Skip to main content

Oxidative Stress and Neuronal Zinc Signaling

  • Chapter
  • First Online:
Zinc Signals in Cellular Functions and Disorders

Abstract

Zinc (Zn2+) is an abundant transition metal that is found in the central nervous system (CNS) at relatively high concentrations. A small fraction of this metal is located within synaptic vesicles in a subpopulation of excitatory neurons along with glutamate, as “chelatable” Zn2+, and can be synaptically released in an activity-dependent fashion. Vesicular Zn2+ can thus act as a neurotransmitter or neuromodulator under physiological conditions. However, under certain pathological conditions excessive synaptically released Zn2+ can translocate into postsynaptic neurons, inducing cell death. There is mounting additional evidence that reactive oxygen species (ROS) and reactive nitrogen species (RNS) are critically involved in the pathophysiology of many neuronal diseases, including ischemic stroke. The majority of neuronal Zn2+ exists not within synaptic vesicles, but tightly bound to Zn2+-binding proteins including metallothionein (MT), as well as transcription factors with zinc-finger domains. Under pathological conditions, oxidative and nitrosative stress causes oxidation and S-nitrosylation of cysteine thiols in Zn2+-containing proteins, liberating the bound metal. Oxidative stress-induced elevation of intracellular Zn2+ can activate various deleterious cell-signaling pathways, sometimes with disastrous consequences. As such, Zn2+-containing proteins such as MT serve as redox-sensitive molecular switches for zinc signals, playing a critical role in the regulation of neuronal function and viability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarts MM, Tymianski M (2004) Molecular mechanisms underlying specificity of excitotoxic signaling in neurons. Curr Mol Med 4:137–147

    PubMed  CAS  Google Scholar 

  • Aizenman E, Lipton SA, Loring RH (1989) Selective modulation of NMDA responses by reduction and oxidation. Neuron 2:1257–1263

    PubMed  CAS  Google Scholar 

  • Aizenman E, Hartnett KA, Reynolds IJ (1990) Oxygen free radicals regulate NMDA receptor function via a redox modulatory site. Neuron 5:841–846

    PubMed  CAS  Google Scholar 

  • Aizenman E, Sinor JD, Brimecombe JC et al (2000a) Alterations of N-methyl-d-aspartate receptor properties after chemical ischemia. J Pharmacol Exp Ther 295:572–577

    PubMed  CAS  Google Scholar 

  • Aizenman E, Stout AK, Hartnett KA et al (2000b) Induction of neuronal apoptosis by thiol oxidation: putative role of intracellular zinc release. J Neurochem 75:1878–1888

    PubMed  CAS  Google Scholar 

  • Amemiya S, Kamiya T, Nito C et al (2005) Anti-apoptotic and neuroprotective effects of edaravone following transient focal ischemia in rats. Eur J Pharmacol 516:125–130

    PubMed  CAS  Google Scholar 

  • Andrews GK (2000) Regulation of metallothionein gene expression by oxidative stress and metal ions. Biochem Pharmacol 59:95–104

    PubMed  CAS  Google Scholar 

  • Antunes F, Cadenas E (2000) Estimation of H2O2 gradients across biomembranes. FEBS Lett 475:121–126

    PubMed  CAS  Google Scholar 

  • Aras MA, Aizenman E (2005) Obligatory role of ASK1 in the apoptotic surge of K+ currents. Neurosci Lett 387:136–140

    PubMed  CAS  PubMed Central  Google Scholar 

  • Aras MA, Aizenman E (2011) Redox regulation of intracellular zinc: molecular signaling in the life and death of neurons. Antioxid Redox Signal 15:2249–2263

    PubMed  CAS  PubMed Central  Google Scholar 

  • Aras MA, Hara H, Hartnett KA et al (2009) Protein kinase C regulation of neuronal zinc signaling mediates survival during preconditioning. J Neurochem 110:106–117

    PubMed  CAS  PubMed Central  Google Scholar 

  • Assaf SY, Chung SH (1984) Release of endogenous Zn2+ from brain tissue during activity. Nature (Lond) 308:734–736

    CAS  Google Scholar 

  • Barone FC, White RF, Spera PA et al (1998) Ischemic preconditioning and brain tolerance: temporal histological and functional outcomes, protein synthesis requirement, and interleukin-1 receptor antagonist and early gene expression. Stroke 29:1937–1950, Discussion 1950–1951

    PubMed  CAS  Google Scholar 

  • Beal MF (2002) Oxidatively modified proteins in aging and disease. Free Radic Biol Med 32:797–803

    PubMed  CAS  Google Scholar 

  • Beckman JS, Beckman TW, Chen J et al (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87:1620–1624

    PubMed  CAS  PubMed Central  Google Scholar 

  • Beckman JS, Carson M, Smith CD et al (1993) ALS, SOD and peroxynitrite. Nature (Lond) 364:584

    CAS  Google Scholar 

  • Besser L, Chorin E, Sekler I et al (2009) Synaptically released zinc triggers metabotropic signaling via a zinc-sensing receptor in the hippocampus. J Neurosci 29:2890–2901

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bi Y, Palmiter RD, Wood KM et al (2004) Induction of metallothionein I by phenolic antioxidants requires metal-activated transcription factor 1 (MTF-1) and zinc. Biochem J 380:695–703

    PubMed  CAS  PubMed Central  Google Scholar 

  • Boillee S, Cleveland DW (2008) Revisiting oxidative damage in ALS: microglia, Nox, and mutant SOD1. J Clin Invest 118:474–478

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bonanni L, Chachar M, Jover-Mengual T et al (2006) Zinc-dependent multi-conductance channel activity in mitochondria isolated from ischemic brain. J Neurosci 26:6851–6862

    PubMed  CAS  Google Scholar 

  • Bortner CD, Cidlowski JA (1999) Caspase independent/dependent regulation of K(+), cell shrinkage, and mitochondrial membrane potential during lymphocyte apoptosis. J Biol Chem 274:21953–21962

    PubMed  CAS  Google Scholar 

  • Bossy-Wetzel E, Talantova MV, Lee WD et al (2004) Crosstalk between nitric oxide and zinc pathways to neuronal cell death involving mitochondrial dysfunction and p38-activated K+ channels. Neuron 41:351–365

    PubMed  CAS  Google Scholar 

  • Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134:707–716

    PubMed  CAS  PubMed Central  Google Scholar 

  • Boya P, Kroemer G (2008) Lysosomal membrane permeabilization in cell death. Oncogene 27:6434–6451

    PubMed  CAS  Google Scholar 

  • Brierley GP, Knight VA (1967) Ion transport by heart mitochondria. X. The uptake and release of Zn2+ and its relation to the energy-linked accumulation of magnesium. Biochemistry 6:3892–3901

    PubMed  CAS  Google Scholar 

  • Brimecombe JC, Potthoff WK, Aizenman E (1999) A critical role of the N-methyl-d-aspartate (NMDA) receptor subunit (NR) 2A in the expression of redox sensitivity of NR1/NR2A recombinant NMDA receptors. J Pharmacol Exp Ther 291:785–792

    PubMed  CAS  Google Scholar 

  • Brown AM, Kristal BS, Effron MS et al (2000) Zn2+ inhibits alpha-ketoglutarate-stimulated mitochondrial respiration and the isolated alpha-ketoglutarate dehydrogenase complex. J Biol Chem 275:13441–13447

    PubMed  CAS  Google Scholar 

  • Butterfield DA, Perluigi M, Sultana R (2006) Oxidative stress in Alzheimer’s disease brain: new insights from redox proteomics. Eur J Pharmacol 545:39–50

    PubMed  CAS  Google Scholar 

  • Cai AL, Zipfel GJ, Sheline CT (2006) Zinc neurotoxicity is dependent on intracellular NAD levels and the sirtuin pathway. Eur J Neurosci 24:2169–2176

    PubMed  Google Scholar 

  • Calderone A, Jover T, Mashiko T et al (2004) Late calcium EDTA rescues hippocampal CA1 neurons from global ischemia-induced death. J Neurosci 24:9903–9913

    PubMed  CAS  Google Scholar 

  • Canzoniero LM, Sensi SL, Choi DW (1997) Measurement of intracellular free zinc in living neurons. Neurobiol Dis 4:275–279

    PubMed  CAS  Google Scholar 

  • Canzoniero LM, Turetsky DM, Choi DW (1999) Measurement of intracellular free zinc concentrations accompanying zinc-induced neuronal death. J Neurosci 19:Rc31

    PubMed  CAS  Google Scholar 

  • Carter RE, Weiss JH, Shuttleworth CW (2010) Zn2+ chelation improves recovery by delaying spreading depression-like events. Neuroreport 21:1060–1064

    PubMed  CAS  PubMed Central  Google Scholar 

  • Carter RE, Aiba I, Dietz RM et al (2011) Spreading depression and related events are significant sources of neuronal Zn2+ release and accumulation. J Cereb Blood Flow Metab 31:1073–1084

    PubMed  CAS  PubMed Central  Google Scholar 

  • Caso JR, Pradillo JM, Hurtado O et al (2007) Toll-like receptor 4 is involved in brain damage and inflammation after experimental stroke. Circulation 115:1599–1608

    PubMed  CAS  Google Scholar 

  • Chan PH (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 21:2–14

    PubMed  CAS  Google Scholar 

  • Chan PH, Kawase M, Murakami K et al (1998) Overexpression of SOD1 in transgenic rats protects vulnerable neurons against ischemic damage after global cerebral ischemia and reperfusion. J Neurosci 18:8292–8299

    PubMed  CAS  Google Scholar 

  • Chen X, Agarwal A, Giedroc DP (1998) Structural and functional heterogeneity among the zinc fingers of human MRE-binding transcription factor-1. Biochemistry 37:11152–11161

    PubMed  CAS  Google Scholar 

  • Chen Y, Irie Y, Keung WM et al (2002) S-nitrosothiols react preferentially with zinc thiolate clusters of metallothionein III through transnitrosation. Biochemistry 41:8360–8367

    PubMed  CAS  Google Scholar 

  • Chiaverini N, De Ley M (2010) Protective effect of metallothionein on oxidative stress-induced DNA damage. Free Radic Res 44:605–613

    PubMed  CAS  Google Scholar 

  • Chorin E, Vinograd O, Fleidervish I et al (2011) Upregulation of KCC2 activity by zinc-mediated neurotransmission via the mZnR/GPR39 receptor. J Neurosci 31:12916–12926

    PubMed  CAS  PubMed Central  Google Scholar 

  • Christine CW, Choi DW (1990) Effect of zinc on NMDA receptor-mediated channel currents in cortical neurons. J Neurosci 10:108–116

    PubMed  CAS  Google Scholar 

  • Christopherson KS, Hillier BJ, Lim WA et al (1999) PSD-95 assembles a ternary complex with the N-methyl-d-aspartic acid receptor and a bivalent neuronal NO synthase PDZ domain. J Biol Chem 274:27467–27473

    PubMed  CAS  Google Scholar 

  • Clark J, Simon DK (2009) Transcribe to survive: transcriptional control of antioxidant defense programs for neuroprotection in Parkinson’s disease. Antioxid Redox Signal 11:509–528

    PubMed  CAS  Google Scholar 

  • Cotella D, Hernandez-Enriquez B, Wu X et al (2012) Toxic role of K+ channel oxidation in mammalian brain. J Neurosci 32:4133–4144

    PubMed  CAS  Google Scholar 

  • Cui H, Hayashi A, Sun HS et al (2007) PDZ protein interactions underlying NMDA receptor-mediated excitotoxicity and neuroprotection by PSD-95 inhibitors. J Neurosci 27:9901–9915

    PubMed  CAS  Google Scholar 

  • Daniels PJ, Bittel D, Smirnova IV et al (2002) Mammalian metal response element-binding transcription factor-1 functions as a zinc sensor in yeast, but not as a sensor of cadmium or oxidative stress. Nucleic Acids Res 30:3130–3140

    PubMed  CAS  PubMed Central  Google Scholar 

  • Denninger JW, Marletta MA (1999) Guanylate cyclase and the NO/cGMP signaling pathway. Biochim Biophys Acta 1411:334–350

    PubMed  CAS  Google Scholar 

  • Devinney MJ, Malaiyandi LM, Vergun O et al (2009) A comparison of Zn2+- and Ca2+-triggered depolarization of liver mitochondria reveals no evidence of Zn2+-induced permeability transition. Cell Calcium 45:447–455

    PubMed  CAS  Google Scholar 

  • Dietz RM, Weiss JH, Shuttleworth CW (2009) Contributions of Ca2+ and Zn2+ to spreading depression-like events and neuronal injury. J Neurochem 109(Suppl 1):145–152

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dineley KE, Votyakova TV, Reynolds IJ (2003) Zinc inhibition of cellular energy production: implications for mitochondria and neurodegeneration. J Neurochem 85:563–570

    PubMed  CAS  Google Scholar 

  • Dineley KE, Richards LL, Votyakova TV et al (2005) Zinc causes loss of membrane potential and elevates reactive oxygen species in rat brain mitochondria. Mitochondrion 5:55–65

    PubMed  CAS  Google Scholar 

  • Dirnagl U, Simon RP, Hallenbeck JM (2003) Ischemic tolerance and endogenous neuroprotection. Trends Neurosci 26:248–254

    PubMed  CAS  Google Scholar 

  • Du S, McLaughlin B, Pal S et al (2002) In vitro neurotoxicity of methylisothiazolinone, a commonly used industrial and household biocide, proceeds via a zinc and extracellular signal-regulated kinase mitogen-activated protein kinase-dependent pathway. J Neurosci 22:7408–7416

    PubMed  CAS  Google Scholar 

  • Erickson JR, Joiner ML, Guan X et al (2008) A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell 133:462–474

    PubMed  CAS  PubMed Central  Google Scholar 

  • Espey MG, Thomas DD, Miranda KM et al (2002) Focusing of nitric oxide mediated nitrosation and oxidative nitrosylation as a consequence of reaction with superoxide. Proc Natl Acad Sci USA 99:11127–11132

    PubMed  CAS  PubMed Central  Google Scholar 

  • Forman HJ, Fukuto JM, Torres M (2004) Redox signaling: thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengers. Am J Physiol Cell Physiol 287:C246–C256

    PubMed  CAS  Google Scholar 

  • Frederickson CJ, Howell GA, Haigh MD et al (1988) Zinc-containing fiber systems in the cochlear nuclei of the rat and mouse. Hear Res 36:203–211

    PubMed  CAS  Google Scholar 

  • Frederickson CJ, Suh SW, Silva D et al (2000) Importance of zinc in the central nervous system: the zinc-containing neuron. J Nutr 130:1471s–1483s

    PubMed  CAS  Google Scholar 

  • Garnier P, Ying W, Swanson RA (2003) Ischemic preconditioning by caspase cleavage of poly(ADP-ribose) polymerase-1. J Neurosci 23:7967–7973

    PubMed  CAS  Google Scholar 

  • Geiser J, Venken KJ, De Lisle RC et al (2012) A mouse model of acrodermatitis enteropathica: loss of intestine zinc transporter ZIP4 (Slc39a4) disrupts the stem cell niche and intestine integrity. PLoS Genet 8:e1002766

    PubMed  PubMed Central  Google Scholar 

  • Giedroc DP, Chen X, Apuy JL (2001) Metal response element (MRE)-binding transcription factor-1 (MTF-1): structure, function, and regulation. Antioxid Redox Signal 3:577–596

    PubMed  CAS  Google Scholar 

  • Grauert A, Engel DA, Ruiz AJ (2014) Endogenous zinc depresses GABAergic transmission via T-type Ca2+ channels and broadens the time-window for integration of glutamatergic inputs in dentate granule cells. J Physiol 592:67–86

    PubMed  CAS  Google Scholar 

  • Grunblatt E, Mandel S, Youdim MB (2000) Neuroprotective strategies in Parkinson’s disease using the models of 6-hydroxydopamine and MPTP. Ann N Y Acad Sci 899:262–273

    PubMed  CAS  Google Scholar 

  • Guan D, Armstrong WE, Foehring RC (2013) Kv2 channels regulate firing rate in pyramidal neurons from rat sensorimotor cortex. J Physiol 591:4807–4825

    PubMed  CAS  Google Scholar 

  • Haase H, Maret W (2003) Intracellular zinc fluctuations modulate protein tyrosine phosphatase activity in insulin/insulin-like growth factor-1 signaling. Exp Cell Res 291:289–298

    PubMed  CAS  Google Scholar 

  • Hara H, Adachi T (2002) Contribution of hepatocyte nuclear factor-4 to down-regulation of CYP2D6 gene expression by nitric oxide. Mol Pharmacol 61:194–200

    PubMed  CAS  Google Scholar 

  • Hara H, Aizenman E (2004) A molecular technique for detecting the liberation of intracellular zinc in cultured neurons. J Neurosci Methods 137:175–180

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hara H, Ohta M, Adachi T (2006) Apomorphine protects against 6-hydroxydopamine-induced neuronal cell death through activation of the Nrf2-ARE pathway. J Neurosci Res 84:860–866

    PubMed  CAS  Google Scholar 

  • Haug FM, Blackstad TW, Simonsen AH et al (1971) Timm’s sulfide silver reaction for zinc during experimental anterograde degeneration of hippocampal mossy fibers. J Comp Neurol 142:23–31

    PubMed  CAS  Google Scholar 

  • He BJ, Joiner ML, Singh MV et al (2011) Oxidation of CaMKII determines the cardiotoxic effects of aldosterone. Nat Med 17:1610–1618

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hill MD, Martin RH, Mikulis D et al (2012) Safety and efficacy of NA-1 in patients with iatrogenic stroke after endovascular aneurysm repair (ENACT): a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Neurol 11:942–950

    PubMed  CAS  Google Scholar 

  • Hirzel K, Muller U, Latal AT et al (2006) Hyperekplexia phenotype of glycine receptor alpha1 subunit mutant mice identifies Zn(2+) as an essential endogenous modulator of glycinergic neurotransmission. Neuron 52:679–690

    PubMed  CAS  Google Scholar 

  • Ho Y, Samarasinghe R, Knoch ME et al (2008) Selective inhibition of mitogen-activated protein kinase phosphatases by zinc accounts for extracellular signal-regulated kinase 1/2-dependent oxidative neuronal cell death. Mol Pharmacol 74:1141–1151

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hoshi T, Heinemann S (2001) Regulation of cell function by methionine oxidation and reduction. J Physiol 531:1–11

    PubMed  CAS  PubMed Central  Google Scholar 

  • Howell GA, Welch MG, Frederickson CJ (1984) Stimulation-induced uptake and release of zinc in hippocampal slices. Nature (Lond) 308:736–738

    CAS  Google Scholar 

  • Hua F, Ma J, Ha T et al (2007) Activation of Toll-like receptor 4 signaling contributes to hippocampal neuronal death following global cerebral ischemia/reperfusion. J Neuroimmunol 190:101–111

    PubMed  CAS  PubMed Central  Google Scholar 

  • Huang PL, Lo EH (1998) Genetic analysis of NOS isoforms using nNOS and eNOS knockout animals. Prog Brain Res 118:13–25

    PubMed  CAS  Google Scholar 

  • Huang Z, Huang PL, Ma J et al (1996) Enlarged infarcts in endothelial nitric oxide synthase knockout mice are attenuated by nitro-l-arginine. J Cereb Blood Flow Metab 16:981–987

    PubMed  CAS  Google Scholar 

  • Hwang JJ, Lee SJ, Kim TY et al (2008) Zinc and 4-hydroxy-2-nonenal mediate lysosomal membrane permeabilization induced by H2O2 in cultured hippocampal neurons. J Neurosci 28:3114–3122

    PubMed  CAS  Google Scholar 

  • Iadecola C, Zhang F, Casey R et al (1997) Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene. J Neurosci 17:9157–9164

    PubMed  CAS  Google Scholar 

  • Ichijo H, Nishida E, Irie K et al (1997) Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 275:90–94

    PubMed  CAS  Google Scholar 

  • Ikeda T, Kimura K, Morioka S et al (1980) Inhibitory effects of Zn2+ on muscle glycolysis and their reversal by histidine. J Nutr Sci Vitaminol (Tokyo) 26:357–366

    CAS  Google Scholar 

  • Inoue K, Branigan D, Xiong ZG (2010) Zinc-induced neurotoxicity mediated by transient receptor potential melastatin 7 channels. J Biol Chem 285:7430–7439

    PubMed  CAS  PubMed Central  Google Scholar 

  • Itoh K, Tong KI, Yamamoto M (2004) Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles. Free Radic Biol Med 36:1208–1213

    PubMed  CAS  Google Scholar 

  • Jaffrey SR, Erdjument-Bromage H, Ferris CD et al (2001) Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat Cell Biol 3:193–197

    PubMed  CAS  Google Scholar 

  • Jiang D, Sullivan PG, Sensi SL et al (2001) Zn(2+) induces permeability transition pore opening and release of pro-apoptotic peptides from neuronal mitochondria. J Biol Chem 276:47524–47529

    PubMed  CAS  Google Scholar 

  • Kahles T, Brandes RP (2012) NADPH oxidases as therapeutic targets in ischemic stroke. Cell Mol Life Sci 69:2345–2363

    PubMed  CAS  Google Scholar 

  • Kauppinen TM, Higashi Y, Suh SW et al (2008) Zinc triggers microglial activation. J Neurosci 28:5827–5835

    PubMed  CAS  PubMed Central  Google Scholar 

  • Keller JN, Kindy MS, Holtsberg FW et al (1998) Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J Neurosci 18:687–697

    PubMed  CAS  Google Scholar 

  • Kim YH, Kim EY, Gwag BJ et al (1999) Zinc-induced cortical neuronal death with features of apoptosis and necrosis: mediation by free radicals. Neuroscience 89:175–182

    PubMed  CAS  Google Scholar 

  • Kim GW, Kondo T, Noshita N et al (2002) Manganese superoxide dismutase deficiency exacerbates cerebral infarction after focal cerebral ischemia/reperfusion in mice: implications for the production and role of superoxide radicals. Stroke 33:809–815

    PubMed  CAS  Google Scholar 

  • Kim JB, Sig Choi J, Yu YM et al (2006) HMGB1, a novel cytokine-like mediator linking acute neuronal death and delayed neuroinflammation in the postischemic brain. J Neurosci 26:6413–6421

    PubMed  CAS  Google Scholar 

  • Knapp LT, Klann E (2000) Superoxide-induced stimulation of protein kinase C via thiol modification and modulation of zinc content. J Biol Chem 275:24136–24145

    PubMed  CAS  Google Scholar 

  • Knoch ME, Hartnett KA, Hara H et al (2008) Microglia induce neurotoxicity via intraneuronal Zn(2+) release and a K(+) current surge. Glia 56:89–96

    PubMed  PubMed Central  Google Scholar 

  • Koh JY, Suh SW, Gwag BJ et al (1996) The role of zinc in selective neuronal death after transient global cerebral ischemia. Science 272:1013–1016

    PubMed  CAS  Google Scholar 

  • Kornau HC, Schenker LT, Kennedy MB et al (1995) Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269:1737–1740

    PubMed  CAS  Google Scholar 

  • Krezel A, Maret W (2007a) Different redox states of metallothionein/thionein in biological tissue. Biochem J 402:551–558

    PubMed  CAS  PubMed Central  Google Scholar 

  • Krezel A, Maret W (2007b) Dual nanomolar and picomolar Zn(II) binding properties of metallothionein. J Am Chem Soc 129:10911–10921

    PubMed  CAS  Google Scholar 

  • Krezel A, Hao Q, Maret W (2007) The zinc/thiolate redox biochemistry of metallothionein and the control of zinc ion fluctuations in cell signaling. Arch Biochem Biophys 463:188–200

    PubMed  CAS  Google Scholar 

  • Krishna SS, Majumdar I, Grishin NV (2003) Structural classification of zinc fingers: survey and summary. Nucleic Acids Res 31:532–550

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6:513–519

    PubMed  CAS  Google Scholar 

  • Kroncke KD, Klotz LO (2009) Zinc fingers as biologic redox switches? Antioxid Redox Signal 11:1015–1027

    PubMed  Google Scholar 

  • Kroncke KD, Fehsel K, Schmidt T et al (1994) Nitric oxide destroys zinc-sulfur clusters inducing zinc release from metallothionein and inhibition of the zinc finger-type yeast transcription activator LAC9. Biochem Biophys Res Commun 200:1105–1110

    PubMed  CAS  Google Scholar 

  • Krotkiewska B, Banas T (1992) Interaction of Zn2+ and Cu2+ ions with glyceraldehyde-3-phosphate dehydrogenase from bovine heart and rabbit muscle. Int J Biochem 24:1501–1505

    PubMed  CAS  Google Scholar 

  • Langmade SJ, Ravindra R, Daniels PJ et al (2000) The transcription factor MTF-1 mediates metal regulation of the mouse ZnT1 gene. J Biol Chem 275:34803–34809

    PubMed  CAS  Google Scholar 

  • Lazo JS, Kuo SM, Woo ES et al (1998) The protein thiol metallothionein as an antioxidant and protectant against antineoplastic drugs. Chem Biol Interact 111–112:255–262

    PubMed  Google Scholar 

  • Leao AA (1947) Further observations on the spreading depression of activity in the cerebral cortex. J Neurophysiol 10:409–414

    PubMed  CAS  Google Scholar 

  • Lee SJ, Koh JY (2010) Roles of zinc and metallothionein-3 in oxidative stress-induced lysosomal dysfunction, cell death, and autophagy in neurons and astrocytes. Mol Brain 3:30

    PubMed  PubMed Central  Google Scholar 

  • Lee JY, Cole TB, Palmiter RD et al (2000) Accumulation of zinc in degenerating hippocampal neurons of ZnT3-null mice after seizures: evidence against synaptic vesicle origin. J Neurosci 20:Rc79

    PubMed  CAS  Google Scholar 

  • Lee JY, Kim JH, Palmiter RD et al (2003) Zinc released from metallothionein-III may contribute to hippocampal CA1 and thalamic neuronal death following acute brain injury. Exp Neurol 184:337–347

    PubMed  CAS  Google Scholar 

  • Lee JY, Kim YJ, Kim TY et al (2008) Essential role for zinc-triggered p75NTR activation in preconditioning neuroprotection. J Neurosci 28:10919–10927

    PubMed  Google Scholar 

  • Lee SJ, Cho KS, Koh JY (2009) Oxidative injury triggers autophagy in astrocytes: the role of endogenous zinc. Glia 57:1351–1361

    PubMed  Google Scholar 

  • Lee SJ, Park MH, Kim HJ et al (2010) Metallothionein-3 regulates lysosomal function in cultured astrocytes under both normal and oxidative conditions. Glia 58:1186–1196

    PubMed  Google Scholar 

  • Leo AA (1944) Pial circulation and spreading depression of activity in the cerebral cortex. J Neurophysiol 7:391–396

    Google Scholar 

  • Leung YM, Kang Y, Gao X et al (2003) Syntaxin 1A binds to the cytoplasmic C terminus of Kv2.1 to regulate channel gating and trafficking. J Biol Chem 278:17532–17538

    PubMed  CAS  Google Scholar 

  • Li M, Rosenberg HC, Chiu TH (1994) Zinc inhibition of GABA-stimulated Cl influx in rat brain regions is unaffected by acute or chronic benzodiazepine. Pharmacol Biochem Behav 49:477–482

    PubMed  CAS  Google Scholar 

  • Li Y, Maher P, Schubert D (1997) A role for 12-lipoxygenase in nerve cell death caused by glutathione depletion. Neuron 19:453–463

    PubMed  CAS  Google Scholar 

  • Link TA, von Jagow G (1995) Zinc ions inhibit the QP center of bovine heart mitochondrial bc1 complex by blocking a protonatable group. J Biol Chem 270:25001–25006

    PubMed  CAS  Google Scholar 

  • Lynch JW, Jacques P, Pierce KD et al (1998) Zinc potentiation of the glycine receptor chloride channel is mediated by allosteric pathways. J Neurochem 71:2159–2168

    PubMed  CAS  Google Scholar 

  • Malaiyandi LM, Dineley KE, Reynolds IJ (2004) Divergent consequences arise from metallothionein overexpression in astrocytes: zinc buffering and oxidant-induced zinc release. Glia 45:346–353

    PubMed  Google Scholar 

  • Malin SA, Nerbonne JM (2002) Delayed rectifier K+ currents, IK, are encoded by Kv2 alpha-subunits and regulate tonic firing in mammalian sympathetic neurons. J Neurosci 22:10094–10105

    PubMed  CAS  Google Scholar 

  • Maret W (1994) Oxidative metal release from metallothionein via zinc-thiol/disulfide interchange. Proc Natl Acad Sci USA 91:237–241

    PubMed  CAS  PubMed Central  Google Scholar 

  • Maret W (2000) The function of zinc metallothionein: a link between cellular zinc and redox state. J Nutr 130:1455s–1458s

    PubMed  CAS  Google Scholar 

  • Maret W (2013) Inhibitory zinc sites in enzymes. Biometals 26:197–204

    PubMed  CAS  Google Scholar 

  • Maret W, Li Y (2009) Coordination dynamics of zinc in proteins. Chem Rev 109:4682–4707

    PubMed  CAS  Google Scholar 

  • Maret W, Vallee BL (1998) Thiolate ligands in metallothionein confer redox activity on zinc clusters. Proc Natl Acad Sci USA 95:3478–3482

    PubMed  CAS  PubMed Central  Google Scholar 

  • Maret W, Jacob C, Vallee BL et al (1999) Inhibitory sites in enzymes: zinc removal and reactivation by thionein. Proc Natl Acad Sci USA 96:1936–1940

    PubMed  CAS  PubMed Central  Google Scholar 

  • Marin P, Israel M, Glowinski J et al (2000) Routes of zinc entry in mouse cortical neurons: role in zinc-induced neurotoxicity. Eur J Neurosci 12:8–18

    PubMed  CAS  Google Scholar 

  • Marsh BJ, Williams-Karnesky RL, Stenzel-Poore MP (2009) Toll-like receptor signaling in endogenous neuroprotection and stroke. Neuroscience 158:1007–1020

    PubMed  CAS  PubMed Central  Google Scholar 

  • Matsushita K, Kitagawa K, Matsuyama T et al (1996) Effect of systemic zinc administration on delayed neuronal death in the gerbil hippocampus. Brain Res 743:362–365

    PubMed  CAS  Google Scholar 

  • Matthews JM, Sunde M (2002) Zinc fingers–folds for many occasions. IUBMB Life 54:351–355

    PubMed  CAS  Google Scholar 

  • Matthews JR, Botting CH, Panico M et al (1996) Inhibition of NF-kappaB DNA binding by nitric oxide. Nucleic Acids Res 24:2236–2242

    PubMed  CAS  PubMed Central  Google Scholar 

  • McCord MC, Aizenman E (2013) Convergent Ca2+ and Zn2+ signaling regulates apoptotic Kv2.1 K+ currents. Proc Natl Acad Sci USA 110:13988–13993

    PubMed  CAS  PubMed Central  Google Scholar 

  • McLaughlin B, Pal S, Tran MP et al (2001) p38 activation is required upstream of potassium current enhancement and caspase cleavage in thiol oxidant-induced neuronal apoptosis. J Neurosci 21:3303–3311

    PubMed  CAS  PubMed Central  Google Scholar 

  • McLaughlin B, Hartnett KA, Erhardt JA et al (2003) Caspase 3 activation is essential for neuroprotection in preconditioning. Proc Natl Acad Sci USA 100:715–720

    PubMed  CAS  PubMed Central  Google Scholar 

  • Misonou H, Mohapatra DP, Park EW et al (2004) Regulation of ion channel localization and phosphorylation by neuronal activity. Nat Neurosci 7:711–718

    PubMed  CAS  Google Scholar 

  • Miyawaki A, Griesbeck O, Heim R et al (1999) Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc Natl Acad Sci USA 96:2135–2140

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mohapatra DP, Park KS, Trimmer JS (2007) Dynamic regulation of the voltage-gated Kv2.1 potassium channel by multisite phosphorylation. Biochem Soc Trans 35:1064–1068

    PubMed  CAS  Google Scholar 

  • Moro MA, Almeida A, Bolanos JP et al (2005) Mitochondrial respiratory chain and free radical generation in stroke. Free Radic Biol Med 39:1291–1304

    PubMed  CAS  Google Scholar 

  • Murakami K, Kondo T, Kawase M et al (1998) Mitochondrial susceptibility to oxidative stress exacerbates cerebral infarction that follows permanent focal cerebral ischemia in mutant mice with manganese superoxide dismutase deficiency. J Neurosci 18:205–213

    PubMed  CAS  Google Scholar 

  • Murakoshi H, Trimmer JS (1999) Identification of the Kv2.1 K+ channel as a major component of the delayed rectifier K+ current in rat hippocampal neurons. J Neurosci 19:1728–1735

    PubMed  CAS  Google Scholar 

  • Murakoshi H, Shi G, Scannevin RH et al (1997) Phosphorylation of the Kv2.1 K+ channel alters voltage-dependent activation. Mol Pharmacol 52:821–828

    PubMed  CAS  Google Scholar 

  • Nikitovic D, Holmgren A, Spyrou G (1998) Inhibition of AP-1 DNA binding by nitric oxide involving conserved cysteine residues in Jun and Fos. Biochem Biophys Res Commun 242:109–112

    PubMed  CAS  Google Scholar 

  • Noh KM, Koh JY (2000) Induction and activation by zinc of NADPH oxidase in cultured cortical neurons and astrocytes. J Neurosci 20:Rc111

    PubMed  CAS  Google Scholar 

  • O’Neill MJ, Murray TK, McCarty DR et al (2000) ARL 17477, a selective nitric oxide synthase inhibitor, with neuroprotective effects in animal models of global and focal cerebral ischaemia. Brain Res 871:234–244

    PubMed  Google Scholar 

  • Outten CE, O’Halloran TV (2001) Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292:2488–2492

    PubMed  CAS  Google Scholar 

  • Pal S, Hartnett KA, Nerbonne JM et al (2003) Mediation of neuronal apoptosis by Kv2.1-encoded potassium channels. J Neurosci 23:4798–4802

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pal SK, Takimoto K, Aizenman E et al (2006) Apoptotic surface delivery of K+ channels. Cell Death Differ 13:661–667

    PubMed  CAS  PubMed Central  Google Scholar 

  • Paoletti P, Ascher P, Neyton J (1997) High-affinity zinc inhibition of NMDA NR1-NR2A receptors. J Neurosci 17:5711–5725

    PubMed  CAS  Google Scholar 

  • Pearce LL, Gandley RE, Han W et al (2000) Role of metallothionein in nitric oxide signaling as revealed by a green fluorescent fusion protein. Proc Natl Acad Sci USA 97:477–482

    PubMed  CAS  PubMed Central  Google Scholar 

  • Perez-Clausell J, Frederickson CJ, Danscher G (1989) Amygdaloid efferents through the stria terminalis in the rat give origin to zinc-containing boutons. J Comp Neurol 290:201–212

    PubMed  CAS  Google Scholar 

  • Perez-Rosello T, Anderson CT, Schopfer FJ et al (2013) Synaptic Zn2+ inhibits neurotransmitter release by promoting endocannabinoid synthesis. J Neurosci 33:9259–9272

    PubMed  CAS  PubMed Central  Google Scholar 

  • Perry VH, Nicoll JA, Holmes C (2010) Microglia in neurodegenerative disease. Nat Rev Neurol 6:193–201

    PubMed  Google Scholar 

  • Peters S, Koh J, Choi DW (1987) Zinc selectively blocks the action of N-methyl-d-aspartate on cortical neurons. Science 236:589–593

    PubMed  CAS  Google Scholar 

  • Peters O, Back T, Lindauer U et al (1998) Increased formation of reactive oxygen species after permanent and reversible middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 18:196–205

    PubMed  CAS  Google Scholar 

  • Piantadosi CA, Zhang J (1996) Mitochondrial generation of reactive oxygen species after brain ischemia in the rat. Stroke 27:327–331

    PubMed  CAS  Google Scholar 

  • Qian J, Xu K, Yoo J et al (2011) Knockout of Zn transporters Zip-1 and Zip-3 attenuates seizure-induced CA1 neurodegeneration. J Neurosci 31:97–104

    PubMed  CAS  PubMed Central  Google Scholar 

  • Quaife CJ, Findley SD, Erickson JC et al (1994) Induction of a new metallothionein isoform (MT-IV) occurs during differentiation of stratified squamous epithelia. Biochemistry 33:7250–7259

    PubMed  CAS  Google Scholar 

  • Ravati A, Ahlemeyer B, Becker A et al (2000) Preconditioning-induced neuroprotection is mediated by reactive oxygen species. Brain Res 866:23–32

    PubMed  CAS  Google Scholar 

  • Redman PT, He K, Hartnett KA et al (2007) Apoptotic surge of potassium currents is mediated by p38 phosphorylation of Kv2.1. Proc Natl Acad Sci USA 104:3568–3573

    PubMed  CAS  PubMed Central  Google Scholar 

  • Redman PT, Hartnett KA, Aras MA et al (2009) Regulation of apoptotic potassium currents by coordinated zinc-dependent signalling. J Physiol 587:4393–4404

    PubMed  CAS  PubMed Central  Google Scholar 

  • Reinecke F, Levanets O, Olivier Y et al (2006) Metallothionein isoform 2A expression is inducible and protects against ROS-mediated cell death in rotenone-treated HeLa cells. Biochem J 395:405–415

    PubMed  CAS  PubMed Central  Google Scholar 

  • Romero-Isart N, Vasak M (2002) Advances in the structure and chemistry of metallothioneins. J Inorg Biochem 88:388–396

    PubMed  CAS  Google Scholar 

  • Ruiz A, Walker MC, Fabian-Fine R et al (2004) Endogenous zinc inhibits GABA(A) receptors in a hippocampal pathway. J Neurophysiol 91:1091–1096

    PubMed  CAS  Google Scholar 

  • Saadi RA, He K, Hartnett KA et al (2012) SNARE-dependent upregulation of potassium chloride co-transporter 2 activity after metabotropic zinc receptor activation in rat cortical neurons in vitro. Neuroscience 210:38–46

    PubMed  CAS  PubMed Central  Google Scholar 

  • Saitoh M, Nishitoh H, Fujii M et al (1998) Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 17:2596–2606

    PubMed  CAS  PubMed Central  Google Scholar 

  • Samdani AF, Dawson TM, Dawson VL (1997) Nitric oxide synthase in models of focal ischemia. Stroke 28:1283–1288

    PubMed  CAS  Google Scholar 

  • Sattler R, Xiong Z, Lu WY et al (1999) Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science 284:1845–1848

    PubMed  CAS  Google Scholar 

  • Sensi SL, Canzoniero LM, Yu SP et al (1997) Measurement of intracellular free zinc in living cortical neurons: routes of entry. J Neurosci 17:9554–9564

    PubMed  CAS  Google Scholar 

  • Sensi SL, Yin HZ, Carriedo SG et al (1999) Preferential Zn2+ influx through Ca2+-permeable AMPA/kainate channels triggers prolonged mitochondrial superoxide production. Proc Natl Acad Sci USA 96:2414–2419

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sensi SL, Yin HZ, Weiss JH (2000) AMPA/kainate receptor-triggered Zn2+ entry into cortical neurons induces mitochondrial Zn2+ uptake and persistent mitochondrial dysfunction. Eur J Neurosci 12:3813–3818

    PubMed  CAS  Google Scholar 

  • Sheline CT, Behrens MM, Choi DW (2000) Zinc-induced cortical neuronal death: contribution of energy failure attributable to loss of NAD(+) and inhibition of glycolysis. J Neurosci 20:3139–3146

    PubMed  CAS  Google Scholar 

  • Shi Y, Berg JM (1995) Specific DNA–RNA hybrid binding by zinc finger proteins. Science 268:282–284

    PubMed  CAS  Google Scholar 

  • Shi Y, Berg JM (1996) DNA unwinding induced by zinc finger protein binding. Biochemistry 35:3845–3848

    PubMed  CAS  Google Scholar 

  • Shichita T, Hasegawa E, Kimura A et al (2012) Peroxiredoxin family proteins are key initiators of post-ischemic inflammation in the brain. Nat Med 18:911–917

    PubMed  CAS  Google Scholar 

  • Shih AY, Johnson DA, Wong G et al (2003) Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress. J Neurosci 23:3394–3406

    PubMed  CAS  Google Scholar 

  • Shimizu T, Wolfe LS (1990) Arachidonic acid cascade and signal transduction. J Neurochem 55:1–15

    PubMed  CAS  Google Scholar 

  • Singer-Lahat D, Sheinin A, Chikvashvili D et al (2007) K+ channel facilitation of exocytosis by dynamic interaction with syntaxin. J Neurosci 27:1651–1658

    PubMed  CAS  Google Scholar 

  • Skulachev VP, Chistyakov VV, Jasaitis AA et al (1967) Inhibition of the respiratory chain by zinc ions. Biochem Biophys Res Commun 26:1–6

    PubMed  CAS  Google Scholar 

  • Smith MA, Richey Harris PL, Sayre LM et al (1997) Widespread peroxynitrite-mediated damage in Alzheimer’s disease. J Neurosci 17:2653–2657

    PubMed  CAS  Google Scholar 

  • Soriano FX, Martel MA, Papadia S et al (2008) Specific targeting of pro-death NMDA receptor signals with differing reliance on the NR2B PDZ ligand. J Neurosci 28:10696–10710

    PubMed  CAS  PubMed Central  Google Scholar 

  • Spickett CM, Pitt AR, Morrice N et al (2006) Proteomic analysis of phosphorylation, oxidation and nitrosylation in signal transduction. Biochim Biophys Acta 1764:1823–1841

    PubMed  CAS  Google Scholar 

  • St. Croix CM, Wasserloos KJ, Dineley KE et al (2002) Nitric oxide-induced changes in intracellular zinc homeostasis are mediated by metallothionein/thionein. Am J Physiol Lung Cell Mol Physiol 282:L185–L192

    PubMed  CAS  Google Scholar 

  • Stamler JS, Lamas S, Fang FC (2001) Nitrosylation, the prototypic redox-based signaling mechanism. Cell 106:675–683

    PubMed  CAS  Google Scholar 

  • Stetler RA, Zhang F, Liu C et al (2009) Ischemic tolerance as an active and intrinsic neuroprotective mechanism. Handb Clin Neurol 92:171–195

    PubMed  Google Scholar 

  • Sullivan JM, Traynelis SF, Chen HS et al (1994) Identification of two cysteine residues that are required for redox modulation of the NMDA subtype of glutamate receptor. Neuron 13:929–936

    PubMed  CAS  Google Scholar 

  • Tabuchi A, Oh E, Taoka A et al (1996) Rapid attenuation of AP-1 transcriptional factors associated with nitric oxide (NO)-mediated neuronal cell death. J Biol Chem 271:31061–31067

    PubMed  CAS  Google Scholar 

  • Takahashi MA, Asada K (1983) Superoxide anion permeability of phospholipid membranes and chloroplast thylakoids. Arch Biochem Biophys 226:558–566

    PubMed  CAS  Google Scholar 

  • Takeda A (2001) Zinc homeostasis and functions of zinc in the brain. Biometals 14:343–351

    PubMed  CAS  Google Scholar 

  • Tanaka H, Yokota H, Jover T et al (2004) Ischemic preconditioning: neuronal survival in the face of caspase-3 activation. J Neurosci 24:2750–2759

    PubMed  CAS  Google Scholar 

  • Tang LH, Aizenman E (1993) The modulation of N-methyl-d-aspartate receptors by redox and alkylating reagents in rat cortical neurones in vitro. J Physiol 465:303–323

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tanner JJ, Parsons ZD, Cummings AH et al (2011) Redox regulation of protein tyrosine phosphatases: structural and chemical aspects. Antioxid Redox Signal 15:77–97

    PubMed  CAS  Google Scholar 

  • Thompson RB, Peterson D, Mahoney W et al (2002) Fluorescent zinc indicators for neurobiology. J Neurosci Methods 118:63–75

    PubMed  CAS  Google Scholar 

  • Thompson JW, Narayanan SV, Perez-Pinzon MA (2012) Redox signaling pathways involved in neuronal ischemic preconditioning. Curr Neuropharmacol 10:354–369

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tiran Z, Peretz A, Attali B et al (2003) Phosphorylation-dependent regulation of Kv2.1 channel activity at tyrosine 124 by Src and by protein-tyrosine phosphatase epsilon. J Biol Chem 278:17509–17514

    PubMed  CAS  Google Scholar 

  • Tiran Z, Peretz A, Sines T et al (2006) Tyrosine phosphatases epsilon and alpha perform specific and overlapping functions in regulation of voltage-gated potassium channels in Schwann cells. Mol Biol Cell 17:4330–4342

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tonder N, Johansen FF, Frederickson CJ et al (1990) Possible role of zinc in the selective degeneration of dentate hilar neurons after cerebral ischemia in the adult rat. Neurosci Lett 109:247–252

    PubMed  CAS  Google Scholar 

  • Tsuji S, Kobayashi H, Uchida Y et al (1992) Molecular cloning of human growth inhibitory factor cDNA and its down-regulation in Alzheimer’s disease. EMBO J 11:4843–4850

    PubMed  CAS  PubMed Central  Google Scholar 

  • Uchida Y, Takio K, Titani K et al (1991) The growth inhibitory factor that is deficient in the Alzheimer’s disease brain is a 68 amino acid metallothionein-like protein. Neuron 7:337–347

    PubMed  CAS  Google Scholar 

  • Walder CE, Green SP, Darbonne WC et al (1997) Ischemic stroke injury is reduced in mice lacking a functional NADPH oxidase. Stroke 28:2252–2258

    PubMed  CAS  Google Scholar 

  • Warner DS, Sheng H, Batinic-Haberle I (2004) Oxidants, antioxidants and the ischemic brain. J Exp Biol 207:3221–3231

    PubMed  CAS  Google Scholar 

  • Weinstein JR, Koerner IP, Moller T (2010) Microglia in ischemic brain injury. Future Neurol 5:227–246

    PubMed  CAS  PubMed Central  Google Scholar 

  • Weiss JH, Hartley DM, Koh JY et al (1993) AMPA receptor activation potentiates zinc neurotoxicity. Neuron 10:43–49

    PubMed  CAS  Google Scholar 

  • Wenzel HJ, Cole TB, Born DE et al (1997) Ultrastructural localization of zinc transporter-3 (ZnT-3) to synaptic vesicle membranes within mossy fiber boutons in the hippocampus of mouse and monkey. Proc Natl Acad Sci USA 94:12676–12681

    PubMed  CAS  PubMed Central  Google Scholar 

  • Windelborn JA, Lipton P (2008) Lysosomal release of cathepsins causes ischemic damage in the rat hippocampal slice and depends on NMDA-mediated calcium influx, arachidonic acid metabolism, and free radical production. J Neurochem 106:56–69

    PubMed  CAS  Google Scholar 

  • Winterbourn CC, Hampton MB (2008) Thiol chemistry and specificity in redox signaling. Free Radic Biol Med 45:549–561

    PubMed  CAS  Google Scholar 

  • Wu X, Hernandez-Enriquez B, Banas M et al (2013) Molecular mechanisms underlying the apoptotic effect of KCNB1 K+ channel oxidation. J Biol Chem 288:4128–4134

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wudarczyk J, Debska G, Lenartowicz E (1999) Zinc as an inducer of the membrane permeability transition in rat liver mitochondria. Arch Biochem Biophys 363:1–8

    PubMed  CAS  Google Scholar 

  • Yamasaki S, Sakata-Sogawa K, Hasegawa A et al (2007) Zinc is a novel intracellular second messenger. J Cell Biol 177:637–645

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yamashita S, Miyagi C, Fukada T et al (2004) Zinc transporter LIVI controls epithelial-mesenchymal transition in zebrafish gastrula organizer. Nature (Lond) 429:298–302

    CAS  Google Scholar 

  • Yang QW, Wang JZ, Li JC et al (2010) High-mobility group protein box-1 and its relevance to cerebral ischemia. J Cereb Blood Flow Metab 30:243–254

    PubMed  PubMed Central  Google Scholar 

  • Yu SP, Yeh CH, Sensi SL et al (1997) Mediation of neuronal apoptosis by enhancement of outward potassium current. Science 278:114–117

    PubMed  CAS  Google Scholar 

  • Yu SP, Farhangrazi ZS, Ying HS et al (1998) Enhancement of outward potassium current may participate in beta-amyloid peptide-induced cortical neuronal death. Neurobiol Dis 5:81–88

    PubMed  CAS  Google Scholar 

  • Zhang B, Georgiev O, Hagmann M et al (2003) Activity of metal-responsive transcription factor 1 by toxic heavy metals and H2O2 in vitro is modulated by metallothionein. Mol Cell Biol 23:8471–8485

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang Y, Wang H, Li J et al (2004) Peroxynitrite-induced neuronal apoptosis is mediated by intracellular zinc release and 12-lipoxygenase activation. J Neurosci 24:10616–10627

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang Y, Wang H, Li J et al (2006) Intracellular zinc release and ERK phosphorylation are required upstream of 12-lipoxygenase activation in peroxynitrite toxicity to mature rat oligodendrocytes. J Biol Chem 281:9460–9470

    PubMed  CAS  Google Scholar 

  • Zhang J, Takahashi HK, Liu K et al (2011) Anti-high mobility group box-1 monoclonal antibody protects the blood–brain barrier from ischemia-induced disruption in rats. Stroke 42:1420–1428

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the members of their laboratories who have contributed to zinc-related research during the past several years. This work has been supported by JSPS KAKENHI Grant Number 23590644 (to H.H.) and by US NIH grant NS043277 (to E.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirokazu Hara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Hara, H., Aizenman, E. (2014). Oxidative Stress and Neuronal Zinc Signaling. In: Fukada, T., Kambe, T. (eds) Zinc Signals in Cellular Functions and Disorders. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55114-0_4

Download citation

Publish with us

Policies and ethics