterogeneity of TLR-induced responses in dendritic cells: from innate to adaptive immunity. Immunobiology 209:191–198

    Article  CAS  PubMed  Google Scholar 

  52. McDermott EP, O’Neill LAJ (2002) Ras participates in the activation of p38 MAPK by interleukin-1 by associating with IRAK, IRAK2, TRAF6, and TAK-1. J Biol Chem 277:7808–7815

    Article  CAS  PubMed  Google Scholar 

  53. So EY, Ouchi T (2010) The application of toll like receptors for cancer therapy. Int J Biol Sci 6:675–681

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Muzio N, Polentarutti N, Bosisio D et al (2000) Toll-like receptors: a growing family of immune receptors that are differentially expressed and regulated by different leukocytes. J Leukoc Biol 67:450–456

    CAS  PubMed  Google Scholar 

  55. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Karin M, Lawrence T, Nizet V (2006) Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell 124:823–835

    Article  CAS  PubMed  Google Scholar 

  57. Alemán A, Schierloh P, Barrera SS et al (2004) Mycobacterium tuberculosis triggers apoptosis in peripheral neutrophils involving toll-like receptor 2 and p38 mitogen protein kinase in tuberculosis patients. Infect Immun 72:5150–5158

    Article  PubMed Central  PubMed  Google Scholar 

  58. Yamamoto S, Shimizu S, Kiyonaka S et al (2007) TRPM2-mediated Ca2+ influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration. Nat Med 14:738–747

    Article  Google Scholar 

  59. Blüml S, Rosc B, Lorincz A et al (2008) The oxidation state of phospholipids controls the oxidative burst in neutrophil granulocytes. J Immunol 181:4347–4353

    Article  PubMed  Google Scholar 

  60. Szatrowski TP, Nathan CF (1991) Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51:794–798

    CAS  PubMed  Google Scholar 

  61. Piccinini AM, Midwood KS (2010) DAMPening inflammation by modulating TLR signalling. Mediat Inflamm 10:1–21

    Article  Google Scholar 

  62. Kazama H, Ricci JE, Herndon JM et al (2008) Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein. Immunity 29:21–32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Huot J, Houle F, Marceau F et al (1997) Oxidative stress-induced actin reorganization mediated by the p38 mitogen-activated protein kinase/heat shock protein 27 pathway in vascular endothelial cells. Circ Res 80:383–392

    Article  CAS  PubMed  Google Scholar 

  64. Rust W, Kingsley K, Petnicki T et al (1999) Heat shock protein 27 plays two distinct roles in controlling human breast cancer cell migration on laminin-5. Mol Cell Biol Res Commun 1:196–202

    Article  CAS  PubMed  Google Scholar 

  65. Foell D, Wittkowski H, Roth J (2007) Mechanisms of disease: a ‘DAMP’ view of inflammatory arthritis. Nat Clin Pract Rheumatol 3:382–390

    Article  CAS  PubMed  Google Scholar 

  66. West XZ, Malinin NL, Merkulova AA et al (2010) Oxidative stress induces angiogenesis by activating TLR2 with novel endogenous ligands. Nature 467:972–976

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Satta N, Kruithof EKO, Reber G et al (2008) Induction of TLR2 expression by inflammatory stimuli is required for endothelial cell responses to lipopeptides. Mol Immunol 46:145–157

    Article  CAS  PubMed  Google Scholar 

  68. Curtin JF, Liu N, Candolfi M et al (2009) HMGB1 mediates endogenous TLR2 activation and brain tumor regression. PLoS Med 6(1):e10

    Article  PubMed  Google Scholar 

  69. Moldovan L, Irani K, Moldovan NI et al (1999) The actin cytoskeleton reorganization induced by Rac1 requires the production of superoxide. Antioxid Redox Signal 1:29–43

    Article  CAS  PubMed  Google Scholar 

  70. Wang X, Martindale JL, Liu Y et al (1998) The cellular response to oxidative stress: influences of mitogen-activated protein kinase signalling pathways on cell survival. Biochem J 15:291–300

    Google Scholar 

  71. Vulcano M, Dusi S, Lissandrini D et al (2004) Toll receptor-mediated regulation of NADPH oxidase in human dendritic cells. J Immunol 173:5749–5756

    Article  CAS  PubMed  Google Scholar 

  72. Ercolini AM, Ladle BH, Manning EA et al (2005) Recruitment of latent pools of high-avidity CD8+ T cells to the antitumor immune response. J Exp Med 20:1591–1602

    Article  Google Scholar 

  73. Wild CA, Bergmann C, Fritz G et al (2012) HMGB1 conveys immunosuppressive characteristics on regulatory and conventional T cells. Int Immunol 24:485–494

    Article  CAS  PubMed  Google Scholar 

  74. Quinn SR, O’Neill LA (2011) A trio of microRNAs that control Toll-like receptor signaling. Int Immunol 23:421–425

    Article  CAS  PubMed  Google Scholar 

  75. Taganov KD, Boldin MP, Chang KJ et al (2006) NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A 103:12481–12486

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Coley WB (1893) The treatment of malignant tumors by repeated inoculations of erysipelas: with a report of ten original cases. Am J Med Sci 10:487–511

    Article  Google Scholar 

  77. Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10:909–915

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Garay RP, Viens P, Bauer J et al (2007) Cancer relapse under chemotherapy: why TLR2/4 receptor agonists can help. Eur J Pharmacol 563:1–17

    Article  CAS  PubMed  Google Scholar 

  79. Okamoto M, Oshikawa T, Tano T et al (2003) Involvement of Toll-like receptor 4 signaling in interferon-γ production and antitumor effect by streptococcal agent OK-432. J Natl Cancer Inst 95:316–326

    Article  CAS  PubMed  Google Scholar 

  80. Zhang Y, Sun R, Liu B et al (2009) TLR3 activation inhibits nasopharyngeal carcinoma metastasis via downregulation of chemokine receptor CXCR4. Cancer Biol Ther 9:1826–1830

    Article  Google Scholar 

  81. Hailing L, Yang Y, Gad E et al (2010) Polysaccharide Krestin is a novel TLR2 agonist that mediates inhibition of tumor growth via stimulation of CD8 T cells and NK cells. Clin Cancer Res 17:67–76

    Google Scholar 

  82. Nava-Parada P, Forni G, Knutson KL et al (2007) Peptide vaccine given with a toll-like receptor agonist is effective for the treatment and prevention of spontaneous breast tumors. Cancer Res 67:1326–1334

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Bhattacharya D, Yusuf N (2012) Expression of toll-like receptors on breast tumors: taking a toll on tumor microenvironment. Int J Breast Cancer 716564

    Google Scholar 

  84. Muccioli M, Sprague L, Nandigam H et al (2012) Toll-like receptors as novel therapeutic targets for ovarian cancer. ISRN Oncol 2012:642141

    PubMed Central  PubMed  Google Scholar 

  85. Lacour J, Lacour F, Spira A et al (1980) Adjuvant treatment with polyadenylic-polyuridylic acid (Polya.Polyu) in operable breast cancer. Lancet 2:161–164

    Article  CAS  PubMed  Google Scholar 

  86. Dvorak HF (1986) Tumors: wounds that do not heal: similarities between tumor stroma generation and wound healing. N Engl J Med 315:1650–1659

    Article  CAS  PubMed  Google Scholar 

  87. Gelman AE, Zhang J, Choi Y et al (2004) Toll-like receptor ligands directly promote activated CD4+ T cell survival. J Immunol 172:6065–6073

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Chin AI, Miyahira AK, Covarrubias A et al (2010) Toll-like receptor 3-mediated suppression of TRAMP prostate cancer shows the critical role of type I interferons in tumor immune surveillance. Cancer Res 70:2595–2603

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Taura M, Fukuda R, Suico MA et al (2010) TLR3 induction by anticancer drugs potentiates poly I:C-induced tumor cell apoptosis. Cancer Sci 101:1610–1617

    Article  CAS  PubMed  Google Scholar 

  90. Shen P, Jiang T, Lu H et al (2011) Combination of Poly I:C and arsenic trioxide triggers apoptosis synergistically via activation of TLR3 and mitochondrial pathways in hepatocellular carcinoma cells. Cell Biol Int 35:803–810

    Article  CAS  PubMed  Google Scholar 

  91. Lee KH, Liu YJ, Biswas A et al (2011) A novel aminosaccharide compound blocks immune responses by toll-like receptors and nucleotide-binding domain, leucine-rich repeat proteins. J Biol Chem 286:5727–5735

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Lotze MT, Zeh HJ, Rubartelli A et al (2007) The grateful dead: damage-associated molecular pattern molecules and reduction/oxidation regulate immunity. Immunol Rev 200:60–81

    Article  Google Scholar 

  93. Chen GY, Tang J, Zheng P et al (2009) CD24 and siglec-10 selectively repress tissue damage induced immune responses. Science 323:1722–1725

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Liu Y, Chen GY, Zheng P (2009) CD24-Siglec G/10 discriminates danger- from pathogen-associated molecular patterns. Trends Immunol 30:557–561

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Ohmori H, Luo Y, Kuniyasu H (2011) Non-histone nuclear factor HMGB1 as a therapeutic target in colorectal cancer. Expert Opin Ther Targets 15:183–193

    Article  CAS  PubMed  Google Scholar 

  96. Lin Q, Yang XP, Fang D et al (2011) High-mobility group box-1 mediates toll-like receptor 4 – dependent angiogenesis. Integr Physiol Exp Med 31:1024–1032

    CAS  Google Scholar 

  97. Liu L, Li YH, Niu YB et al (2010) An apple oligogalactan prevents against inflammation and carcinogenesis by targeting LPS/TLR4/NF-κB pathway in a mouse model of colitis-associated colon cancer. Carcinogenesis 31:1822–1832

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work is supported by Banaras Hindu University, Varanasi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari D. Khanna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Karki, K., Pande, D., Negi, R., Khanna, S., Khanna, R.S., Khanna, H.D. (2015). Linking Toll-Like Receptors Signaling to Oxidative Damage: Potential Role in Cancer Therapy. In: Rani, V., Yadav, U. (eds) Free Radicals in Human Health and Disease. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2035-0_20

Download citation

Publish with us

Policies and ethics