Skip to main content

Training Locomotor Function: From a Perspective of the Underlying Neural Mechanisms

  • Chapter
Sports Performance
  • 2495 Accesses

Abstract

In a variety of sports activities and in our daily lives, we utilize locomotory movements such as walking and running. It is well understood that maintaining and improving their function can be of major significance in the acquisition of a better sports performances and a more fulfilling life. To facilitate appropriate changes in performance, it is essential to know the basic mechanisms underlying them. In the case of the basic locomotory movements, their neuronal control mechanisms are predominantly automatic and quite different from those that underlie voluntarily-induced movements. A number of studies in the last several decades have described the characteristic features and responsible mechanisms in both animals and humans. On the basis of the knowledge obtained in these studies, this chapter will review the recently acquired knowledge to elucidate the neural mechanisms underlying execution of locomotion movements and provide information for construction of possible intervention for improvement in their performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barbeau H, Rossignol S (1987) Recovery of locomotion after chronic spinalization in the adult cat. Brain Res 412:84–95

    Article  CAS  PubMed  Google Scholar 

  • Brown TG (1911) The intrinsic factors in the act of progression in the mammal. Proc R Soc Lond B 84:308–319

    Article  Google Scholar 

  • Budick SA, O’Malley DM (2000) Locomotor repertoire of the larval zebrafish: swimming, turning and prey capture. J Exp Biol 203:2565–2579

    CAS  PubMed  Google Scholar 

  • Calancie B, Needham-Shropshire B, Jacobs P, Willer K, Zych G, Green BA (1994) Involuntary stepping after chronic spinal cord injury. Evidence for a central rhythm generator for locomotion in man. Brain 117:1143–1159

    Article  PubMed  Google Scholar 

  • Cappellini G, Ivanenko YP, Poppele RE, Lacquaniti F (2006) Motor patterns in human walking and running. J Neurophysiol 95:3426–3437

    Article  CAS  PubMed  Google Scholar 

  • Carp JS, Tennissen AM, Chen XY, Wolpaw JR (2006) H-reflex operant conditioning in mice. J Neurophysiol 96:1718–1727

    Article  PubMed  Google Scholar 

  • Chen XY, Wolpaw JR (1995) Operant conditioning of H-reflex in freely moving rats. J Neurophysiol 73:411–415

    CAS  PubMed  Google Scholar 

  • Choi JT, Bastian AJ (2007) Adaptation reveals independent control networks for human walking. Nat Neurosci 10:1055–1062

    Article  CAS  PubMed  Google Scholar 

  • Cohen AH, Wallén P (1980) The neuronal correlate of locomotion in fish. “Fictive swimming” induced in an in vitro preparation of the lamprey spinal cord. Exp Brain Res 41:11–18

    Article  CAS  PubMed  Google Scholar 

  • Dietz V (2002) Proprioception and locomotor disorders. Nat Rev Neurosci 3:781–790

    Article  CAS  PubMed  Google Scholar 

  • Dietz V, Nakazawa K, Wirz M, Erni T (1999) Level of spinal cord lesion determines locomotor activity in spinal man. Exp Brain Res 128:405–409

    Article  CAS  PubMed  Google Scholar 

  • Dimitrijevic MR, Gerasimenko Y, Pinter MM (1998) Evidence for a spinal central pattern generator in humans. Ann N Y Acad Sci 860:360–376

    Article  CAS  PubMed  Google Scholar 

  • Gerasimenko Y, Gorodnichev R, Machueva E, Pivovarova E, Semyenov D, Savochin A, Roy RR, Edgerton VR (2010) Novel and direct access to the human locomotor spinal circuitry. J Neurosci 30:3700–3708

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grillner S, Zangger P (1979) On the central generation of locomotion in the low spinal cat. Exp Brain Res 34:241–261

    Article  CAS  PubMed  Google Scholar 

  • Grillner S, McClellan A, Perret C (1981) Entrainment of the spinal pattern generators for swimming by mechano-sensitive elements in the lamprey spinal cord in vitro. Brain Res 217:380–386

    Article  CAS  PubMed  Google Scholar 

  • Kamibayashi K, Nakajima T, Takahashi M, Akai M, Nakazawa K (2009) Facilitation of corticospinal excitability in the tibialis anterior muscle during robot-assisted passive stepping in humans. Eur J Neurosci 30:100–109

    Article  PubMed  Google Scholar 

  • Kamibayashi K, Nakajima T, Fujita M, Takahashi M, Ogawa T, Akai M, Nakazawa K (2010) Effect of sensory inputs on the soleus H-reflex amplitude during robotic passive stepping in humans. Exp Brain Res 202:385–395

    Article  PubMed  Google Scholar 

  • Maffiuletti NA, Martin A, Babault N, Pensini M, Lucas B, Schieppati M (2001) Electrical and mechanical H(max)-to-M(max) ratio in power- and endurance-trained athletes. J Appl Physiol 90:3–9

    CAS  PubMed  Google Scholar 

  • McLean DL, Fan J, Higashijima S, Hale ME, Fetcho JR (2007) A topographic map of recruitment in spinal cord. Nature 446:71–75

    Article  CAS  PubMed  Google Scholar 

  • McLean DL, Masino MA, Koh IY, Lindquist WB, Fetcho JR (2008) Continuous shifts in the active set of spinal interneurons during changes in locomotor speed. Nat Neurosci 11:1419–1429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakajima T, Kamibayashi K, Takahashi M, Komiyama T, Akai M, Nakazawa K (2008) Load-related modulation of cutaneous reflexes in the tibialis anterior muscle during passive walking in humans. Eur J Neurosci 27:1566–1576

    Article  PubMed  Google Scholar 

  • Nielsen J, Crone C, Hultborn H (1993) H-reflexes are smaller in dancers from The Royal Danish Ballet than in well-trained athletes. Eur J Appl Physiol Occup Physiol 66:116–121

    Article  CAS  PubMed  Google Scholar 

  • Ogawa T, Kawashima N, Ogata T, Nakazawa K (2012) Limited transfer of newly acquired movement patterns across walking and running in humans. PLoS One 7:e46349

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Prilutsky BI, Gregor RJ (2001) Swing- and support-related muscle actions differently trigger human walk-run and run walk transitions. J Exp Biol 204:2277–2287

    CAS  PubMed  Google Scholar 

  • Raineteau O, Schwab ME (2001) Plasticity of motor systems after incomplete spinal cord injury. Nat Rev Neurosci 2:263–273

    Article  CAS  PubMed  Google Scholar 

  • Reisman DS, Block HJ, Bastian AJ (2005) Interlimb coordination during locomotion: what can be adapted and stored? J Neurophysiol 94:2403–2415

    Article  PubMed  Google Scholar 

  • Sasaki K, Neptune RR (2006) Differences in muscle function during walking and running at the same speed. J Biomech 39:2005–2013

    Article  PubMed  Google Scholar 

  • Schubert M, Curt A, Jensen L, Dietz V (1997) Corticospinal input in human gait: modulation of magnetically evoked motor responses. Exp Brain Res 115:234–246

    Article  CAS  PubMed  Google Scholar 

  • Sherrington CS (1910) Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing. J Physiol 40:28–121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson AK, Chen XY, Wolpaw JR (2009) Acquisition of a simple motor skill: task-dependent adaptation plus long-term change in the human soleus H-reflex. J Neurosci 29:5784–5792

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vasudevan EV, Bastian AJ (2010) Split-belt treadmill adaptation shows different functional networks for fast and slow human walking. J Neurophysiol 103:183–191

    Article  PubMed Central  PubMed  Google Scholar 

  • Wallén P, Williams TL (1984) Fictive locomotion in the lamprey spinal cord in vitro compared with swimming in the intact and spinal animal. J Physiol 347:225–239

    Article  PubMed Central  PubMed  Google Scholar 

  • Wilson DM (1961) The central nervous control of flight in a locust. J Exp BioI 38:471–499

    Google Scholar 

  • Wolpaw JR (2007) Spinal cord plasticity in acquisition and maintenance of motor skills. Acta Physiol 189:155–169

    Article  CAS  Google Scholar 

  • Wolpaw JR, O’Keefe JA, Noonan PA, Sanders MG (1986) Adaptive plasticity in primate spinal stretch reflex: persistence. J Neurophysiol 55:272–279

    CAS  PubMed  Google Scholar 

  • Yang JF, Stephens MJ, Vishram R (1998) Infant stepping: a method to study the sensory control of human walking. J Physiol 507:927–937

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zehr EP (2006) Training-induced adaptive plasticity in human somatosensory reflex pathways. J Appl Physiol 101:1783–1794

    Article  PubMed  Google Scholar 

  • Zehr EP, Duysens J (2004) Regulation of arm and leg movement during human locomotion. Neuroscientist 10:347–361

    Article  PubMed  Google Scholar 

  • Zehr EP, Kido A (2001) Neural control of rhythmic, cyclical human arm movement: task dependency, nerve specificity and phase modulation of cutaneous reflexes. J Physiol 537:1033–1045

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Ogawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Ogawa, T., Kanosue, K. (2015). Training Locomotor Function: From a Perspective of the Underlying Neural Mechanisms. In: Kanosue, K., Nagami, T., Tsuchiya, J. (eds) Sports Performance. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55315-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55315-1_5

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55314-4

  • Online ISBN: 978-4-431-55315-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics