Skip to main content

Molecular Mechanisms of Photoreceptor Synaptic Transmission

  • Chapter
  • First Online:
Vertebrate Photoreceptors

Abstract

Voltage changes resulting from the absorption of photons and triggering of a second-messenger cascade in outer segments of rod and cone photoreceptors are encoded at the synaptic terminal and transmitted to second-order bipolar and horizontal cells. In this chapter, we survey the unique structural, molecular, and functional features of photoreceptor synapses that enable them to encode and transmit light responses. We begin by describing the anatomy of the photoreceptor synapse, focusing on a unique structure called the synaptic ribbon, which is present in only a handful of other primary sensory synapses and plays an important role in priming glutamate-laden vesicles for release. We then discuss the locations and functional roles of many of the key proteins present at the synapse. Although many of these are shared in common with conventional nonribbon synapses, some important differences appear to contribute to the unique signaling capabilities of photoreceptors. We then explore the properties of synaptic transmission by rods and cones, noting the ways in which calcium-dependent regulation of the rate of vesicle fusion enables the synapse to encode different features of the visual scene. Although this chapter is focused on the molecular mechanisms of synaptic transmission in healthy retinas, we make note of how synaptic defects can lead to vision loss. For example, forms of X-linked congenital stationary night blindness can arise from mutations in the gene encoding the voltage-gated calcium channels present at rod and cone synapses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akopian A, Johnson J, Gabriel R et al (2000) Somatostatin modulates voltage-gated K+ and Ca+ currents in rod and cone photoreceptors of the salamander retina. J Neurosci 20:929–936

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ashmore JF, Copenhagen DR (1983) An analysis of transmission from cones to hyperpolarizing bipolar cells in the retina of the turtle. J Physiol (Lond) 340:569–597

    CAS  Google Scholar 

  • Attwell D, Wilson M, Wu SM (1984) A quantitative analysis of interactions between photoreceptors in the salamander (Ambystoma) retina. J Physiol 352:703–737

    PubMed Central  PubMed  CAS  Google Scholar 

  • Augustin I, Rosenmund C, Südhof TC et al (1999) Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles. Nature (Lond) 400:457–461

    CAS  Google Scholar 

  • Babai N, Morgans CW, Thoreson WB (2010a) Calcium-induced calcium release contributes to synaptic release from mouse rod photoreceptors. Neuroscience 165:1447–1456

    PubMed Central  PubMed  CAS  Google Scholar 

  • Babai N, Kanevsky N, Dascal N et al (2010b) Anion-sensitive regions of L-type CaV1.2 calcium channels expressed in HE293 cells. PLoS One 5:e8602

    PubMed Central  PubMed  Google Scholar 

  • Babai N, Bartoletti TM, Thoreson WB (2010c) Calcium regulates vesicle replenishment at the cone ribbon synapse. J Neurosci 30:15866–15877

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bader CR, Bertrand D, Schwartz EA (1982) Voltage-activated and calcium-activated currents studies in solitary rod inner segments from the salamander retina. J Physiol 331:253–284

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ball SL, Powers PA, Shin HS et al (2002) Role of β2 subunit of voltage-dependent calcium channels in the retinal outer plexiform layer. Invest Ophthalmol Vis Sci 43:1595–1603

    PubMed  Google Scholar 

  • Barnes S, Hille B (1989) Ionic channels of the inner segment of tiger salamander cone photoreceptors. J Gen Physiol 94:719–743

    PubMed  CAS  Google Scholar 

  • Barnes S, Merchant V, Mahmud F (1993) Modulation of transmission gain by protons at the photoreceptor output synapse. Proc Natl Acad Sci USA 90:10081–10085

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bartoletti TM, Babai N, Thoreson WB (2010) Vesicle pool size at the salamander cone ribbon synapse. J Neurophysiol 103:419–428

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bartoletti TM, Jackman SL, Babai N et al (2011) Release from the cone ribbon synapse under bright light conditions can be controlled by the opening of only a few Ca2+ channels. J Neurophysiol 106:2922–2935

    PubMed Central  PubMed  CAS  Google Scholar 

  • Baumann L, Gerstner A, Zong X et al (2004) Functional characterization of the L-type Ca2+ channel Cav1.4α1 from mouse retina. Invest Ophthalmol Vis Sci 45:708–713

    PubMed  Google Scholar 

  • Bayley PR, Morgans CW (2007) Rod bipolar cells and horizontal cells form displaced synaptic contacts with rods in the outer nuclear layer of the nob2 retina. J Comp Neurol 500:586–298

    Google Scholar 

  • Bech-Hansen NT, Naylor MJ, Maybaum TA et al (1998) Loss-of-function mutations in a calcium channel α1-subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness. Nat Genet 19:264–267

    PubMed  CAS  Google Scholar 

  • Bergmann M, Grabs D, Rager G (2000) Expression of presynaptic proteins is closely correlated with the chronotopic pattern of axons in the retinotectal system of the chick. J Comp Neurol 418:361–372

    PubMed  CAS  Google Scholar 

  • Berntson A, Taylor WR (2003) The unitary event amplitude of mouse retinal on-cone bipolar cells. Vis Neurosci 20:621–626

    PubMed  Google Scholar 

  • Berntson AK, Morgans CW (2003) Distribution of the presynaptic calcium sensors, synaptotagmin I/II and synaptotagmin III, in the goldfish and rodent retinas. J Vis 3:274–280

    PubMed  Google Scholar 

  • Betz A, Thakur P, Junge HJ et al (2001) Functional interaction of the active zone proteins Munc13-1 and RIM1 in synaptic vesicle priming. Neuron 30:183–196

    PubMed  CAS  Google Scholar 

  • Bezprozvanny I, Scheller RH, Tsien RW (1995) Functional impact of syntaxin on gating of N-type and Q-type calcium channels. Nature (Lond) 378:623–626

    CAS  Google Scholar 

  • Blazynski C, Perez MT (1991) Adenosine in vertebrate retina: localization, receptor characterization, and function. Cell Mol Neurobiol 11:463–484

    PubMed  CAS  Google Scholar 

  • Boycott KM, Maybaum TA, Naylor MJ et al (2001) A summary of 20 CACNA1F mutations identified in 36 families with incomplete x-linked congenital stationary night blindness, and characterization of splice variants. Hum Genet 108:91–97

    PubMed  CAS  Google Scholar 

  • Brandstätter JH, Wässle H, Betz H et al (1996) The plasma membrane protein SNAP-25, but not syntaxin, is present at photoreceptor and bipolar cell synapses in the rat retina. Eur J Neurosci 8:823–828

    PubMed  Google Scholar 

  • Brandstätter JH, Fletcher EL, Garner CC et al (1999) Differential expression of the presynaptic cytomatric protein bassoon among ribbon synapses in the mammalian retina. Eur J Neurosci 11:3683–3693

    PubMed  Google Scholar 

  • Brose N (2008) For better or for worse: complexins regulate SNARE function and vesicle fusion. Traffic 9:1403–1413

    PubMed  CAS  Google Scholar 

  • Budde T, Meuth S, Pape HC (2002) Calcium-dependent inactivation of neuronal calcium channels. Nat Rev Neurosci 3:873–883

    PubMed  CAS  Google Scholar 

  • Buraei Z, Yang J (2010) The β subunit of voltage-gated Ca2+ channels. Physiol Rev 90:1461–1506

    PubMed  CAS  Google Scholar 

  • Cadetti L, Tranchina D, Thoreson WB (2005) A comparison of release kinetics and glutamate receptor properties in shaping rod-cone differences in EPSC kinetics in the salamander retina. J Physiol (Lond) 569:773–788

    CAS  Google Scholar 

  • Cadetti L, Bryson EJ, Ciccone CA et al (2006) Calcium-induced calcium release in rod photoreceptor terminals boosts synaptic transmission during maintained depolarization. Eur J Neurosci 23:2983–2990

    PubMed Central  PubMed  Google Scholar 

  • Cadetti L, Thoreson WB (2006) Feedback effects of horizontal cell membrane potential on cone calcium currents studied with simultaneous recordings. J Neurophysiol 95:1992–1995

    PubMed Central  PubMed  Google Scholar 

  • Castillo PE, Janz R, Südhof TC (1997) Rab3A is essential for mossy fiber long-term potentiation in the hippocampus. Nature (Lond) 388:590–593

    CAS  Google Scholar 

  • Catterall WA (2000) Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 16:521–555

    PubMed  CAS  Google Scholar 

  • Catterall WA, Striessnig J, Snutch TP et al (2003) International union of pharmacology. XL. Compendium of voltage-gated ion channels: calcium channels. Pharmacol Rev 55:579–581

    PubMed  CAS  Google Scholar 

  • Cens T, Rousset M, Leyris J-P et al (2006) Voltage- and calcium-dependent inactivation in high voltage-gated Ca2+ channels. Prog Biophys Mol Biol 90:104–117

    PubMed  CAS  Google Scholar 

  • Cesca F, Baldelli P, Valtorta F et al (2010) The synapsins: key actors of synapse function and plasticity. Prog Neurobiol 91:313–348

    PubMed  CAS  Google Scholar 

  • Cuenca N, Deng P, Linberg KA (2002) The neurons of the ground squirrel retina as revealed by immunostains for calcium binding proteins and neurotransmitters. J Neurocytol 31:649–666

    PubMed  CAS  Google Scholar 

  • Chang B, Heckenlively JR, Bayley PR et al (2006) The nob2 mouse, a null mutation in Cacna1f: anatomical and functional abnormalities in the outer retina and their consequences on ganglion cell visual responses. Vis Neurosci 23:11–24

    PubMed Central  PubMed  Google Scholar 

  • Chang-Ileto B, Frere SG, Chan RB et al (2011) Synaptojanin 1-mediated PI(4,5)P2 hydrolysis is modulated by membrane curvature and facilitates membrane fission. Dev Cell 20:206–218

    PubMed Central  PubMed  CAS  Google Scholar 

  • Chappell RL, Anastassov I, Lugo P et al (2008) Zinc-mediated feedback at the synaptic terminal of vertebrate photoreceptors. Exp Eye Res 87:394–397

    PubMed Central  PubMed  CAS  Google Scholar 

  • Chen M, Van Hook MJ, Zenisek D et al (2013) Properties of ribbon and non-ribbon release from rod photoreceptors revealed by visualizing individual synaptic vesicles. J Neurosci 33:2071–2086

    PubMed Central  PubMed  CAS  Google Scholar 

  • Choi SY, Barghuis B, Rea R et al (2005) Encoding light intensity by the cone photoreceptor synapse. Neuron 48:555–562

    PubMed  CAS  Google Scholar 

  • Choi YM, Kim SH, Chung S et al (2006) Regional interaction of endoplasmic reticulum Ca2+ signals between soma and dendrites through rapid luminal Ca2+ diffusion. J Neurosci 26:12127–12136

    PubMed  CAS  Google Scholar 

  • Cooper B, Hemmerlein M, Ammermüller J et al (2012) Munc13-independent vesicle priming at mouse photoreceptor ribbon synapses. J Neurosci 32:8040–8052

    PubMed  CAS  Google Scholar 

  • Cooper NGF, McLaughlin BJ (1983) Tracer uptake by photoreceptor synaptic terminals. J Ultrastruct Res 84:252–267

    PubMed  CAS  Google Scholar 

  • Corey DP, Dubinsky JM, Schwartz EA (1984) The calcium current in inner segments of rods from the salamander (Ambystoma tigrinum) retina. J Physiol (Lond) 354:557–575

    CAS  Google Scholar 

  • De Robertis E, Franchi CM (1956) Electron microscope observations on synaptic vesicles in synapses of the retinal rods and cones. J Biophys Biochem Cytol 2:307–318

    PubMed Central  Google Scholar 

  • Deng P, Cuenca N, Doerr T et al (2001) Localization of neurotransmitters and calcium binding proteins to neurons of salamander and mudpuppy retinas. Vis Res 41:1771–1783

    PubMed  CAS  Google Scholar 

  • Dick O, Hack I, Altrock WD et al (2001) Localization of the presynaptic cytomatrix protein Piccolo at ribbon and conventional synapses in the rat retina: comparison with Bassoon. J Comp Neurol 439:224–234

    PubMed  CAS  Google Scholar 

  • Dick O, tom Dieck S, Altrock WD et al (2003) The presynaptic active zone protein bassoon is essential for photoreceptor ribbon synapse formation in the retina. Neuron 37:775–786

    PubMed  CAS  Google Scholar 

  • Dittman J, Ryan TA (2009) Molecular circuitry of endocytosis at nerve terminals. Annu Rev Cell Dev Biol 25:133–160

    PubMed  CAS  Google Scholar 

  • Dolphin AC (2012) Calcium channel auxiliary α2δ and β subunits: trafficking and one step beyond. Nat Rev Neurosci 13:542–555

    PubMed  CAS  Google Scholar 

  • Dowling JE, Boycott BB (1966) Organization of the primate retina: electron microscopy. Proc R Soc Lond B Biol Sci 166:80–111

    PubMed  CAS  Google Scholar 

  • Dowling JE, Werblin FS (1969) Organization of the retina of the mudpuppy Necturus maculosus. I. Synaptic structure. J Neurophysiol 32:315–338

    PubMed  CAS  Google Scholar 

  • Dulubova I, Lou X, Lu J et al (2005) A Munc13/RIM/Rab3 tripartite complex: from priming to plasticity? EMBO J 25:2839–2850

    Google Scholar 

  • Duncan G, Rabl K, Gemp I et al (2010) Quantitative analysis of synaptic release at the photoreceptor synapse. Biophys J 98:2102–2110

    PubMed Central  PubMed  CAS  Google Scholar 

  • Duncan JL, Yang H, Doan T et al (2006) Scotopic visual signaling in the mouse retina is modulated by high-affinity plasma membrane calcium extrusion. J Neurosci 26:7201–7211

    PubMed Central  PubMed  CAS  Google Scholar 

  • Endo T, Kobayashi M, Kobayashi S et al (1986) Immunocytochemical and biochemical localization of parvalbumin in the retina. Cell Tissue Res 243:213–217

    PubMed  CAS  Google Scholar 

  • Evans EM (1966) On the ultrastructure of the synaptic region of visual receptors in certain vertebrates. Z Zellforsch Mikrosk Anat 71:499–516

    PubMed  CAS  Google Scholar 

  • Fenster SD, Chung WJ, Zhai R et al (2000) Piccolo, a presynaptic zinc finger protein structurally related to bassoon. Neuron 25:203–214

    PubMed  CAS  Google Scholar 

  • Firth SI, Morgan IG, Boelen MK et al (2001) Localization of voltage-sensitive L-type calcium channels in the chicken retina. Clin Exp Ophthalmol 29:183–187

    CAS  Google Scholar 

  • Fox MA, Sanes JR (2007) Synaptotagmin I and II are present in distinct subsets of central synapses. J Comp Neurol 503:280–296

    PubMed  CAS  Google Scholar 

  • Fukuda M (2003) Distinct Rab binding specificity of Rim1, Rim2, Rabphilin, and Noc2. J Biol Chem 278:15373–15380

    PubMed  CAS  Google Scholar 

  • Fukuda M (2008) Regulation of secretory vesicle traffic by Rab small GTPases. Cell Mol Life Sci 65:2801–2813

    PubMed  CAS  Google Scholar 

  • Fyk-kolodziej B, Dzhagaryan A, Qin P et al (2004) Immunocytochemical localization of three vesicular glutamate transporters in the cat retina. J Comp Neurol 475:518–530

    PubMed  CAS  Google Scholar 

  • Garner CC, Kindler S, Gundelfinger ED (2000) Molecular determinants of presynaptic active zones. Curr Opin Neurobiol 10:321–327

    PubMed  CAS  Google Scholar 

  • Geppert M, Bolshakov VY, Siegelbaum SA et al (1994) The role of Rab3A in neurotransmitter release. Nature (Lond) 369:493–497

    CAS  Google Scholar 

  • Geppert M, Südhof TC (1998) Rab3 and synaptotagmin: the yin and yang of synaptic membrane fusion. Annu Rev Neurosci 21:75–95

    PubMed  CAS  Google Scholar 

  • Grabs D, Bergmann M, Urban M (1996) Rab3 proteins and SNAP-25, essential components of the exocytosis machinery in conventional synapses, are absent from ribbon synapses of the mouse retina. Eur J Neurosci 8:162–168

    PubMed  CAS  Google Scholar 

  • Gray EG, Pease HL (1971) On understanding the organisation of the retinal receptor synapses. Brain Res 35:1–15

    PubMed  CAS  Google Scholar 

  • Greenlee MH, Swanson JJ, Simon JJ et al (1996) Postnatal development and the differential expression of presynaptic terminal-associated proteins in the developing retina of the Brazilian opossum, Monodelphis domestica. Brain Res Dev Brain Res 96:159–172

    PubMed  CAS  Google Scholar 

  • Griessmeier K, Cuny H, Rötzer K et al (2009) Calmodulin is a functional regulator of Cav1.4 L-type Ca2+ channels. J Biol Chem 284:29809–29816

    PubMed Central  PubMed  CAS  Google Scholar 

  • Haeseleer F, Imanishi Y, Maeda T et al (2004) Essential role of Ca2+-binding protein 4, a CaV1.4 channel regulator, in photoreceptor synaptic function. Nat Neurosci 7:1079–1087

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hansen CG, Nichols BJ (2009) Molecular mechanisms of clathrin-independent endocytosis. J Cell Sci 122:1713–1721

    PubMed Central  PubMed  CAS  Google Scholar 

  • Harata NC, Aravanis AM, Tsien RW (2006) Kiss-and-run and full-collapse fusion as modes of exo-endocytosis in neurosecretion. J Neurochem 97:1546–1570

    PubMed  CAS  Google Scholar 

  • Haverkamp S, Grünert U, Wässle H (2001) The synaptic architecture of AMPA receptors at the cone pedicle of the primate retina. J Neurosci 21:2488–2500

    PubMed  CAS  Google Scholar 

  • Heidelberger R, Sterling P, Matthews G (2002) Role of ATP in depletion and replenishment of the releasable pool of synaptic vesicles. J Neurophysiol 88:98–106

    PubMed  CAS  Google Scholar 

  • Heidelberger R, Wang MM, Sherry DM (2003) Differential distribution of synaptotagmin immunoreactivity among synapses in the goldfish, salamander, and mouse retina. Vis Neurosci 20:37–49

    PubMed  Google Scholar 

  • Heidelberger R, Thoreson WB, Witkovsky P (2005) Synaptic transmission at retinal ribbon synapses. Prog Retin Eye Res 24:682–720

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hemara-Wahanui A, Berjukow S, Hope CI et al (2005) A CACNA1F mutation identified in an X-linked retinal disorder shifts the voltage-dependence of Cav1.4 channel activation. Proc Natl Acad Sci USA 102:7553–7558

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer, Sunderland

    Google Scholar 

  • Hirasawa H, Kaneko A (2003) pH changes in the invaginating synaptic cleft mediate feedback from horizontal cells to cone photoreceptors by modulating Ca2+ channels. J Gen Physiol 122:657–671

    PubMed Central  PubMed  CAS  Google Scholar 

  • Holzhausen LC, Lewis AA, Cheong KK et al (2009) Differential role for synaptojanin 1 in rod and cone photoreceptors. J Comp Neurol 517:633–644

    PubMed Central  PubMed  CAS  Google Scholar 

  • Innocenti B, Heidelberger R (2008) Mechanisms contributing to tonic release at the cone photoreceptor ribbon synapse. J Neurophysiol 99:26–36

    Google Scholar 

  • Jackman SL, Choi SY, Thoreson WB et al (2009) Role of the synaptic ribbon in transmitting the cone light response. Nat Neurosci 12:303–310

    PubMed Central  PubMed  CAS  Google Scholar 

  • Jimeno D, Lillo C, Roberts EA (2006) Kinesin-2 and photoreceptor cell death: requirement for motor subunits. Invest Ophthalmol Vis Sci 47:5039–5046

    PubMed Central  PubMed  Google Scholar 

  • Jockusch WJ, Mraefcke GJK, McMahon HT et al (2005) Clathrin-dependent and clathrin-independent retrieval of synaptic vesicles in retinal bipolar cells. Neuron 46:869–878

    PubMed  CAS  Google Scholar 

  • Johnson S, Halford S, Morris AG (2003) Genomic organisation and alternative splicing of RIM1, a gene implicated in autosomal dominant cone-rod dystrophy (CORD7). Genomics 81:304–314

    PubMed  CAS  Google Scholar 

  • Johnson JE, Perkins GA, Giddabasappa A et al (2007a) Spatiotemporal regulation of ATP and Ca2+ dynamics in vertebrate rod and cone ribbon synapses. Mol Vis 13:887–919

    PubMed Central  PubMed  CAS  Google Scholar 

  • Johnson J, Fremeau RT Jr, Duncan JL et al (2007b) Vesicular glutamate transporter 1 is required for photoreceptor synaptic signaling but not for intrinsic visual functions. J Neurosci 27:7245–7255

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kang Y, Huang X, Pasyk EA et al (2002) Syntaxin-3 and syntaxin-1A inhibit L-type calcium channel activity, insulin biosynthesis and exocytosis in beta-cell lines. Diabetologia 45:231–241

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kersten FFJ, van Wijk E, van Reeuwijk J et al (2010) Association of whirlin with CaV1.3 (α1D) channels in photoreceptors, defining a novel member of the Usher protein network. Invest Ophthalmol Vis Sci 51:2338–2346

    PubMed  Google Scholar 

  • Koschak A, Reimer D, Walter D et al (2003) Cav1.4α1 subunits can form slowly inactivating dihydropyridine-sensitive L-type Ca2+ channels lacking Ca2+-dependent inactivation. J Neurosci 23:6041–6049

    PubMed  CAS  Google Scholar 

  • Kourennyi DW, Liu X, Hart J et al (2004) Reciprocal modulation of calcium dynamics at rod and cone photoreceptor synapses by nitric oxide. J Neurophysiol 92:477–483

    PubMed  CAS  Google Scholar 

  • Kreft M, Krizaj D, Grilc S et al (2003) Properties of exocytotic response in vertebrate photoreceptors. J Neurophysiol 90:218–225

    PubMed Central  PubMed  CAS  Google Scholar 

  • Krizaj D, Copenhagen DR (1998) Compartmentalization of calcium extrusion mechanisms in the outer and inner segments of photoreceptors. Neuron 21:249–256

    PubMed Central  PubMed  CAS  Google Scholar 

  • Krizaj D, Bao JX, Schmitz Y et al (1999) Caffeine-sensitive calcium stores regulate synaptic transmission from retinal rod photoreceptors. J Neurosci 19:7259–7261

    Google Scholar 

  • Krizaj D, DeMarco SJ, Johnson J (2002) Cell-specific expression of plasma membrane calcium ATPase isoforms in retinal neurons. J Comp Neurol 451:1–21

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kurenny DE, Moroz LL, Turner RW et al (1994) Modulation of ion channels in rod photoreceptors by nitric oxide. Neuron 13:315–324

    PubMed  CAS  Google Scholar 

  • Ladman AJ (1958) The fine structure of the rod-bipolar cell synapse in the retina of the albino rat. J Biophys Biochem Cytol 4:459–466

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lasansky A (1973) Organization of the outer synaptic layer in the retina of the larval tiger salamander. Philos Trans R Soc Lond B Biol Sci 265:471–489

    PubMed  CAS  Google Scholar 

  • Lazzell DR, Belizaire R, Thakur P et al (2004) SV2B regulates synaptotagmin 1 by direct interaction. J Biol Chem 279:52124–52131

    PubMed  CAS  Google Scholar 

  • Leenders AG, Lopes da Silva FH, Ghijsen WE et al (2001) Rab3A is involved in transport of synaptic vesicles to the active zone in mouse brain nerve terminals. Mol Biol Cell 12:3095–3102

    PubMed Central  PubMed  CAS  Google Scholar 

  • Leitch B, Shevtsova O, Kerr RJ (2009) Selective reduction in synaptic proteins involved in vesicle docking and signaling at synapses in the ataxic mutant mouse stargazer. J Comp Neurol 512:52–73

    PubMed  CAS  Google Scholar 

  • Li W, Chen S, DeVries SH (2010) A fast rod photoreceptor signaling pathway in the mammalian retina. Nat Neurosci 13:414–416

    PubMed Central  PubMed  CAS  Google Scholar 

  • Libby RT, Lillo C, Kitamoto J et al (2004) Myosin Va is required for normal photoreceptor synaptic activity. J Cell Sci 117:4509–4515

    PubMed  CAS  Google Scholar 

  • Linton JD, Holzhausen LC, Babai N et al (2010) Flow of energy in the outer retina in darkness and in light. Proc Natl Acad Sci USA 107:8599–8604

    PubMed Central  PubMed  CAS  Google Scholar 

  • Littink KW, van Gengeren MM, Collin RWJ et al (2009) A novel homozygous nonsense mutation in CABP4 causes congenital cone-rod synaptic disorder. Invest Ophthalmol Vis Sci 50:2344–2350

    PubMed  Google Scholar 

  • Llobet A, Gallop JL, Burden JJE et al (2011) Endophilin drives the fast mode of vesicle retrieval in a ribbon synapse. J Neurosci 31:8512–8519

    PubMed Central  PubMed  CAS  Google Scholar 

  • LoGiudice L, Matthews G (2007) Endocytosis at ribbon synapses. Traffic 8:1123–1128

    PubMed  CAS  Google Scholar 

  • Maeda T, Lem J, Palczewski K et al (2005) A critical role of CaBP4 in the cone synapse. Invest Ophthalmol Vis Sci 46:4320–4327

    PubMed Central  PubMed  Google Scholar 

  • Magupalli VG, Schwarz K, Alpadi K et al (2008) Multiple RIBEYE–RIBEYE interactions create a dynamic scaffold for the formation of synaptic ribbons. J Neurosci 28:7954–7967

    PubMed  CAS  Google Scholar 

  • Mandell JW, Townes-Anderson E, Czernik AJ et al (1990) Synapsins in the vertebrate retina: absence from ribbon synapses and heterogeneous distribution among conventional synapses. Neuron 5:19–33

    PubMed  CAS  Google Scholar 

  • Maricq AV, Korenbrot JI (1988) Calcium and calcium-dependent chloride currents generate action potential in solitary cone photoreceptors. Neuron 1:503–515

    PubMed  CAS  Google Scholar 

  • McRory JE, Hamid J, Doering CJ et al (2004) The CACNA1F gene encodes an L-type calcium channel with unique biophysical properties and tissue distribution. J Neurosci 24:1707–1708

    PubMed  CAS  Google Scholar 

  • Mercer AJ, Rabl K, Riccardi GE et al (2011) Location of release sites and calcium-activated chloride channels relative to calcium channels at the photoreceptor ribbon synapse. J Neurophysiol 105:321–335

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mercurio AM, Holtzman E (1982) Smooth endoplasmic reticulum and other agranular reticulum in frog retinal photoreceptors. J Neurocytol 11:263–293

    PubMed  CAS  Google Scholar 

  • Miki T, Kiyonaka S, Uriu Y (2007) Mutation associated with an autosomal dominant cone-rod dystrophy CORD7 modifies RIM1-mediated modulation of voltage-dependent Ca2+ channels. Channels 1:144–147

    PubMed  Google Scholar 

  • Morgans CW, Brandstätter JH, Kellerman J et al (1996) A SNARE complex containing syntaxin 3 is present in ribbon synapses of the retina. J Neurosci 16:6713–6721

    PubMed  CAS  Google Scholar 

  • Morgans CW, El Far O, Berntson A et al (1998) Calcium extrusion from mammalian photoreceptor terminals. J Neurosci 18:2467–2474

    PubMed  CAS  Google Scholar 

  • Morgans CW (1999) Calcium channel heterogeneity among cone photoreceptors in the tree shrew retina. Eur J Neurosci 11:2989–2993

    PubMed  CAS  Google Scholar 

  • Morgans CW (2001) Localization of the α1F calcium channel subunit in the rat retina. Invest Ophthalmol Vis Sci 42:2414–2418

    PubMed  CAS  Google Scholar 

  • Morgans CW, Gaughwin P, Maleszka R (2001) Expression of the α1F calcium channel subunit by photoreceptors in the rat retina. Mol Vis 7:202–209

    PubMed  CAS  Google Scholar 

  • Morgans CW, Bayley PR, Oesch NW et al (2005) Photoreceptor calcium channels: insight from night blindness. Vis Neurosci 22:561–568

    PubMed  Google Scholar 

  • Morona R, Northcutt RG, González A (2011) Immunohistochemical localization of calbindin D28k and calretinin in the retina of two lungfishes, Protopterus dolloi and Neoceratodus forsteri: colocalization with choline acetyltransferase and tyrosine hydroxylase. Brain Res 1368:28–43

    PubMed  CAS  Google Scholar 

  • Muresan V, Lyass A, Schnapp BJ (1999) The kinesin motor KIF3A is a component of the presynaptic ribbon in vertebrate photoreceptors. J Neurosci 19:1027–2037

    PubMed  CAS  Google Scholar 

  • Nachman-Clewner M, St. Jules R, Townes-Anderson E (1999) L-type calcium channels in the photoreceptor ribbon synapse: localization and role in plasticity. J Comp Neurol 415:1–16

    PubMed  CAS  Google Scholar 

  • Nag TC, Wadhwa S (1999) Developmental expression of calretinin immunoreactivity in the human retina and a comparison with two other EF-hand calcium binding proteins. Neuroscience 91:41–50

    PubMed  CAS  Google Scholar 

  • Oesch NW, Diamond JS (2011) Ribbon synapses compute temporal contrast and encode luminance in retinal rod bipolar cells. Nat Neurosci 14:1555–1561

    PubMed Central  PubMed  CAS  Google Scholar 

  • Pahlberg J, Sampath AP (2011) Visual threshold is set by linear and nonlinear mechanisms in the retina that mitigate noise. Bioessays 33:438–447

    PubMed Central  PubMed  Google Scholar 

  • Pang JJ, Gao F, Barrow A et al (2008) How do tonic glutamatergic synapses evade receptor desensitization? J Physiol (Lond) 586:2889–2902

    CAS  Google Scholar 

  • Parsons TD, Sterling P (2003) Synaptic ribbon: conveyor belt or safety belt? Neuron 37:379–382

    PubMed  CAS  Google Scholar 

  • Petersen OH, Verkhratsky A (2007) Endoplasmic reticulum calcium tunnels integrate signaling in polarised cells. Cell Calcium 42:373–378

    PubMed  CAS  Google Scholar 

  • Pierantoni RL, McCann GD (1981) A quantitative study on synaptic ribbons in the photoreceptors of turtle and frog. In: Borsellino A, Cervetto L (eds) Photoreceptors. Plenum, New York, pp 381–386

    Google Scholar 

  • Pumplin DW, Reese TS, Llinas R (1981) Are the presynaptic membrane particles the calcium channels? Proc Natl Acad Sci USA 78:7210–7213

    PubMed Central  PubMed  CAS  Google Scholar 

  • Rabl K, Thoreson WB (2002) Calcium-dependent inactivation and depletion of synaptic cleft calcium ions combine to regulate rod calcium currents under physiological conditions. Eur J Neurosci 16:2070–2077

    PubMed  Google Scholar 

  • Rabl K, Cadetti L, Thoreson WB (2005) Kinetics of exocytosis is faster in cones than in rods. J Neurosci 25:4633–4640

    PubMed Central  PubMed  CAS  Google Scholar 

  • Rao-Mirotznik R, Harkins AB, Buchsbaum G et al (1995) Mammalian rod terminal: architecture of a binary synapse. Neuron 14:561–569

    PubMed  CAS  Google Scholar 

  • Raviola E, Gilula NB (1975) Intramembrane organization of specialized contacts in the outer plexiform layer of the retina: a freeze-fracture study in monkeys and rabbits. J Cell Biol 65:192–222

    PubMed  CAS  Google Scholar 

  • Rea R, Li J, Dharia A et al (2004) Streamlined synaptic vesicle cycle in cone photoreceptor terminals. Neuron 41:755–766

    PubMed  CAS  Google Scholar 

  • Regus-Leidig H, Ott C, Löhner M et al (2013) Identification and immunocytochemical characterization of Piccolino, a novel Piccolo splice variant selectively expressed at sensory ribbon synapses of the eye and ear. PLoS One. 8:e70737

    Google Scholar 

  • Reim K, Wegmeyer H, Brandstätter JH et al (2005) Structurally and functionally unique complexins at retinal ribbon synapses. J Cell Biol 169:669–680

    PubMed Central  PubMed  CAS  Google Scholar 

  • Reim K, Regus-Leidig H, Ammermüller J et al (2009) Aberrant function and structure of retinal ribbon synapses in the absence of complexin 3 and complexin 4. J Cell Sci 122:1352–1361

    PubMed  CAS  Google Scholar 

  • Richards MW, Butcher AJ, Dolphin AC (2004) Ca2+ channel β-subunits: structural insights AID our understanding. Trends Pharmacol Sci 25:626–632

    PubMed  CAS  Google Scholar 

  • Rieke F, Schwartz EA (1996) Asynchronous transmitter release: control of exocytosis and endocytosis at the salamander rod synapse. J Physiol (Lond) 493:1–8

    CAS  Google Scholar 

  • Ripps H, Shakib M, MacDonald ED (1976) Peroxidase uptake by photoreceptor terminals of the skate retina. J Cell Biol 70:86–96

    PubMed  CAS  Google Scholar 

  • Rosenmund C, Sigler A, Augustin I et al (2002) Differential control of vesicle priming and short-term plasticity by Munc13 isoforms. Neuron 33:411–424

    PubMed  CAS  Google Scholar 

  • Schacher S, Holtzman E, Hood DC (1976) Synaptic activity of frog retinal photoreceptors: a peroxidase uptake study. J Cell Biol 70:178–192

    PubMed  CAS  Google Scholar 

  • Schaeffer SF, Raviola E (1978) Membrane recycling in the cone cell endings of the turtle retina. J Cell Biol 79:802–825

    PubMed  CAS  Google Scholar 

  • Schein S, Ahmad KM (2005) A clockwork hypothesis: synaptic release by rod photoreceptors must be regular. Biophys J 89:3931–3949

    PubMed Central  PubMed  CAS  Google Scholar 

  • Schlüter OM, Basu J, Südhof TC et al (2006) Rab3 superprimes synaptic vesicles for release: implications for short-term synaptic plasticity. J Neurosci 26:1239–1246

    PubMed  Google Scholar 

  • Schmitz F, Königstorfer A, Südhof TC (2000) RIBEYE, a component of synaptic ribbons: a protein’s journey through evolution provides insight into synaptic ribbon function. Neuron 28:857–872

    PubMed  CAS  Google Scholar 

  • Schnapf JL, Copenhagen DR (1982) Differences in the kinetics of rod and cone synaptic transmission. Nature (Lond) 296:862–864

    CAS  Google Scholar 

  • Schoch S, Gundelfinger ED (2006) Molecular organization of the presynaptic active zone. Cell Tissue Res 326:379–391

    PubMed  CAS  Google Scholar 

  • Sheng Z, Choi SY, Dharia A et al (2007) Synaptic Ca2+ in darkness is lower in rods than cones, causing slower tonic release of vesicles. J Neurosci 27:5033–5042

    PubMed  CAS  Google Scholar 

  • Sherry DM, Wang MM, Frishman LJ (2003) Differential distribution of vesicle associated membrane protein isoforms in the mouse retina. Mol Vis 9:673–688

    PubMed  CAS  Google Scholar 

  • Sherry DM, Heidelberger R (2005) Distribution of proteins associated with synaptic vesicle endocytosis in the mouse and goldfish retina. J Comp Neurol 484:440–457

    PubMed  CAS  Google Scholar 

  • Sjöstrand FS (1958) Ultrastructure of retinal rod synapses of the guinea pig eye as revealed by three-dimensional reconstructions from serial sections. J Ultrastruct Res 2:122–170

    PubMed  Google Scholar 

  • Snellman J, Mehta B, Babai N et al (2011) Acute destruction of the synaptic ribbon reveals a role for the ribbon in vesicle priming. Nat Neurosci 14:1135–1141

    PubMed Central  PubMed  CAS  Google Scholar 

  • Stella SL Jr, Thoreson WB (2000) Differential modulation of rod and cone calcium currents in tiger salamander retina by D2 dopamine receptors and cAMP. Eur J Neurosci 12:3537–3548

    PubMed  Google Scholar 

  • Stella SL Jr, Bryson EJ, Thoreson WB (2001) Insulin inhibits voltage-dependent calcium influx into rod photoreceptors. Neuroreport 12:947–951

    PubMed Central  PubMed  CAS  Google Scholar 

  • Stella SL Jr, Bryson EJ, Thoreson WB (2002) A2 adenosine receptors inhibit calcium influx through L-type calcium channels in rod photoreceptors of the salamander retina. J Neurophysiol 87:351–360

    PubMed  CAS  Google Scholar 

  • Stella SL Jr, Bryson EJ, Cadetti L et al (2003) Endogenous adenosine reduces glutamatergic output from rods through activation of A2-like adenosine receptors. J Neurophysiol 90:165–174

    PubMed  CAS  Google Scholar 

  • Stella SL Jr, Hu WD, Vila A et al (2007) Adenosine inhibits voltage-dependent Ca2+ influx in cone photoreceptor terminals of the tiger salamander retina. J Neurosci Res 85:1126–1137

    PubMed Central  PubMed  CAS  Google Scholar 

  • Stella SL Jr, Hu WD, Brechna NC (2009) Adenosine suppresses exocytosis from cone terminals of the tiger salamander retina. Neuroreport 20:923–929

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sterling P, Matthews G (2005) Structure and function of ribbon synapses. Trends Neurosci 28:20–29

    PubMed  CAS  Google Scholar 

  • Straiker A, Sullivan JM (2003) Cannabinoid receptor activation differentially modulates ion channels in photoreceptors of the tiger salamander. J Neurophysiol 89:2647–3654

    PubMed  CAS  Google Scholar 

  • Strom TM, Nyakatura G, Apfelstedt-Sylla E et al (1998) An L-type calcium channel gene mutated in incomplete X-linked congenital stationary night blindness. Nat Genet 19:260–263

    PubMed  CAS  Google Scholar 

  • Südhof TC (1995) The synaptic vesicle cycle: a cascade of protein–protein interactions. Nature (Lond) 375:645–653

    Google Scholar 

  • Südhof TC (2002) Synaptotagmins: why so many? J Biol Chem 277:7629–7632

    PubMed  Google Scholar 

  • Südhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547

    PubMed  Google Scholar 

  • Sugita S, Shin OH, Han W et al (2002) Synaptotagmins form a hierarchy of exocytotic Ca2+ sensors with distinct Ca2+ affinities. EMBO J 21:270–280

    PubMed Central  PubMed  CAS  Google Scholar 

  • Suryanarayanan A, Slaughter MM (2006) Synaptic transmission mediated by internal calcium stores in rod photoreceptors. J Neurosci 26:1759–1766

    PubMed  CAS  Google Scholar 

  • Szikra T, Krizaj D (2007) Intracellular organelles and calcium homeostasis in rods and cones. Vis Neurosci 24:733–743

    PubMed Central  PubMed  Google Scholar 

  • Takao-Rikitsu E, Mochida S, Inoue E et al (2004) Physical and functional interaction of the active zone proteins, CAST, RIM1, and Bassoon in neurotransmitter release. J Cell Biol 164:301–311

    PubMed Central  PubMed  CAS  Google Scholar 

  • Taylor WR, Morgans CW (1998) Localization and properties of voltage-gated calcium channels in cone photoreceptors of Tupaia belangeri. Vis Neurosci 15:541–552

    PubMed  CAS  Google Scholar 

  • Thoreson WB, Miller RF (1996) Removal of extracellular chloride suppresses transmitter release from photoreceptor terminals in the mudpuppy retina. J Gen Physiol 107:631–642

    PubMed  CAS  Google Scholar 

  • Thoreson WB, Nitzan R, Miller RF (1997) Reducing extracellular Cl− suppresses dihydropyridine-sensitive Ca2+ currents and synaptic transmission in amphibian photoreceptors. J Neurophysiol 77:2175–2190

    PubMed  CAS  Google Scholar 

  • Thoreson WB, Mitzan R, Miller RF (2000) Chloride efflux inhibits single calcium channel open probability in vertebrate photoreceptors: chloride imaging and cell-attached patch-clamp recordings. Vis Neurosci 17:197–206

    PubMed  CAS  Google Scholar 

  • Thoreson WB, Stella SL Jr, Bryson EL et al (2002) D2-like dopamine receptors promote interactions between calcium and chloride channels that diminish rod synaptic transfer in the salamander retina. Vis Neurosci 19:235–247

    PubMed  Google Scholar 

  • Thoreson WB, Bryson EJ, Rabl K (2003) Reciprocal interactions between calcium and chloride in rod photoreceptors. J Neurophysiol 90:1747–1753

    PubMed  CAS  Google Scholar 

  • Thoreson WB, Rabl K, Townes-Anderson E et al (2004) A highly Ca2+-sensitive pool of vesicles contributes to linearity at the rod photoreceptor ribbon synapse. Neuron 42:595–605

    PubMed Central  PubMed  CAS  Google Scholar 

  • Thoreson WB (2010) The physiology of photoreceptor synapses and other ribbon synapses. In: Hodges R, Dartt D (eds) Encyclopedia of the eye. Elsevier, New York, chap. 155

    Google Scholar 

  • Thoreson WB, Mangel SC (2012) Lateral interactions in the outer retina. Prog Retin Eye Res 31:407–441

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tian M, Xu S, Montpetit R et al (2012) Rab3A mediates vesicle delivery at photoreceptor ribbon synapses. J Neurosci 32:6931–6936

    PubMed Central  PubMed  CAS  Google Scholar 

  • tom Dieck S, Altrock WD, Kessels MM et al (2005) Molecular dissection of the photoreceptor ribbon synapse: physical interaction of Bassoon and RIBEYE is essential for the assembly of the ribbon complex. J Cell Biol 168:825–836

    CAS  Google Scholar 

  • tom Dieck S, Specht D, Strenzke N et al (2012) Deletion of the presynaptic scaffold CAST reduces active zone size in rod photoreceptors and impairs visual processing. J Neurosci 32:12192–12203

    CAS  Google Scholar 

  • Townes-Anderson E, MacLeish PR, Raviola E (1985) Rod cells dissociated from mature salamander retina: ultrastructure and uptake of horseradish peroxidase. J Cell Biol 100:175–188

    PubMed  CAS  Google Scholar 

  • Ullrich B, Südhof TC (2004) Distribution of synaptic markers in the retina: implications for synaptic vesicle traffic in ribbon synapses. J Physiol (Lond) 88:249–257

    Google Scholar 

  • Usukura J, Yamada E (1987) Ultrastructure of the synaptic ribbons in photoreceptor cells of Rana catesbeiana revealed by freeze-etching and freeze substitution. Cell Tissue Res 247:483–488

    PubMed  CAS  Google Scholar 

  • Vaithianathan T, Akmentin W, Henry D et al (2013a) The ribbon-associated protein C-terminal-binding protein 1 is not essential for the structure and function of retinal ribbon synapses. Mol Vis 19:917–926

    PubMed Central  PubMed  CAS  Google Scholar 

  • Vaithianathan T, Zanazzi G, Henry D et al (2013b) Stabilization of spontaneous neurotransmitter release at ribbon synapses by ribbon-specific subtypes of complexin. J Neurosci 33:8216–8226

    PubMed Central  PubMed  CAS  Google Scholar 

  • Van Epps HA, Hayashi M, Lucast L et al (2004) The zebrafish nrc mutant reveals a role for the phosphoinositide phosphatase synaptojanin 1 in cone photoreceptor ribbon anchoring. J Neurosci 24:8641–8650

    PubMed  Google Scholar 

  • Van Hook MJ, Thoreson WB (2012) Rapid synaptic vesicle endocytosis in cone photoreceptors of salamander retina. J Neurosci 32:18112–18123

    PubMed Central  PubMed  Google Scholar 

  • Vessey JP, Stratis AK, Daniels BA et al (2005) Proton-mediated feedback inhibition of presynaptic calcium channels at the cone photoreceptor synapse. J Neurosci 25:4108–4117

    PubMed  CAS  Google Scholar 

  • von Kriegstein K, Schmitz F, Link E et al (1999) Distribution of synaptic vesicle proteins in the mammalian retina identifies obligatory and facultative components of ribbon synapses. Eur J Neurosci 11:1335–1348

    Google Scholar 

  • von Kriegstein K, Schmitz F (2003) The expression pattern and assembly profile of synaptic membrane proteins in ribbon synapses of the developing mouse retina. Cell Tissue Res 311:159–173

    CAS  Google Scholar 

  • Wahlin KJ, Moreira EF, Huang H et al (2008) Molecular dynamics of photoreceptor synapse formation in the developing chick retina. J Comp Neurol 506:822–837

    PubMed  CAS  Google Scholar 

  • Wahl-Schott C, Baumann L, Cuny H et al (2006) Switching off calcium-dependent inactivation in L-type calcium channels by an autoinhibitory domain. Proc Natl Acad Sci USA 103:15657–15662

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wahl S, Katiyar R, Schmitz F (2013) A local, periactive zone endocytic machinery at photoreceptor synapses in close vicinity to synaptic ribbons. J Neurosci 33:10278–10300

    PubMed  CAS  Google Scholar 

  • Wang X, Wang Q, Yang S et al (2011) Impaired activity-dependent plasticity of quantal amplitude at the neuromuscular junction of Rab3A deletion and Rab3A earlybird mutant mice. J Neurosci 31:3580–3588

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wässle H, Regus-Leidig H, Haverkamp S (2006) Expression of the vesicular glutamate transporter vGlut2 in a subset of cones of the mouse retina. J Comp Neurol 496:544–555

    PubMed  Google Scholar 

  • Wilkinson MF, Barnes S (1996) The dihydropyridine-sensitive calcium channel subtype in cone photoreceptors. J Gen Physiol 107:621–630

    PubMed  CAS  Google Scholar 

  • Witkovsky P (2004) Dopamine and retinal function. Doc Ophthalmol 108:17–40

    PubMed  Google Scholar 

  • Wu LG, Ryan TA, Lagnado L (2007) Modes of vesicle retrieval at ribbon synapses, calyx-type synapses and small central synapses. J Neurosci 27:11793–11802

    PubMed  CAS  Google Scholar 

  • Wutz K, Sauer C, Zrenner E et al (2002) Thirty distinct CACNA1F mutations in 33 families with incomplete type of XLCSNB and Cacna1f expression profiling in mouse retina. Eur J Hum Genet 10:449–456

    PubMed  CAS  Google Scholar 

  • Wycsik KA, Budde B, Feil S et al (2006) Structural and functional abnormalities of retinal ribbon synapses due to Cacna2d4 mutation. Invest Ophthalmol Vis Sci 47:3523–3530

    Google Scholar 

  • Xu JW, Slaughter MM (2005) Large-conductance calcium-activated potassium channels facilitate transmitter release in salamander rod synapse. J Neurosci 17:7660–7668

    Google Scholar 

  • Zabouri N, Haverkamp S (2013) Calcium channel-dependent molecular maturation of photoreceptor synapses. PLoS One 8:e63853

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zampighi GA, Schietroma C, Zampighi LM et al (2011) Conical tomography of a ribbon synapse: structural evidence for vesicle fusion. PLoS One 6:e16944

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zenisek D, Matthews G (2000) The role of mitochondria in presynaptic calcium handling at a ribbon synapse. Neuron 25:229–237

    PubMed  CAS  Google Scholar 

  • Zenisek D, Horst NK, Merrifield C et al (2004) Visualizing synaptic ribbons in the living cell. J Neurosci 24:9752–9759

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wallace B. Thoreson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Van Hook, M.J., Thoreson, W.B. (2014). Molecular Mechanisms of Photoreceptor Synaptic Transmission. In: Furukawa, T., Hurley, J., Kawamura, S. (eds) Vertebrate Photoreceptors. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54880-5_7

Download citation

Publish with us

Policies and ethics