Skip to main content

Drebrin and Spermatogenesis

  • Chapter
  • First Online:
Drebrin

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1006))

Abstract

Drebrin is a family of actin-binding proteins with two known members called drebrin A and E. Apart from the ability to stabilize F-actin microfilaments via their actin-binding domains near the N-terminus, drebrin also regulates multiple cellular functions due to its unique ability to recruit multiple binding partners to a specific cellular domain, such as the seminiferous epithelium during the epithelial cycle of spermatogenesis. Recent studies have illustrated the role of drebrin E in the testis during spermatogenesis in particular via its ability to recruit branched actin polymerization protein known as actin-related protein 3 (Arp3), illustrating its involvement in modifying the organization of actin microfilaments at the ectoplasmic specialization (ES) which includes the testis-specific anchoring junction at the Sertoli-spermatid (apical ES) interface and at the Sertoli cell-cell (basal ES) interface. These data are carefully evaluated in light of other recent findings herein regarding the role of drebrin in actin filament organization at the ES. We also provide the hypothetical model regarding its involvement in germ cell transport during the epithelial cycle in the seminiferous epithelium to support spermatogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amann RP (2008) The cycle of the seminiferous epithelium in humans: a need to revisit? J Androl 29:469–487. doi:10.2164/jandrol.107.004655

    Article  PubMed  Google Scholar 

  • Amann RP, Howards SS (1980) Daily spermatozoal production and epididymal spermatozoal reserves of the human male. J Urol 124:211–215

    Article  CAS  PubMed  Google Scholar 

  • Aoki C, Kojima N, Sabaliauskas N, Shah L, Ahmed TH, Oakford J, Ahmed T, Yamazaki H, Hanamura K, Shirao T (2009) Drebrin a knockout eliminates the rapid form of homeostatic synaptic plasticity at excitatory synapses of intact adult cerebral cortex. J Comp Neurol 517(1):105–121. doi:10.1002/cne.22137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bardin CW, Cheng CY, Musto NA, Gunsalus GL (1988) The Sertoli cell. In: Knobil E, Neill JD, Ewing LL, Greenwald GS, Markert CL, Pfaff DW (eds) The physiology of reproduction, vol 1. Raven Press, New York, NY, pp 933–974

    Google Scholar 

  • Bernstein BW, Bamburg JR (2010) ADF/cofilin: a functional node in cell biology. Trends Cell Biol 20:187–195. doi:10.1016/j.tcb.2010.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Billig H, Furuta I, Rivier C, Tapanainen J, Parvinen M, Hsueh AJ (1995) Apoptosis in testis germ cells: developmental changes in gonadotropin dependence and localization to selective tubule stages. Endocrinology 136:5–12

    Article  CAS  PubMed  Google Scholar 

  • Bowman GD, Nodelman IM, Hong Y, Chua NH, Lindberg U, Schutt CE (2000) A comparative structural analysis of the ADF/cofilin family. Proteins 41:374–384

    Article  CAS  PubMed  Google Scholar 

  • Butkevich E, Hulsmann S, Wenzel D, Shirao T, Duden R, Majoul I (2004) Drebrin is a novel connexin-43 binding partner that links gap junctions to the submembrane cytoskeleton. Curr Biol 14:650–658. doi:10.1016/j.cub.2004.03.063

    Article  CAS  PubMed  Google Scholar 

  • Cheng CY (2012) In: Cheng CY (ed) Biology and regulation of blood-tissue barriers. Landes Bioscience/Springer Science+Business Media, LLC, Austin, TX, pp 1–361

    Google Scholar 

  • Cheng CY, Mruk DD (2002) Cell junction dynamics in the testis: Sertoli-germ cell interactions and male contraceptive development. Physiol Rev 82:825–874

    Article  CAS  PubMed  Google Scholar 

  • Cheng CY, Mruk DD (2010) A local autocrine axis in the testes that regulates spermatogenesis. Nat Rev Endocrinol 6:380–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng CY, Mruk DD (2011) Regulation of spermiogenesis, spermiation and blood-testis barrier dynamics: novel insights from studies on Eps8 and Arp3. Biochem J 435:553–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng CY, Mruk DD (2012) The blood-testis barrier and its implications for male contraception. Pharmacol Rev 64:16–64. doi:10.1124/pr.110.002790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng CY, Mruk DD (2015) Biochemistry of Sertoli cell/germ cell junctions, germ cell transport, and spermiation in the seminiferous epithelium. In: Griswold MD (ed) Sertoli cell biology, 2nd edn. Elsevier, Amsterdam, pp 333–383. doi:10.1016/B978-0-12-417047-6.00012.0

    Chapter  Google Scholar 

  • Cheng CY, Mruk D, Silvestrini B, Bonanomi M, Wong CH, Siu MK, Lee NP, Lui WY, Mo MY (2005) AF-2364 [1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide] is a potential male contraceptive: a review of recent data. Contraception 72:251–261. doi:10.1016/j.contraception.2005.03.008

    Article  CAS  PubMed  Google Scholar 

  • Cheng CY, Lie PPY, Wong EWP, Mruk DD, Silvestrini B (2011) Adjudin disrupts spermatogenesis via the action of some unlikely partners: Eps8, Arp2/3 complex, drebrin E, PAR6 and 14-3-3. Spermatogenesis 1:291–297

    Article  PubMed  PubMed Central  Google Scholar 

  • Clermont Y (1972) Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal. Physiol Rev 52:198–235

    CAS  PubMed  Google Scholar 

  • Clermont Y, Leblond CP (1955) Spermiogenesis of man, monkey, ram and other mammals as shown by the periodic acid-Schiff technique. Am J Anat 96:229–253. doi:10.1002/aja.1000960203

    Article  CAS  PubMed  Google Scholar 

  • Condeelis J (2001) How is actin polymerization nucleated in vivo? Trends Cell Biol 11:288–293

    Article  CAS  PubMed  Google Scholar 

  • De La Cruz EM, Gardel ML (2015) Actin mechanics and fragmentation. J Biol Chem 290:17137–17144. doi:10.1074/jbc.R115.636472

    Article  CAS  Google Scholar 

  • DesMarais V, Macaluso F, Condeelis J, Bailly M (2004) Synergistic interaction between the Arp2/3 complex and cofilin drives stimulated lamellipod extension. J Cell Sci 117:3499–3510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehmcke J, Schlatt S (2006) A revised model for spermatogonial expansion in man: lessons from non-human primates. Reproduction 132:673–680

    Article  CAS  PubMed  Google Scholar 

  • Ferhat L (2012) Potential role of drebrin a, an f-actin binding protein, in reactive synaptic plasticity after pilocarpine-induced seizures: functional implications in epilepsy. Int J Cell Biol 2012:474351. doi:10.1155/2012/474351

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Franca LR, Auharek SA, Hess RA, Dufour JM, Hinton BT (2012) Blood-tissue barriers: morphofunctional and immunological aspects of the blood-testis and blood-epididymal barriers. Adv Exp Med Biol 763:237–259

    CAS  PubMed  Google Scholar 

  • Garg P, Verma R, Cook L, Soofi A, Venkatareddy M, George B, Mizuno K, Gurniak C, Witke W, Holzman LB (2010) Actin-depolymerizing factor cofilin-1 is necessary in maintaining mature podocyte architecture. J Biol Chem 285(29):22676–22688. doi:10.1074/jbc.M110.122929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geraldo S, Khanzada UK, Parsons M, Chilton JK, Gordon-Weeks PR (2008) Targeting of the F-actin-binding protein drebrin by the microtubule plus-tip protein EB3 is required for neuritogenesis. Nat Cell Biol 10(10):1181–1189. doi:10.1038/ncb1778

    Article  CAS  PubMed  Google Scholar 

  • Gordon-Alonso M, Rocha-Perugini V, Alvarez S, Ursa A, Izquierdo-Useros N, Martinez-Picado J, Munoz-Fernandez MA, Sanchez-Madrid F (2013) Actin-binding protein drebrin regulates HIV-1-triggered actin polymerization and viral infection. J Biol Chem 288(39):28382–28397. doi:10.1074/jbc.M113.494906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grima J, Silvestrini B, Cheng CY (2001) Reversible inhibition of spermatogenesis in rats using a new male contraceptive, 1-(2,4-dichlorobenzyl)-indazole-3-carbohydrazide. Biol Reprod 64(5):1500–1508

    Article  CAS  PubMed  Google Scholar 

  • Grintsevich EE, Reisler E (2014) Drebrin inhibits cofilin-induced severing of F-actin. Cytoskeleton 71(8):472–483. doi:10.1002/cm.21184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gungor-Ordueri NE, Celik-Ozenci C, Cheng CY (2014a) Fascin 1 is an actin filament-bundling protein that regulates ectoplasmic specialization dynamics in the rat testis. Am J Physiol Endocrinol Metab 307:E738–E753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gungor-Ordueri NE, Tang EI, Celik-Ozenci C, Cheng CY (2014b) Ezrin is an actin binding protein that regulates Sertoli cell and spermatid adhesion during spermatogenesis. Endocrinology 155(10):3981–3995. doi:10.1210/en.2014-1163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gurniak CB, Perlas E, Witke W (2005) The actin depolymerizing factor n-cofilin is essential for neural tube morphogenesis and neural crest cell migration. Dev Biol 278:231–241. doi:10.1016/j.ydbio.2004.11.010

    Article  CAS  PubMed  Google Scholar 

  • Guttman JA, Obinata T, Shima J, Griswold M, Vogl AW (2004) Non-muscle cofilin is a component of tubulobulbar complexes in the testis. Biol Reprod 70:805–812. doi:10.1095/biolreprod.103.022723

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K, Ishikawa R, Kawai-Hirai R, Takagi T, Taketomi A, Shirao T (1999) Domain analysis of the actin-binding and actin-remodeling activities of drebrin. Exp Cell Res 253(2):673–680. doi:10.1006/excr.1999.4663

    Article  CAS  PubMed  Google Scholar 

  • Hermo L, Pelletier RM, Cyr DG, Smith CE (2010) Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 5: intercellular junctions and contacts between germ cells and Sertoli cells and their regulatory interactions, testicular cholesterol, and genes/proteins associated with more than one germ cell generation. Microsc Res Tech 73:409–494

    Article  CAS  PubMed  Google Scholar 

  • Hess RA, de Franca LR (2008) Spermatogenesis and cycle of the seminiferous epithelium. Adv Exp Med Biol 636:1–15

    PubMed  Google Scholar 

  • Ichetovkin I, Grant W, Condeelis J (2002) Cofilin produces newly polymerized actin filaments that are preferred for dendritic nucleation by the Arp2/3 complex. Curr Biol 12(1):79–84. doi:10.1016/s0960-9822(01)00629-7

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa R, Hayashi K, Shirao T, Xue Y, Takagi T, Sasaki Y, Kohama K (1994) Drebrin, a development-associated brain protein from rat embryo, causes the dissociation of tropomyosin from actin filaments. J Biol Chem 269:29928–29933

    CAS  PubMed  Google Scholar 

  • Johnson L, Petty CS, Neaves WB (1980) A comparative study of daily sperm production and testicular composition in humans and rats. Biol Reprod 22:1233–1243

    Article  CAS  PubMed  Google Scholar 

  • Jung G, Kim EJ, Cicvaric A, Sase S, Groger M, Hoger H, Sialana FJ, Berger J, Monje FJ, Lubec G (2015) Drebrin depletion alters neurotransmitter receptor levels in protein complexes, dendritic spine morphogenesis and memory-related synaptic plasticity in the mouse hippocampus. J Neurochem 134:327–339. doi:10.1111/jnc.13119

    Article  CAS  PubMed  Google Scholar 

  • Keon BH, Jedrzejewski PT, Paul DL, Goodenough DA (2000) Isoform specific expression of the neuronal F-actin binding protein, drebrin, in specialized cells of stomach and kidney epithelia. J Cell Sci 113:325–336

    CAS  PubMed  Google Scholar 

  • Kojima N, Shirao T (2007) Synaptic dysfunction and disruption of postsynaptic drebrin-actin complex: a study of neurological disorders accompanied by cognitive deficits. Neurosci Res 58:1–5. doi:10.1016/j.neures.2007.02.003

    Article  CAS  PubMed  Google Scholar 

  • Kojima N, Shirao T, Obata K (1993) Molecular cloning of a developmentally regulated brain protein, chicken drebrin A and its expression by alternative splicing of the drebrin gene. Mol Brain Res 19:101–114

    Article  CAS  PubMed  Google Scholar 

  • Kojima N, Hanamura K, Yamazaki H, Ikeda T, Itohara S, Shirao T (2010) Genetic disruption of the alternative splicing of drebrin gene impairs context-dependent fear learning in adulthood. Neuroscience 165:138–150. doi:10.1016/j.neuroscience.2009.10.016

    Article  CAS  PubMed  Google Scholar 

  • Kousaka K, Kiyonari H, Oshima N, Nagafuchi A, Shima Y, Chisaka O, Uemura T (2008) Slingshot-3 dephosphorylates ADF/cofilin but is dispensable for mouse development. Genesis 46:246–255. doi:10.1002/dvg.20389

    Article  CAS  PubMed  Google Scholar 

  • Kreis P, Hendricusdottir R, Kay L, Papageorgiou IE, van Diepen M, Mack T, Ryves J, Harwood A, Leslie NR, Kann O, Parsons M, Eickholt BJ (2013) Phosphorylation of the actin binding protein Drebrin at S647 is regulated by neuronal activity and PTEN. PLoS One 8:e71957. doi:10.1371/journal.pone.0071957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Kretser DM, Kerr JB (1988) The cytology of the testis. In: Knobil E, Neill JB, Ewing LL, Greenwald GS, Markert CL, Pfaff DW (eds) The Physiology of Reproduction, vol 1. Raven Press, New York, NY, pp 837–932

    Google Scholar 

  • Lappalainen P, Kessels MM, Cope MJ, Drubin DG (1998) The ADF homology (ADF-H) domain: a highly exploited actin-binding module. Mol Biol Cell 9:1951–1959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leblond C, Clermont Y (1952) Definition of the stages of the cycle of the seminiferous epithelium in the rat. Ann N Y Acad Sci 55:548–573

    Article  CAS  PubMed  Google Scholar 

  • Li MWM, Mruk DD, Lee WM, Cheng CY (2009) Cytokines and junction restructuring events during spermatogenesis in the testis: An emerging concept of regulation. Cytokine Growth Factor Rev 20:329–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li MW, Xiao X, Mruk DD, Lam YL, Lee WM, Lui WY, Bonanomi M, Silvestrini B, Cheng CY (2011) Actin-binding protein drebrin E is involved in junction dynamics during spermatogenesis. Spermatogenesis 1:123–136. doi:10.4161/spmg.1.2.16393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Mruk DD, Cheng CY (2015a) Actin binding proteins in blood-testis barrier function. Curr Opin Endocrinol Diabetes Obes 22:238–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Mruk DD, CKC W, Han D, Lee WM, Cheng CY (2015b) Formin 1 regulates ectoplamic specialization in the rat testis through its actin nucleation and bundling activity. Endocrinology 156:2969–2983. doi:10.1210/en2015-1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Mruk DD, Wong CKC, Lee WM, Han D, Cheng CY (2015c) Actin bundling protein plastin 3 is a regulator of ectoplasmic specialization (ES) dynamics during spermatogenesis in the rat testis. FASEB J 29:3788–3805. doi:10.1096/fj14-267997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lie PPY, Mruk DD, Lee WM, Cheng CY (2009) Epidermal growth factor receptor pathway substrate 8 (Eps8) is a novel regulator of cell adhesion and the blood-testis barrier integrity in the seminiferous epithelium. FASEB J 23:2555–2567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lie PPY, Chan AYN, Mruk DD, Lee WM, Cheng CY (2010) Restricted Arp3 expression in the testis prevents blood-testis barrier disruption during junction restructuring at spermatogenesis. Proc Natl Acad Sci U S A 107:11411–11416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lui WY, Lee WM, Cheng CY (2003) Sertoli-germ cell adherens junction dynamics in the testis are regulated by RhoB GTPase via the ROCK/LIMK signaling pathway. Biol Reprod 68:2189–2206

    Article  CAS  PubMed  Google Scholar 

  • Majoul I, Shirao T, Sekino Y, Duden R (2007) Many faces of drebrin: from building dendritic spines and stabilizing gap junctions to shaping neurite-like cell processes. Histochem Cell Biol 127:355–361. doi:10.1007/s00418-007-0273-y

    Article  CAS  PubMed  Google Scholar 

  • Mammoto A, Sasaki T, Asakura T, Hotta I, Imamura H, Takahashi K, Matsuura Y, Shirao T, Takai Y (1998) Interactions of drebrin and gephyrin with profilin. Biochem Biophys Res Commun 243(1):86–89. doi:10.1006/bbrc.1997.8068

    Article  CAS  PubMed  Google Scholar 

  • Meng Y, Zhang Y, Tregoubov V, Janus C, Cruz L, Jackson M, WY L, MacDonald JF, Wang JY, Falls DL, Jia Z (2002) Abnormal spine morphology and enhanced LTP in LIMK-1 knockout mice. Neuron 35:121–133

    Article  CAS  PubMed  Google Scholar 

  • Merriam EB, Millette M, Lumbard DC, Saengsawang W, Fothergill T, Hu X, Ferhat L, Dent EW (2013) Synaptic regulation of microtubule dynamics in dendritic spines by calcium, F-actin, and drebrin. J Neurosci 33:16471–16482. doi:10.1523/JNEUROSCI.0661-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikati MA, Grintsevich EE, Reisler E (2013) Drebrin-induced stabilization of actin filaments. J Biol Chem 288:19926–19938. doi:10.1074/jbc.M113.472647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mruk DD, Cheng CY (2004a) Cell-cell interactions at the ectoplasmic specialization in the testis. Trends Endocrinol Metab 15:439–447

    Article  CAS  PubMed  Google Scholar 

  • Mruk DD, Cheng CY (2004b) Sertoli-Sertoli and Sertoli-germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocr Rev 25:747–806

    Article  CAS  PubMed  Google Scholar 

  • Mruk DD, Wong CH, Silvestrini B, Cheng CY (2006) A male contraceptive targeting germ cell adhesion. Nat Med 12:1323–1328. doi:10.1038/nm1420

    Article  CAS  PubMed  Google Scholar 

  • Niwa R, Nagata-Ohashi K, Takeichi M, Mizuno K, Uemura T (2002) Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell 108:233–246

    Article  CAS  PubMed  Google Scholar 

  • O'Donnell L (2014) Mechanisms of spermatogenesis and spermiation and how they are disturbed. Spermatogenesis 4:e979623. doi:10.4161/21565562.2014.979623

    Article  PubMed  Google Scholar 

  • O'Donnell L, Nicholls PK, O'Bryan MK, McLachlan RI, Stanton PG (2011) Spermiation: the process of sperm release. Spermatogenesis 1:14–35

    Article  PubMed  PubMed Central  Google Scholar 

  • Ohashi K (2015) Roles of cofilin in development and its mechanisms of regulation. Develop Growth Differ 57:275–290. doi:10.1111/dgd.12213

    Article  CAS  Google Scholar 

  • Ohta Y, Kousaka K, Nagata-Ohashi K, Ohashi K, Muramoto A, Shima Y, Niwa R, Uemura T, Mizuno K (2003) Differential activities, subcellular distribution and tissue expression patterns of three members of Slingshot family phosphatases that dephosphorylate cofilin. Genes Cells 8:811–824

    Article  CAS  PubMed  Google Scholar 

  • Orth JM (1982) Proliferation of Sertoli cells in fetal and postnatal rats: A quantitative autoradiographic study. Anat Rec 203:485–492

    Article  CAS  PubMed  Google Scholar 

  • Parvinen M (1982) Regulation of the seminiferous epithelium. Endocr Rev 3:404–417

    Article  CAS  PubMed  Google Scholar 

  • Peitsch WK, Grund C, Kuhn C, Schnolzer M, Spring H, Schmelz M, Franke WW (1999) Drebrin is a widespread actin-associating protein enriched at junctional plaques, defining a specific microfilament anchorage system in polar epithelial cells. Eur J Cell Biol 78:767–778. doi:10.1016/s0171-9335(99)80027-2

    Article  CAS  PubMed  Google Scholar 

  • Peitsch WK, Hofmann I, Pratzel S, Grund C, Kuhn C, Moll I, Langbein L, Franke WW (2001) Drebrin particles: components in the ensemble of proteins regulating actin dynamics of lamellipodia and filopodia. Eur J Cell Biol 80:567–579. doi:10.1078/0171-9335-00194

    Article  CAS  PubMed  Google Scholar 

  • Pelletier RM (2011) The blood-testis barrier: the junctional permeability, the proteins and the lipids. Prog Histochem Cytochem 46:49–127. doi:10.1016/j.proghi.2011.05.001

    Article  PubMed  Google Scholar 

  • Qian X, Mruk DD, Wong EWP, Lie PPY, Cheng CY (2013) Palladin is a regulator of actin filament bundles at the ectoplasmic specialization in the rat testis. Endocrinology 154:1907–1920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian X, Mruk DD, Cheng YH, Tang EI, Han D, Lee WM, Wong EW, Cheng CY (2014) Actin binding proteins, spermatid transport and spermiation. Semin Cell Dev Biol 30:75–85. doi:10.1016/j.semcdb.2014.04.018

    Article  CAS  PubMed  Google Scholar 

  • Rehm K, Panzer L, van Vliet V, Genot E, Linder S (2013) Drebrin preserves endothelial integrity by stabilizing nectin at adherens junctions. J Cell Sci 126:3756–3769. doi:10.1242/jcs.129437

    Article  CAS  PubMed  Google Scholar 

  • Robaire B (2003) Advancing towards a male contraceptive: a novel approach from an unexpected direction. Trends Pharmacol Sci 24:326–328

    Article  CAS  PubMed  Google Scholar 

  • Russell LD (1977a) Movement of spermatocytes from the basal to the adluminal compartment of the rat testis. Am J Anat 148:313–328

    Article  CAS  PubMed  Google Scholar 

  • Russell LD (1977b) Observations on rat Sertoli ectoplasmic (junctional) specializations in their association with germ cells of the rat testis. Tissue Cell 9:475–498

    Article  CAS  PubMed  Google Scholar 

  • Russell LD (1979) Observations on the inter-relationships of Sertoli cells at the level of the blood-testis barrier: evidence for formation and resorption of Sertoli-Sertoli tubulobulbar complexes during the spermatogenic cycle of the rat. Am J Anat 155:259–279

    Article  CAS  PubMed  Google Scholar 

  • Russell LD, Peterson RN (1985) Sertoli cell junctions: morphological and functional correlates. Int Rev Cytol 94:177–211

    Article  CAS  PubMed  Google Scholar 

  • Rust MB (2015) ADF/cofilin: a crucial regulator of synapse physiology and behavior. Cell Mol Life Sci 72:3521–3529. doi:10.1007/s00018-015-1941-z

    Article  CAS  PubMed  Google Scholar 

  • Sasaki Y, Hayashi K, Shirao T, Ishikawa R, Kohama K (1996) Inhibition by drebrin of the actin-bundling activity of brain fascin, a protein localized in filopodia of growth cones. J Neurochem 66:980–988

    Article  CAS  PubMed  Google Scholar 

  • Schlatt S, Ehmcke J (2014) Regulation of spermatogenesis: an evolutionary biologist's perspective. Semin Cell Dev Biol 29:2–16. doi:10.1016/j.semcdb.2014.03.007

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Grintsevich EE, Phillips ML, Reisler E, Gimzewski JK (2011) Atomic force microscopy reveals drebrin induced remodeling of f-actin with subnanometer resolution. Nano Lett 11:825–827. doi:10.1021/nl104159v

    Article  CAS  PubMed  Google Scholar 

  • Sharpe RM, McKinnell C, Kivlin C, Fisher JS (2003) Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction 125:769–784

    Article  CAS  PubMed  Google Scholar 

  • Shiraishi-Yamaguchi Y, Sato Y, Sakai R, Mizutani A, Knopfel T, Mori N, Mikoshiba K, Furuichi T (2009) Interaction of Cupidin/Homer2 with two actin cytoskeletal regulators, Cdc42 small GTPase and Drebrin, in dendritic spines. BMC Neurosci 10:25. doi:10.1186/1471-2202-10-25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shirao T (1995) The roles of microfilament-associated proteins, drebrins, in brain morphogenesis: a review. J Biochem 117:231–236

    Article  CAS  PubMed  Google Scholar 

  • Shirao T, Gonzalez-Billault C (2013) Actin filaments and microtubules in dendritic spines. J Neurochem 126:155–164. doi:10.1111/jnc.12313

    Article  CAS  PubMed  Google Scholar 

  • Shirao T, Obata K (1985) Two acidic proteins associated with brain development in chick embryo. J Neurochem 44:1210–1216

    Article  CAS  PubMed  Google Scholar 

  • Shirao T, Obata K (1986) Immunochemical homology of 3 developmentally regulated brain proteins and their developmental change in neuronal distribution. Brain Res 394:233–244

    Article  CAS  PubMed  Google Scholar 

  • Shirao T, Kojima N, Kato YS, Obata K (1988) Molecular cloning of a cDNA for the developmentally regulated brain protein, drebrin. Brain Res 464:71–74

    Article  CAS  PubMed  Google Scholar 

  • Siu MKY, Cheng CY (2004) Interactions of proteases, protease inhibitors, and the β1 integrin/laminin γ3 protein complex in the regulation of ectoplasmic specialization dynamics in the rat testis. Biol Reprod 70:945–964

    Article  CAS  PubMed  Google Scholar 

  • Su WH, Mruk DD, Lie PPY, Lui WY, Cheng CY (2012) Filamin A is a regulator of blood-testis barrier assembly during postnatal development in the rat testis. Endocrinology 153:5023–5035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su WH, Mruk DD, Cheng CY (2013) Regulation of actin dynamics and protein trafficking during spermatogenesis - insights into a complex process. Crit Rev Biochem Mol Biol 48:153–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi H, Koshimizu U, Miyazaki J, Nakamura T (2002) Impaired spermatogenic ability of testicular germ cells in mice deficient in the LIM-kinase 2 gene. Dev Biol 241:259–272. doi:10.1006/dbio.2001.0512

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Funakoshi H, Nakamura T (2003) LIM-kinase as a regulator of actin dynamics in spermatogenesis. Cytogenet Genome Res 103:290–298. doi:10.1159/000076815

    Article  CAS  PubMed  Google Scholar 

  • Tanabe K, Yamazaki H, Inaguma Y, Asada A, Kimura T, Takahashi J, Taoka M, Ohshima T, Furuichi T, Isobe T, Nagata K, Shirao T, Hisanaga S (2014) Phosphorylation of drebrin by cyclin-dependent kinase 5 and its role in neuronal migration. PLoS One 9:e92291. doi:10.1371/journal.pone.0092291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tang EI, Mok KW, Lee WM, Cheng CY (2015) EB1 Regulates tubulin and actin cytoskeletal networks at the sertoli cell blood-testis barrier in male rats: an in vitro study. Endocrinology 156:680–693. doi:10.1210/en.2014-1720

    Article  PubMed  CAS  Google Scholar 

  • Terakawa Y, Agnihotri S, Golbourn B, Nadi M, Sabha N, Smith CA, Croul SE, Rutka JT (2013) The role of drebrin in glioma migration and invasion. Exp Cell Res 319:517–528. doi:10.1016/j.yexcr.2012.11.008

    Article  CAS  PubMed  Google Scholar 

  • Vacca B, Bazellieres E, Nouar R, Harada A, Massey-Harroche D, Le Bivic A (2014) Drebrin E depletion in human intestinal epithelial cells mimics Rab8a loss of function. Hum Mol Genet 23(11):2834–2846. doi:10.1093/hmg/ddt670

    Article  CAS  PubMed  Google Scholar 

  • Vogl A, Pfeiffer D, Mulholland D, Kimel G, Guttman J (2000) Unique and multifunctional adhesion junctions in the testis: ectoplasmic specializations. Arch Histol Cytol 63:1–15

    Article  CAS  PubMed  Google Scholar 

  • Vogl AW, Vaid KS, Guttman JA (2008) The Sertoli cell cytoskeleton. Adv Exp Med Biol 636:186–211

    Article  CAS  PubMed  Google Scholar 

  • Vogl AW, Young JS, Du M (2013) New insights into roles of tubulobulbar complexes in sperm release and turnover of blood-testis barrier. Int Rev Cell Mol Biol 303:319–355

    Article  CAS  PubMed  Google Scholar 

  • Vogl AW, Du M, Wang XY, Young JS (2014) Novel clathrin/actin-based endocytic machinery associated with junction turnover in the seminiferous epithelium. Semin Cell Dev Biol 30:55–64

    Article  CAS  PubMed  Google Scholar 

  • Weaver AM, Young ME, Lee WL, Cooper JA (2003) Integration of signals to the Arp2/3 complex. Curr Opin Cell Biol 15:23–30

    Article  CAS  PubMed  Google Scholar 

  • Weber JE, Russell LD, Wong V, Peterson RN (1983) Three dimensional reconstruction of a rat stage V Sertoli cell: II. Morphometry of Sertoli-Sertoli and Sertoli-germ cell relationships. Am J Anat 167:163–179

    Article  CAS  PubMed  Google Scholar 

  • Wong EWP, Cheng CY (2009) Polarity proteins and cell-cell interactions in the testis. Int Rev Cell Mol Biol 278:309–353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wong EW, Mruk DD, Cheng CY (2008a) Biology and regulation of ectoplasmic specialization, an atypical adherens junction type, in the testis. Biochim Biophys Acta 1778:692–708. doi:10.1016/j.bbamem.2007.11.006

    Article  CAS  PubMed  Google Scholar 

  • Wong EWP, Mruk DD, Cheng CY (2008b) Biology and regulation of ectoplasmic specialization, an atypical adherens junction type, in the testis. Biochem Biophys Acta 1778:692–708

    Article  CAS  PubMed  Google Scholar 

  • Worth DC, Daly CN, Geraldo S, Oozeer F, Gordon-Weeks PR (2013) Drebrin contains a cryptic F-actin-bundling activity regulated by Cdk5 phosphorylation. J Cell Biol 202:793–806. doi:10.1083/jcb.201303005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia W, Wong EW, Mruk DD, Cheng CY (2009) TGF-β3 and TNFα perturb blood-testis barrier (BTB) dynamics by accelerating the clathrin-mediated endocytosis of integral membrane proteins: a new concept of BTB regulation during spermatogenesis. Dev Biol 327:48–61. doi:10.1016/j.ydbio.2008.11.028

    Article  CAS  PubMed  Google Scholar 

  • Xiao X, Mruk DD, Wong CK, Cheng CY (2014) Germ cell transport across the seminiferous epithelium during spermatogenesis. Physiology 29:286–298. doi:10.1152/physiol.00001.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu W, Stamnes M (2006) The actin-depolymerizing factor homology and charged/helical domains of drebrin and mAbp1 direct membrane binding and localization via distinct interactions with actin. J Biol Chem 281:11826–11833. doi:10.1074/jbc.M510141200

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki H, Kojima N, Kato K, Hirose E, Iwasaki T, Mizui T, Takahashi H, Hanamura K, Roppongi RT, Koibuchi N, Sekino Y, Mori N, Shirao T (2014) Spikar, a novel drebrin-binding protein, regulates the formation and stabilization of dendritic spines. J Neurochem 128:507–522. doi:10.1111/jnc.12486

    Article  CAS  PubMed  Google Scholar 

  • Yan HHN, Mruk DD, Lee WM, Cheng CY (2007) Ectoplasmic specialization: a friend or a foe of spermatogenesis? BioEssays 29:36–48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan HH, Mruk DD, Lee WM, Cheng CY (2008) Blood-testis barrier dynamics are regulated by testosterone and cytokines via their differential effects on the kinetics of protein endocytosis and recycling in Sertoli cells. FASEB J 22:1945–1959. doi:10.1096/fj.06-070342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Ma QL, Calon F, Harris-White ME, Yang F, Lim GP, Morihara T, Ubeda OJ, Ambegaokar S, Hansen JE, Weisbart RH, Teter B, Frautschy SA, Cole GM (2006) Role of p21-activated kinase pathway defects in the cognitive deficits of Alzheimer disease. Nat Neurosci 9:234–242. doi:10.1038/nn1630

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported in part by grants from the National Institutes of Health (R01 HD056034 and U54 HD029990 Project 5, to CYC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Yan Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Chen, H., Li, M.W.M., Yan Cheng, C. (2017). Drebrin and Spermatogenesis. In: Shirao, T., Sekino, Y. (eds) Drebrin. Advances in Experimental Medicine and Biology, vol 1006. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56550-5_17

Download citation

Publish with us

Policies and ethics