Skip to main content

Origin of Fungicide-Resistant Barley Powdery Mildew in Western Australia: Lessons to Be Learned

  • Chapter
Fungicide Resistance in Plant Pathogens

Abstract

The risk of fungicide resistance is greatest with pathogens with short dormant periods, with both sexual and asexual reproduction cycles, with large population sizes and when fungicides of a single mode of action (MOA) are repeatedly used. Most of the barley growing area in Western Australia (WA) has been seeded with powdery mildew (Blumeria graminis f. sp. hordei (Bgh)) susceptible cultivars for the last 10–15 years. Fungicides from the triazole group dominate the market and are used repeatedly as both seed and foliar treatments. Field failures have been observed leading to losses estimated at AU$100 m annually since 2007. Reduced efficacy has often been found to result from alterations in the gene encoding triazole target 14α-sterol demethylase (CYP51 syn. ERG11). Clear associations were found between accumulations of CYP51 mutations and reductions in triazole sensitivity. The combination of susceptible cultivars, conducive environmental conditions and repeated use of a single MOA has led with disappointing predictability to perhaps the most costly fungicide resistance epidemic in history.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ABARES (2014) Australian crop report, vol 169. Australian Bureau of Agricultural and Resource Economics and Sciences, Canberra

    Google Scholar 

  • APVMA (2014) Public chemical registration information systems search. Australian Government. Accessed 20 June 2014

    Google Scholar 

  • BarleyAustralia (2014) Barley Malt varieties under evaluation. http://www.barleyaustralia.com.au/varieties-under-malt-evaluation. Accessed 1 July 2014

  • Bjørnstad Å, Aastveit K (1990) Pleiotropic effects on the mlo mildew resistance gene in barley in different genetical backgrounds. Euphytica 46(3):217–226. doi:10.1007/bf00027221

    Article  Google Scholar 

  • Brent K, Hollomon DW (2007) Fungicide resistance: the assessment of risk, vol 2, 2nd edn. Fungicide Resistance Action Committee, Brussels

    Google Scholar 

  • CBH (2014) CBH Barley grower estimates. Perth

    Google Scholar 

  • Chamilos G, Kontoyiannis DP (2005) Update on antifungal drug resistance mechanisms of Aspergillus fumigatus. Drug Resist Updat 8(6):344–358

    Article  CAS  PubMed  Google Scholar 

  • Cools HJ, Fraaije BA (2013) Update on mechanisms of azole resistance in Mycosphaerella graminicola and implications for future control. Pest Manag Sci 69(2):150–155. doi:10.1002/ps.3348

    Article  CAS  PubMed  Google Scholar 

  • Da Silva Ferreira ME, Luiz Capellaro J, Dos Reis ME, Malavazi I, Perlin D, Park S, Anderson JB, Colombo AL, Arthington-Skaggs BA, Goldman MHS, Goldman GH (2004) In vitro evolution of itraconazole resistance in Aspergillus fumigatus involves multiple mechanisms of resistance. Antimicrob Agents Chemother 48(11):4405–4413

    Article  PubMed Central  PubMed  Google Scholar 

  • DailyGrain (2014) Historical barley prices. Perth

    Google Scholar 

  • Dreiseitl A, Platz G (2012) Powdery mildew resistance genes in barley varieties grown in Australia. Crop Pasture Sci 63(10):997–1006

    Article  CAS  Google Scholar 

  • Eichmann R, Hückelhoven R (2008) Accommodation of powdery mildew fungi in intact plant cells. J Plant Physiol 165(1):5–18

    Article  CAS  PubMed  Google Scholar 

  • Fletcher JS, Wolfe MS (1981) Insensitivity of Erysiphe graminis f. sp. hordei to triadimefon, triadimenol and other fungicides. In: Proceedings of the Brighton crop protection conference. Pests and Diseases, Brighton, pp 633–640

    Google Scholar 

  • FRAC (2013) FRAC list of plant pathogenic organisms resistant to disease control agents

    Google Scholar 

  • FRAC (2014) FRAC code list 2014: fungicides sorted by mode of action

    Google Scholar 

  • FRAG (2014) Fungicides approved for winter barley. Accessed 11 July 2014

    Google Scholar 

  • GRDC (2012) Barley powdery mildew fact sheet: control strategies for powdery mildew. CORETEXT, Western Region

    Google Scholar 

  • Jørgensen JH (1992) Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica 63(1–2):141–152

    Article  Google Scholar 

  • Kim MC, Panstruga R, Elliott C, Muller J, Devoto A, Yoon HW, Park HC, Cho MJ, Schulze-Lefert P (2002) Calmodulin interacts with MLO protein to regulate defence against mildew in barley. Nature 416(6879):447–451

    Article  CAS  PubMed  Google Scholar 

  • Kumar J, Hückelhoven R, Beckhove U, Nagarajan S, Kogel K-H (2001) A compromised Mlo pathway affects the response of Barley to the Necrotrophic Fungus Bipolaris sorokiniana (Teleomorph: Cochliobolus sativus) and its toxins. Phytopathology 91(2):127–133. doi:10.1094/phyto.2001.91.2.127

    Article  CAS  PubMed  Google Scholar 

  • Loeffler RST, Butters JA, Hollomon DW (1992) The sterol composition of powdery mildews. Phytochemistry 31(5):1561–1563. doi:http://dx.doi.org/10.1016/0031-9422(92)83106-9

  • Ma Z, Proffer TJ, Jacobs JL, Sundin GW (2006) Overexpression of the 14α-demethylase target gene (CYP51) mediates fungicide resistance in Blumeriella jaapii. Appl Environ Microbiol 72(4):2581–2585

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • MacBean C (ed) (2012) The pesticide manual: a world compendium, vol 16. British Crop Production Council, Hampshire

    Google Scholar 

  • McGrann GRD, Stavrinides A, Russell J, Corbitt MM, Booth A, Chartrain L, Thomas WTB, Brown JKM (2014) A trade off between mlo resistance to powdery mildew and increased susceptibility of barley to a newly important disease, Ramularia leaf spot. J Exp Bot. doi:10.1093/jxb/ert452

    PubMed Central  PubMed  Google Scholar 

  • Mullins JGL, Parker JE, Cools HJ, Togawa RC, Lucas JA, Fraaije BA, Kelly DE, Kelly SL (2011) Molecular modelling of the emergence of azole resistance in Mycosphaerella graminicola. PLoS One 6(6):e20973. doi:10.1371/journal.pone.0020973

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murray GM, Brennan JP (2010) Estimating disease losses to the Australian barley industry. Australas Plant Pathol 39(1):85–96

    Article  Google Scholar 

  • NVT (2014) Long term yield report – Barley. Australian Crop Accreditation System. Grains Research and Development Corporation

    Google Scholar 

  • Paton S (2014) Fungicide use in practice: insights from industry. Perth

    Google Scholar 

  • Paynter B, Hills A, Dhammu H (2012) Barley variety guide for WA 2013, Bulletin 4836. Government of Western Australia, South Perth. Government of Western Australia, South Perth, Australia

    Google Scholar 

  • Pedersen C, Rasmussen SW, Giese H (2002) A genetic map of Blumeria graminis based on functional genes, Avirulence genes, and molecular markers. Fungal Genet Biol 35:235–246

    Article  CAS  PubMed  Google Scholar 

  • Poole NF, Arnaudin ME (2014) The role of fungicides for effective disease management in cereal crops. Can J Plant Pathol 36(1):1–11

    Article  CAS  Google Scholar 

  • Rowe P (2012) Western Australia’s farm debt trends: are we at the tipping point? In: Australian Agricultural and Resource Economics Society. AgEcon, Fremantle/Perth

    Google Scholar 

  • Tacconi G, Baldassarre V, Collins NC, Bulgarelli D, Stanca AM, Vale G (2006) Haplotype characterization and markers at the barley Mlo powdery mildew resistance locus as tools for marker-assisted selection. Genome 49:864–872

    Article  CAS  PubMed  Google Scholar 

  • Tucker MA, Jayasena K, Ellwood SR, Oliver RP (2013) Pathotype variation of barley powdery mildew in Western Australia. Australas Plant Pathol 42(5):617–623

    Article  CAS  Google Scholar 

  • Tucker MA, Lopez-Ruiz F, Cools HJ, Mullins JGL, Oliver RP (2014) Accumulation of mutations in Blumeria graminis f. sp. hordei CYP51 confers positive and negative cross-resistance to triazole fungicides. Under Review

    Google Scholar 

  • van den Bosch F, Paveley N, Shaw M, Hobbelen P, Oliver R (2011) The dose rate debate: does the risk of fungicide resistance increase or decrease with dose? Plant Pathol 60(4):597–606. doi:10.1111/j.1365-3059.2011.02439.x

    Article  Google Scholar 

  • van den Bosch F, Oliver R, van den Berg F, Paveley N (2014) Governing principles can guide fungicide-resistance management tactics. Ann Rev Phytopathol 52 (1):null. doi:10.1146/annurev-phyto-102313-050158

  • Wyand RA, Brown JKM (2005) Sequence variation in the CYP51 gene of Blumeria graminis associated with resistance to sterol demethylase inhibiting fungicides. Fungal Genet Biol 42:726–735

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madeline Ann Tucker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Tucker, M.A., Lopez-Ruiz, F., Jayasena, K., Oliver, R.P. (2015). Origin of Fungicide-Resistant Barley Powdery Mildew in Western Australia: Lessons to Be Learned. In: Ishii, H., Hollomon, D. (eds) Fungicide Resistance in Plant Pathogens. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55642-8_20

Download citation

Publish with us

Policies and ethics