Skip to main content

Effect of Cold Stress on Photosynthesis of Plants and Possible Protection Mechanisms

  • Chapter
  • First Online:
Approaches to Plant Stress and their Management

Abstract

Plants are subjected to various types of abiotic stresses; among them temperature stress is a common stress experienced by plants distributed all across the globe. Low temperature is one among the important environmental factors that limit the food productivity of agricultural fields around the world. To cope with cold stress, plant species have evolved several physiological and molecular adaptations to minimise damage from cold by adjusting their metabolic processes. The understanding of adaptations and protective regulations represents an additional mechanism of cold tolerance. As a consequence of these changes, plants undergo a process known as cold acclimation. In this chapter, a brief summary on the recent progress of research on how cold-sensitive plants perceive cold is mentioned. We have also explored how this perception is translated into protective mechanism within plants. Particular emphasis is placed on physiological parameters, and regulation of cold-induced photosynthetic processes that occur after exposure to low temperatures, leading to cold acclimation, is widely discussed. This chapter mainly emphasises on the various molecules and pigments synthesised to acclimatise during low-temperature exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anchordoguy TJ, Rudolph AS, Carpenter JF, Crowe JH (1987) Modes of interaction of cryoprotectants with membrane phospholipids during freezing. Cryobiology 24:324–331

    Article  PubMed  CAS  Google Scholar 

  • Anderson JM, Chow WS, Öquist G (1993) Dynamics of photosystem II: photoinhibition as a protective acclimation strategy. In: Yamamoto HY, Smith CM (eds) Photosynthetic responses to the environment. Amer Soc Plant Physiol . Rockville, pp 14–26

    Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Aro EM, Virgin I, Andersson B (1993) Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143(2):113–134

    Article  PubMed  CAS  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Bressan R, Bohbert H, Zhu JK (2009) Abiotic stress tolerance: from gene discovery in model organisms to crop improvement. Mol Plant 2:1–2

    Article  PubMed  CAS  Google Scholar 

  • Crowe JH, Crowe LM, Carpenter JF, Rudolph AS, Wistrom CA, Spargo BJ, Anchordoguy TJ (1988) Interactions of sugars with membranes. Biochem Biophys Acta 947:367–384

    Article  PubMed  CAS  Google Scholar 

  • Damian, J. Allen, Ort DR (2001) Impacts of chilling temperatures on hotosynthesis in warm-climate plants. Trends Plant Sci 6(1):36–42

    Article  Google Scholar 

  • Ensminger I, Bosch F, Huner NPA (2006) Photo stasis and cold acclimation: sensing low temperature through photosynthesis. Physiol Plant 126(1):28–44

    Article  CAS  Google Scholar 

  • Fallon KM, Phillips R (1989) Responses to water stress in adapted carrot cell suspension cultures. J Exp Bot 40:681–687

    Article  CAS  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold-response pathway. Plant Cell 14:1675–1690

    Article  PubMed  CAS  Google Scholar 

  • Furbank RT, Foyer CH, Walker DA (1987) Regulation of photosynthesis in isolated spinach chloroplasts during orthophosphate limitation. Biochim Biophys Acta 894:552–561

    Article  CAS  Google Scholar 

  • Gibson SI (2000) Plant sugar-response pathways. Part of a complex regulatory web. Plant Physiol 124:1532–1539

    Article  PubMed  CAS  Google Scholar 

  • Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Over expression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124:1854–1865

    Article  PubMed  CAS  Google Scholar 

  • Gombos Z, Wada H, Hideg E, Murata N (1994) The unsaturation of membrane lipids stabilizes photosynthesis against heat stress. Plant Physiol 104:563–567

    PubMed  CAS  Google Scholar 

  • Greenberg BM, Gaba V, Matoo A, Edelman M (1987) Identification of a primary in vivo degradation product of the rapidly turning over 32kD protein of photosystem II. EMBO J 6:2865–2869

    PubMed  CAS  Google Scholar 

  • Griffith M, Lumb C, Wiseman SB, Wisniewski M, Johnson RW, Marangoni AG (2005) Antifreeze proteins modify the freezing process in planta. Plant Physiol 138:330–340

    Article  PubMed  CAS  Google Scholar 

  • Gulzar SS, Wani SH, Hussain W, Singh NB (2011) Engineering cold stress tolerance in crop plants. Curr Genomics 12:30–43

    Article  Google Scholar 

  • Harbinson J, Foyer CH (1989) Relationship between the quantum efficiencies of photo systems I and II in pea leaves. Plant Physiol 90:1029–1034

    Article  PubMed  CAS  Google Scholar 

  • Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past present. Plant J 61:1041–1062

    Article  PubMed  CAS  Google Scholar 

  • Hsieh TH, Lee JT, Yang PT, Chiu LH, Charng YY, Wang YC, Chan MT (2002) Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol 129:1086–1094

    Article  PubMed  CAS  Google Scholar 

  • Huner NPA, Öquist G, Sarhan F (1998) Energy balance and acclimation to light and cold. Trends Plant Sci 3:224–230

    Article  Google Scholar 

  • Hurry VM, Malmberg G, Gardeström P, Öquist G (1994) Effects of a short-term shift to low temperature and of long-term cold hardening on photosynthesis and Ribulose-1,5-Bisphosphate carboxylase/oxygenase and sucrose phosphate synthase activity in leaves of winter rye (Secale cereale L.). Plant Physiol 106:983–990

    PubMed  CAS  Google Scholar 

  • Hurry V, Strand A, Furbank R, Stitt M (2000) The role of inorganic phosphate in the development of freezing tolerance and the acclimatization of photosynthesis to low temperature is revealed by the pho mutants of Arabidopsis thaliana. Plant J 24:383–396

    Article  PubMed  CAS  Google Scholar 

  • Jaspers P, Kangasjärvi J (2010) Reactive oxygen species in abiotic stress signaling. Physiol Plant 138:405–413

    Article  PubMed  CAS  Google Scholar 

  • Kee SC, Martin B, Ort DR (1986) The effects of chilling in the dark and in the light on photosynthesis of tomato: electron transfer reactions. Photosynth Res 8:41–51

    Article  CAS  Google Scholar 

  • Kent F, McCue RF, Hanson AD (1990) Drought and salt tolerance: towards understanding and application. Trends Biotech 8:358–362

    Article  Google Scholar 

  • Kingston-Smith AH, Harbinson J, Williams J, Foyer CH (1997) Effect of chilling on carbon assimilation, enzyme activation, and photosynthetic electron transport in the absence of photoinhibition in maize leaves. Plant Physiol 114:1039–1046

    PubMed  CAS  Google Scholar 

  • Kishitani S, Watanabe K, Yasuda S, Arakawa K, Takabe T (1994) Accumulation of glycine betaine during cold acclimation and freezing tolerance in leaves of winter and spring barley plants. Plant Cell Environ 17:89–95

    Article  CAS  Google Scholar 

  • Knight H, Brandt S, Knight MR (1998) A history of drought stress alters calcium signalling pathways in Arabidopsis. Plant J 16:681–687

    Article  PubMed  CAS  Google Scholar 

  • Koster KL (1991) Glass formation and desiccation tolerance in seeds. Plant Physiol 96:302–304

    Article  PubMed  CAS  Google Scholar 

  • Krol M, Huner NPA, Mac Intosh A (1988) Chloroplast biogenesis at cold hardening temperatures. Development of photosystem I and photosystem II activities in relation to pigment accumulation. Photosynth Res 14:97–112

    Article  Google Scholar 

  • Lalk I, Dörfflung K (1985) Hardening, abscisic acid, proline and freezing resistance in two winter wheat varieties. Physiol Plant 63:287–292

    Article  CAS  Google Scholar 

  • Leegood RC, Edwards GE (1996) Carbon metabolism and photorespiration: temperature dependence in relation to other environmental factors. In: Baker NR (ed) Photosynthesis and the environment. Kluwer, Dordrecht, pp 191–221

    Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stress. In: Chilling, freezing, and high temperature stress. Academic, New York

    Google Scholar 

  • Li YS, Huang MB (2008) Pasture yield and soil water deletion of continuous growing alfalfa in the Loess Plateau of China. Agric Ecosyst Environ 124:24–32

    Article  Google Scholar 

  • Makela P, Jokinen K, Kontturi M, Peltonen-Sainio P, Pehu E, Somersalo S (1998) Foliar application of glycine bestaine – a novel product from Sugar beet – as an approach to increase tomato yield. Ind Crops Prod 7:139–148

    Article  CAS  Google Scholar 

  • Mendoza JA, Dulin P, Warren T (2000) The lower hydrolysis of ATP by the stress protein GroEL is a major factor responsible for the diminished chaperonin activity at low temperature. Cryobiology 41:319–323

    Article  PubMed  CAS  Google Scholar 

  • Mudgal V, Madaan N, Mudgal A (2010) Biochemical mechanisms of salt tolerance in plants: a review. Int J Bot 6:136–143

    Article  CAS  Google Scholar 

  • Navakoudis E, Vrentzou K, Kotzabasis K (2007) A polyamine- and LHCII protease activity-based mechanism regulates the plasticity and adaptation status of the photosynthetic apparatus. Biochim Biophys Acta Bioenerg 1767(4):261–271

    Article  CAS  Google Scholar 

  • Paul MJ, Driscoll SP, Lawlor DW (1992) Sink-regulation of photosynthesis in relation to temperature in sunflower and rape. J Exp Bot 43:147–153

    Article  Google Scholar 

  • Pollock CJ, Lloyd EJ (1987) The effect of low growth temperature upon starch, sucrose and fructan synthesis in leaves. Ann Bot 60:231–235

    CAS  Google Scholar 

  • Quartin VL, Ramalho JC, Campos PS, Nunes MA (2004) A importância da investigação na cafeícultura: o problema do frio. In: Tembo PJL, Neto JFC, e Pombal AM (eds) Livro de Actas do 1º Colóquio Angola -Agricultura, Sociedade e Desenvolvimento Rural, Instituto Superior de Agronomia Press, Lisboa, pp 64–72, ISBN 972-8669-09-7, 20–21 Junho 2002

    Google Scholar 

  • Ramalho JC, Quartin V, Fahl JI, Carelli ML, Leitao AE, Nunes MA (2003) Cold acclimation ability of photosynthesis among species of the tropical Coffea genus. Plant Biol 5:631–641

    Article  CAS  Google Scholar 

  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher-plants. Annu Rev Plant Physiol Plant Mol Biol 44:357–384

    Article  CAS  Google Scholar 

  • Rolland F, Winderickx J, Thevelein JM (2001) Glucose sensing mechanisms in eukaryotic cells. Trends Biochem Sci 26:310–317

    Article  PubMed  CAS  Google Scholar 

  • Ruelland E, Zachowski A (2010) How plants sense temperature. Environ Exp Bot 69:225–232

    Article  Google Scholar 

  • Savitch LV, Leonardos ED, Krol M, Jansson S, Grodzinski B, Huner NPA, Oquist G (2002) Two different strategies for light utilization in photosynthesis in relation to growth and cold acclimation. Plant Cell Environ 25:761–771

    Article  CAS  Google Scholar 

  • Seo PJ, Kim MJ, Park JY, Kim SY, Jeon J, Lee YH, Kim J, Park CM (2010) Cold activation of a plasma membrane-tethered NAC transcription factor induces a pathogen resistance response in Arabidopsis. Plant J 61:661–671

    Article  PubMed  CAS  Google Scholar 

  • Serraj R, Sinclair TR (2002) Osmolyte accumulation: can it really help increase crop yield under drought conditions. Plant Cell Environ 25:333–341

    Article  PubMed  Google Scholar 

  • Shalaev EY, Steponkus PL (2001) Phase behavior and glass transition of 1,2-dioleoylphosphatidylethanolamine (DOPE) dehydrated in the presence of sucrose Biochem. Biophys Acta Biomembr 1514:100–116

    Article  CAS  Google Scholar 

  • Shao HB, Liang ZS, Shao MA (2006) Osmotic regulation of 10 wheat (Triticum aestivum L.) genotypes at soil water deficits. Biointerfaces 47:132–139

    Article  CAS  Google Scholar 

  • Shao HB, Chu LY, Shao MA, Zhao CX (2008) Advances in functional regulation mechanisms of plant aquaporins: their diversity, gene expression, localization, structure and roles in plant soil-water relations (Review). Mol Membr Biol 25:1–12

    Google Scholar 

  • Sharma SS, Dietz KJ (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57(4):711–726

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (1996) Molecular response to drought and cold stress. Curr Opin Plant Biol 7:161–167

    CAS  Google Scholar 

  • Smeekens S (2000) Sugar-induced signal transduction in plants. Annu Rev Plant Physiol Plant Mol Biol 51:49–81

    Article  PubMed  CAS  Google Scholar 

  • Somersalo S, Kyei-Boahen S, Pehu E (1996) Exogenous glycine betaine application as a possibility to increase low temperature tolerance of crop plants. Nordisk Jordbruksforskning 78:10

    Google Scholar 

  • Steponkus PL, Uemura M, Webb MS (1993) A contrast of the cryostability of the plasma membrane of winter rye and spring oat-two species that widely differ in their freezing tolerance and plasma membrane lipid composition. In: Steponkus PL (ed) Adv Low-Temp Biol 2:211–312

    Google Scholar 

  • Stitt M, Hurry V (2002) A plant for all seasons: alterations in photosynthetic carbon metabolism during cold acclimation in Arabidopsis. Curr Opin Plant Biol 5:199–206

    Article  PubMed  CAS  Google Scholar 

  • Strand A, Hurry V, Gustafsson P, Gardestrom P (1997) Development of Arabidopsis thaliana leaves at low temperatures releases the suppression of photosynthesis and photosynthetic gene expression despite the accumulation of soluble carbohydrates. Plant J 12:605–614

    Article  PubMed  CAS  Google Scholar 

  • Strand A, Foyer CH, Gustafsson P, Gardestrom P, Hurry V (2003) Altering flux through the Sucrose biosynthesis pathway in transgenic Arabidopsis thaliana modifies photosynthetic acclimation at low temperatures and the development of freezing tolerance. Plant Cell Environ 26:523–535

    Article  CAS  Google Scholar 

  • Stulke J, Hillen W (1999) Carbon catabolite repression in bacteria. Curr Opin Microbiol 2:195–201

    Article  PubMed  CAS  Google Scholar 

  • Thomashow MF (1998) Role of cold-responsive genes in plant freezing tolerance. Plant Physiol 118:1–8

    Article  PubMed  CAS  Google Scholar 

  • Uemura M, Steponkus PL (1999) Cold acclimation in plants: relationship between the lipid composition and the cryostability of the plasma membrane. J Plant Res 112:245–254

    Article  Google Scholar 

  • Ukaji N, Kuwabara C, Takezawa D, Arakawa K, Yoshida S, Fujikawa S (1999) Accumulation of small heat-shock protein homologs in the endoplasmic reticulum of cortical parenchyma cells in mulberry in association with seasonal cold acclimation. Plant Physiol 120:481–489

    Article  PubMed  CAS  Google Scholar 

  • Vogg G, Heim R, Hansen J, Schäfer C, Beck E (1998) Frost hardening and photosynthetic performance of Scots pine (Pinus sylvestris L.) needles. I. Seasonal changes in the photosynthetic apparatus and its function. Planta 204:193–200

    Article  CAS  Google Scholar 

  • Wang ZY, Li FM, Xiong YC, Xu BC (2008) Soil-water threshold range of chemical signals and drought tolerance was mediated by ROS homeostasis in winter wheat during progressive soil drying. J Plant Growth Regul 27:309–319

    Article  Google Scholar 

  • Wanner LA, Junttila O (1999) Cold-induced freezing tolerance in Arabidopsis. Plant Physiol 120:391–400

    Article  PubMed  CAS  Google Scholar 

  • Weimberg R, Lerner HR, Poljakoff-Mayber A (1984) Changes in growth and water soluble solute concentrations in Sorghum bicolor stressed with sodium and potassium. Physiol Plant 62:472–480

    Article  CAS  Google Scholar 

  • Wisniewski M, Webb R, Balsamo R, Close TJ, Yu XM (1999) Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60: a dehydrin from peach (Prunus persica). Physiol Plant 105:600–608

    Article  CAS  Google Scholar 

  • Xiao BZ, Chen X, Xiang CB, Tang N, Zhang QF, Xiong LZ (2009) Evaluation of seven function-known candidate genes for their effects on improving drought resistance of transgenic rice under field conditions. Mol Plant 2:73–83

    Article  PubMed  CAS  Google Scholar 

  • Xin Z, Browse J (2001) Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ 23:893–902

    Article  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Lu C (2005) Photosynthesis is improved by exogenous glycine betaine in salt-stressed maize plants. Physiol Plant 124:343–352

    Article  CAS  Google Scholar 

  • Yang WJ, Rich PJ, Axtell JD, Wood KV, Bonham CC, Ejeta G, Mickelbart MV, Rhodes D (2003) Genotypic variation for glycine betaine in sorghum. Crop Sci 43:162–169

    Article  CAS  Google Scholar 

  • Zhang S, Scheller HV (2004) Photoinhibition of photosystem I at chilling temperature and subsequent recovery in Arabidopsis thaliana. Plant Cell Physiol 45:1595–1602

    Article  PubMed  CAS  Google Scholar 

  • Zhu XG, de Sturler E, Long SP (2007) Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: a numerical simulation using an evolutionary algorithm. Plant Physiol 145:513–526

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. S. Murthy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Adam, S., Murthy, S.D.S. (2014). Effect of Cold Stress on Photosynthesis of Plants and Possible Protection Mechanisms. In: Gaur, R., Sharma, P. (eds) Approaches to Plant Stress and their Management. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1620-9_12

Download citation

Publish with us

Policies and ethics