Skip to main content

Complexity of Mammalian Transcriptome Analyzed by RNA Deep Sequencing

  • Chapter
Long Noncoding RNAs

Abstract

Genetic information in most living organisms on Earth is stored in the form of a chemical structure, known as deoxyribonucleic acid (DNA). Researchers discovered that pieces of long DNA molecules, called genes, are recognized by the nuclear multi-subunit complex of ribonucleic acid (RNA) polymerase, which then produces molecules of RNA, complementarily mirroring the original DNA. Some of these RNA molecules carry information that can be used to produce polypeptide chains with pre-defined amino acid sequences. These molecules have been named messenger RNAs (mRNAs). Others, such as ribosomal RNAs, transfer RNAs, and small nuclear RNAs, have been found to drive and regulate production of proteins. They are sometimes referred to as housekeeping or structural RNAs.

However, sequences of mRNAs together with structural RNAs account for less than 10 % of animal and plant genomes. The rest of the genome was considered silent and non-functional, until on-going research revealed that about 80 % of DNA might be transcribed, producing numerous long noncoding RNA molecules with important functions. This chapter gives an overview of mammalian transcriptome research in recent decades. It discusses the main technology platforms, comparing their strong sides and disadvantages. Some of the most important findings are summarized, with an overview of the future prospectives in long noncoding RNA research.

The chapter shows that the current understanding of what is a gene should be revised, in order to clearly define the complex relationship between product-coding regions, regulatory sequences, and the organism’s phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  CAS  PubMed  Google Scholar 

  • Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M, Chen Y, Zhao X, Schmidl C, Suzuki T et al (2014) An atlas of active enhancers across human cell types and tissues. Nature 507:455–461

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Bazak L, Haviv A, Barak M, Jacob-Hirsch J, Deng P, Zhang R, Isaacs FJ, Rechavi G, Li JB, Eisenberg E et al (2014) A-to-I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes. Genome Res 24:365–376

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boley N, Stoiber MH, Booth BW, Wan KH, Hoskins RA, Bickel PJ, Celniker SE, Brown JB (2014) Genome-guided transcript assembly by integrative analysis of RNA sequence data. Nat Biotechnol 32:341–346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brockdorff N, Ashworth A, Kay GF, McCabe VM, Norris DP, Cooper PJ, Swift S, Rastan S (1992) The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell 71:515–526

    Article  CAS  PubMed  Google Scholar 

  • Brown JB, Boley N, Eisman R, May GE, Stoiber MH, Duff MO, Booth BW, Wen J, Park S, Suzuki AM et al (2014) Diversity and dynamics of the Drosophila transcriptome. Nature 512:393–399

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carninci P, Shibata Y, Hayatsu N, Sugahara Y, Shibata K, Itoh M, Konno H, Okazaki Y, Muramatsu M, Hayashizaki Y (2000) Normalization and subtraction of cap-trapper-selected cDNAs to prepare full-length cDNA libraries for rapid discovery of new genes. Genome Res 10:1617–1630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C et al (2005) The transcriptional landscape of the mammalian genome. Science 309:1559–1563

    Article  CAS  PubMed  Google Scholar 

  • Carrieri C, Cimatti L, Biagioli M, Beugnet A, Zucchelli S, Fedele S, Pesce E, Ferrer I, Collavin L, Santoro C et al (2012) Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 491:454–457

    Article  CAS  PubMed  Google Scholar 

  • Chang H, Lim J, Ha M, Kim VN (2014) TAIL-seq: genome-wide determination of poly(A) tail length and 3′ end modifications. Mol Cell 53:1044–1052

    Article  CAS  PubMed  Google Scholar 

  • Chen LL, Carmichael GG (2009) Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: functional role of a nuclear noncoding RNA. Mol Cell 35:467–478

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen J, Sun M, Kent WJ, Huang X, Xie H, Wang W, Zhou G, Shi RZ, Rowley JD (2004) Over 20% of human transcripts might form sense–antisense pairs. Nucleic Acids Res 32:4812–4820

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng J, Kapranov P, Drenkow J, Dike S, Brubaker S, Patel S, Long J, Stern D, Tammana H, Helt G et al (2005) Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science 308:1149–1154

    Article  CAS  PubMed  Google Scholar 

  • Cloonan N, Forrest AR, Kolle G, Gardiner BB, Faulkner GJ, Brown MK, Taylor DF, Steptoe AL, Wani S, Bethel G et al (2008) Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat Methods 5:613–619

    Article  CAS  PubMed  Google Scholar 

  • Core L, Waterfall J, Lis JT (2008) Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322(5909):1845–1848

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Criscione SW, Zhang Y, Thompson W, Sedivy JM, Neretti N (2014) Transcriptional landscape of repetitive elements in normal and cancer human cells. BMC Genomics 15:583

    Article  PubMed Central  PubMed  Google Scholar 

  • De Cecco M, Criscione SW, Peterson AL, Neretti N, Sedivy JM, Kreiling JA (2013) Transposable elements become active and mobile in the genomes of aging mammalian somatic tissues. Aging 5:867–883

    PubMed Central  PubMed  Google Scholar 

  • Dermitzakis ET, Reymond A, Lyle R, Scamuffa N, Ucla C, Deutsch S, Stevenson BJ, Flegel V, Bucher P, Jongeneel CV et al (2002) Numerous potentially functional but non-genic conserved sequences on human chromosome 21. Nature 420:578–582

    Article  CAS  PubMed  Google Scholar 

  • Dermitzakis ET, Kirkness E, Schwarz S, Birney E, Reymond A, Antonarakis SE (2004) Comparison of human chromosome 21 conserved nongenic sequences (CNGs) with the mouse and dog genomes shows that their selective constraint is independent of their genic environment. Genome Res 14:852–859

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22:1775–1789

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Derti A, Garrett-Engele P, Macisaac KD, Stevens RC, Sriram S, Chen R, Rohl CA, Johnson JM, Babak T (2012) A quantitative atlas of polyadenylation in five mammals. Genome Res 22:1173–1183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F et al (2012) Landscape of transcription in human cells. Nature 489:101–108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Feng J, Bi C, Clark BS, Mady R, Shah P, Kohtz JD (2006) The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes Dev 20:1470–1484

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Forrest AR, Kawaji H, Rehli M, Baillie JK, de Hoon MJ, Lassmann T, Itoh M, Summers KM, Suzuki H, Daub CO et al (2014) A promoter-level mammalian expression atlas. Nature 507:462–470

    Article  CAS  PubMed  Google Scholar 

  • Fort A, Hashimoto K, Yamada D, Salimullah M, Keya CA, Saxena A, Bonetti A, Voineagu I, Bertin N, Kratz A et al (2014) Deep transcriptome profiling of mammalian stem cells supports a regulatory role for retrotransposons in pluripotency maintenance. Nat Genet 46:558–566

    Article  CAS  PubMed  Google Scholar 

  • Frith MC, Wilming LG, Forrest A, Kawaji H, Tan SL, Wahlestedt C, Bajic VB, Kai C, Kawai J, Carninci P et al (2006) Pseudo-messenger RNA: phantoms of the transcriptome. PLoS Genet 2:e23

    Article  PubMed Central  PubMed  Google Scholar 

  • Fullwood MJ, Wei CL, Liu ET, Ruan Y (2009) Next-generation DNA sequencing of paired-end tags (PET) for transcriptome and genome analyses. Genome Res 19:521–532

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Graur D, Zheng Y, Price N, Azevedo RB, Zufall RA, Elhaik E (2013) On the immortality of television sets: “function” in the human genome according to the evolution-free gospel of ENCODE. Genome Biol Evol 5:578–590

    Article  PubMed Central  PubMed  Google Scholar 

  • Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464:1071–1076

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, Aken BL, Barrell D, Zadissa A, Searle S et al (2012) GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res 22:1760–1774

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Holdt LM, Hoffmann S, Sass K, Langenberger D, Scholz M, Krohn K, Finstermeier K, Stahringer A, Wilfert W, Beutner F et al (2013) Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks. PLoS Genet 9:e1003588

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • International Human Genome Sequencing Consortium (2004). Finishing the euchromatic sequence of the human genome. Nature 431:931–945

    Google Scholar 

  • International Human Genome Sequencing Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74

    Google Scholar 

  • Johnsson P, Ackley A, Vidarsdottir L, Lui WO, Corcoran M, Grander D, Morris KV (2013) A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells. Nat Struct Mol Biol 20:440–446

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kalyana-Sundaram S, Kumar-Sinha C, Shankar S, Robinson DR, Wu YM, Cao X, Asangani IA, Kothari V, Prensner JR, Lonigro RJ et al (2012) Expressed pseudogenes in the transcriptional landscape of human cancers. Cell 149:1622–1634

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kapranov P, Cawley SE, Drenkow J, Bekiranov S, Strausberg RL, Fodor SP, Gingeras TR (2002) Large-scale transcriptional activity in chromosomes 21 and 22. Science 296:916–919

    Article  CAS  PubMed  Google Scholar 

  • Katayama S, Tomaru Y, Kasukawa T, Waki K, Nakanishi M, Nakamura M, Nishida H, Yap CC, Suzuki M, Kawai J et al (2005) Antisense transcription in the mammalian transcriptome. Science 309:1564–1566

    Article  PubMed  Google Scholar 

  • Kelkar DS, Provost E, Chaerkady R, Muthusamy B, Manda SS, Subbannayya T, Selvan LD, Wang CH, Datta KK, Woo S et al (2014) Annotation of the zebrafish genome through an integrated transcriptomic and proteomic analysis. Mol Cell Proteomics: MCP 13:3184–3198

    Article  CAS  PubMed  Google Scholar 

  • Kellis M, Wold B, Snyder MP, Bernstein BE, Kundaje A, Marinov GK, Ward LD, Birney E, Crawford GE, Dekker J et al (2014) Defining functional DNA elements in the human genome. Proc Natl Acad Sci U S A 111:6131–6138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, Harmin DA, Laptewicz M, Barbara-Haley K, Kuersten S et al (2010) Widespread transcription at neuronal activity-regulated enhancers. Nature 465:182–187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kodzius R, Kojima M, Nishiyori H, Nakamura M, Fukuda S, Tagami M, Sasaki D, Imamura K, Kai C, Harbers M et al (2006) CAGE: cap analysis of gene expression. Nat Methods 3:211–222

    Article  CAS  PubMed  Google Scholar 

  • Lahens NF, Kavakli IH, Zhang R, Hayer K, Black MB, Dueck H, Pizarro A, Kim J, Irizarry R, Thomas RS et al (2014) IVT-seq reveals extreme bias in RNA sequencing. Genome Biol 15:R86

    Article  PubMed Central  PubMed  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  CAS  PubMed  Google Scholar 

  • Leucci E, Patella F, Waage J, Holmstrom K, Lindow M, Porse B, Kauppinen S, Lund AH (2013) microRNA-9 targets the long non-coding RNA MALAT1 for degradation in the nucleus. Sci Rep 3:2535

    Article  PubMed Central  PubMed  Google Scholar 

  • Levin JZ, Yassour M, Adiconis X, Nusbaum C, Thompson DA, Friedman N, Gnirke A, Regev A (2010) Comprehensive comparative analysis of strand-specific RNA sequencing methods. Nat Methods 7:709–715

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773

    Article  CAS  PubMed  Google Scholar 

  • Lv J, Liu H, Huang Z, Su J, He H, Xiu Y, Zhang Y, Wu Q (2013) Long non-coding RNA identification over mouse brain development by integrative modeling of chromatin and genomic features. Nucleic Acids Res 41:10044–10061

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matera AG, Terns RM, Terns MP (2007) Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nat Rev Mol Cell Biol 8:209–220

    Article  CAS  PubMed  Google Scholar 

  • McClintock B (1953) Induction of instability at selected loci in maize. Genetics 38:579–599

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mondal T, Rasmussen M, Pandey GK, Isaksson A, Kanduri C (2010) Characterization of the RNA content of chromatin. Genome Res 20:899–907

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ng P, Wei CL, Sung WK, Chiu KP, Lipovich L, Ang CC, Gupta S, Shahab A, Ridwan A, Wong CH et al (2005) Gene identification signature (GIS) analysis for transcriptome characterization and genome annotation. Nat Methods 2:105–111

    Article  CAS  PubMed  Google Scholar 

  • Paul J, Duerksen JD (1975) Chromatin-associated RNA content of heterochromatin and euchromatin. Mol Cell Biochem 9:9–16

    Article  CAS  PubMed  Google Scholar 

  • Pearson H (2006) Genetics: what is a gene? Nature 441:398–401

    Article  CAS  PubMed  Google Scholar 

  • Pei B, Sisu C, Frankish A, Howald C, Habegger L, Mu XJ, Harte R, Balasubramanian S, Tanzer A, Diekhans M et al (2012) The GENCODE pseudogene resource. Genome Biol 13:R51

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pennisi E (2007) Genomics. DNA study forces rethink of what it means to be a gene. Science 316:1556–1557

    Article  CAS  PubMed  Google Scholar 

  • Plessy C, Bertin N, Takahashi H, Simone R, Salimullah M, Lassmann T, Vitezic M, Severin J, Olivarius S, Lazarevic D et al (2010) Linking promoters to functional transcripts in small samples with nanoCAGE and CAGEscan. Nat Methods 7:528–534

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ponjavic J, Ponting CP, Lunter G (2007) Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Res 17:556–565

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Preker P, Almvig K, Christensen MS, Valen E, Mapendano CK, Sandelin A, Jensen TH (2011) PROMoter uPstream Transcripts share characteristics with mRNAs and are produced upstream of all three major types of mammalian promoters. Nucleic Acids Res 39:7179–7193

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Quentin Y (1992) Origin of the Alu family: a family of Alu-like monomers gave birth to the left and the right arms of the Alu elements. Nucleic Acids Res 20:3397–3401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166

    Article  CAS  PubMed  Google Scholar 

  • Rinn JL, Euskirchen G, Bertone P, Martone R, Luscombe NM, Hartman S, Harrison PM, Nelson FK, Miller P, Gerstein M et al (2003) The transcriptional activity of human Chromosome 22. Genes Dev 17:529–540

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129:1311–1323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roberts A, Pimentel H, Trapnell C, Pachter L (2011) Identification of novel transcripts in annotated genomes using RNA-Seq. Bioinformatics 27:2325–2329

    Article  CAS  PubMed  Google Scholar 

  • Ronnerblad M, Andersson R, Olofsson T, Douagi I, Karimi M, Lehmann S, Hoof I, de Hoon M, Itoh M, Nagao-Sato S et al (2014) Analysis of the DNA methylome and transcriptome in granulopoiesis reveals timed changes and dynamic enhancer methylation. Blood 123:e79–e89

    Article  PubMed  Google Scholar 

  • Sado T, Brockdorff N (2013) Advances in understanding chromosome silencing by the long non-coding RNA Xist. Philos Trans R Soc Lond B Biol Sci 368:20110325

    Article  PubMed Central  PubMed  Google Scholar 

  • Sakurai M, Ueda H, Yano T, Okada S, Terajima H, Mitsuyama T, Toyoda A, Fujiyama A, Kawabata H, Suzuki T (2014) A biochemical landscape of A-to-I RNA editing in the human brain transcriptome. Genome Res 24:522–534

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Salditt-Georgieff M, Darnell JE Jr (1982) Further evidence that the majority of primary nuclear RNA transcripts in mammalian cells do not contribute to mRNA. Mol Cell Biol 2:701–707

    CAS  PubMed Central  PubMed  Google Scholar 

  • Salditt-Georgieff M, Harpold MM, Wilson MC, Darnell JE Jr (1981) Large heterogeneous nuclear ribonucleic acid has three times as many 5′ caps as polyadenylic acid segments, and most caps do not enter polyribosomes. Mol Cell Biol 1:179–187

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saliba AE, Westermann AJ, Gorski SA, Vogel J (2014) Single-cell RNA-seq: advances and future challenges. Nucleic Acids Res 42:8845–8860

    Article  PubMed Central  PubMed  Google Scholar 

  • Salimullah M, Sakai M, Plessy C, Carninci P (2011) NanoCAGE: a high-resolution technique to discover and interrogate cell transcriptomes. Cold Spring Harbor Protoc 2011:pdb.prot5559

    Google Scholar 

  • Siggens L, Ekwall K (2014) Epigenetics, chromatin and genome organization: recent advances from the ENCODE project. J Intern Med 276:201–214

    Article  CAS  PubMed  Google Scholar 

  • Smit AF, Riggs AD (1995) MIRs are classic, tRNA-derived SINEs that amplified before the mammalian radiation. Nucleic Acids Res 23:98–102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takahashi H, Lassmann T, Murata M, Carninci P (2012) 5′ end-centered expression profiling using cap-analysis gene expression and next-generation sequencing. Nat Protoc 7:542–561

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson DM, Parker R (2007) Cytoplasmic decay of intergenic transcripts in Saccharomyces cerevisiae. Mol Cell Biol 27:92–101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Treangen TJ, Salzberg SL (2012) Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet 13:36–46

    CAS  Google Scholar 

  • Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, Shi Y, Segal E, Chang HY (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science 329:689–693

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vickaryous MK, Hall BK (2006) Human cell type diversity, evolution, development, and classification with special reference to cells derived from the neural crest. Biol Rev Camb Philos Soc 81:425–455

    Article  PubMed  Google Scholar 

  • Wang X, Arai S, Song X, Reichart D, Du K, Pascual G, Tempst P, Rosenfeld MG, Glass CK, Kurokawa R (2008) Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature 454:126–130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weinberg RA, Penman S (1968) Small molecular weight monodisperse nuclear RNA. J Mol Biol 38:289–304

    Article  CAS  PubMed  Google Scholar 

  • Worton RG, Sutherland J, Sylvester JE, Willard HF, Bodrug S, Dube I, Duff C, Kean V, Ray PN, Schmickel RD (1988) Human ribosomal RNA genes: orientation of the tandem array and conservation of the 5′ end. Science 239:64–68

    Article  CAS  PubMed  Google Scholar 

  • Yelin R, Dahary D, Sorek R, Levanon EY, Goldstein O, Shoshan A, Diber A, Biton S, Tamir Y, Khosravi R et al (2003) Widespread occurrence of antisense transcription in the human genome. Nat Biotechnol 21:379–386

    Article  CAS  PubMed  Google Scholar 

  • Yook K, Harris TW, Bieri T, Cabunoc A, Chan J, Chen WJ, Davis P, de la Cruz N, Duong A, Fang R et al (2012) WormBase 2012: more genomes, more data, new website. Nucleic Acids Res 40:D735–D741

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piero Carninci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Schein, A., Carninci, P. (2015). Complexity of Mammalian Transcriptome Analyzed by RNA Deep Sequencing. In: Kurokawa, R. (eds) Long Noncoding RNAs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55576-6_1

Download citation

Publish with us

Policies and ethics