Skip to main content

Detecting Neural Activity-Dependent Immediate Early Gene Expression in the Brain

  • Chapter
  • First Online:
Methods in Neuroethological Research

Abstract

In this chapter, we present an in situ hybridization protocol with radioactive probe that has been successfully and easily used on detecting mRNA expression level and patterns, in multiple tissue types and developmental stages. To detect behaviorally regulated, i.e., motor or sensory, mRNA expression of immediate early genes (IEGs) within cells and tissues in vivo, in situ hybridization is a powerful method for discovering neural activity correlations and novel neural structures. Compared with nonradioactive probe methods such as digoxigenin (DIG) labeling, the radioactive probe hybridization method provides a semi-linear relation between signal intensity and targeted mRNA amounts for quantitative analysis. Furthermore, this method allows us high-throughput mRNA expression analysis for 100–200 sides with 400–1,000 tissue sections simultaneously. This method allows identifying the possible significance and function of interested genes in the nervous system under specific behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Burmeister SS, Jarvis ED, Fernald RD (2005) Rapid behavioral and genomic responses to social opportunity. PLoS Biol 3:e363

    Article  PubMed  Google Scholar 

  • Chen CC, Wada K, Jarvis ED (2012) Radioactive in situ hybridization for detecting diverse gene expression patterns in tissue. JVis Exp pii:3764

    Google Scholar 

  • Clayton DF (2000) The genomic action potential. Neurobiol Learn Mem 74:185–216

    Article  PubMed  CAS  Google Scholar 

  • Cole AJ, Saffen DW, Baraban JM, Worley PF (1989) Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature 340:474–476

    Article  PubMed  CAS  Google Scholar 

  • Greenberg ME, Ziff EB, Greene LA (1986) Stimulation of neuronal acetylcholine receptors induces rapid gene transcription. Science 234:80–83

    Article  PubMed  CAS  Google Scholar 

  • Guzowski JF, McNaughton BL, Barnes CA, Worley PF (1999) Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nat Neurosci 2:1120–1124

    Article  PubMed  CAS  Google Scholar 

  • Haesler S, Wada K, Nshdejan A, Morrisey EE, Lints T, Jarvis ED, Scharff C (2004) FoxP2 expression in avian vocal learners and non-learners. J Neurosci 24:3164–3175

    Article  PubMed  CAS  Google Scholar 

  • Horita H, Wada K, Rivas MV, Hara E, Jarvis ED (2010) The dusp1 immediate early gene is regulated by natural stimuli predominantly in sensory input neurons. J Comp Neurol 518:2873–2901

    PubMed  CAS  Google Scholar 

  • Jarvis ED, Nottebohm F (1997) Motor-driven gene expression. Proc Natl Acad Sci USA 94:4097–4102

    Article  PubMed  CAS  Google Scholar 

  • Jarvis ED, Ribeiro S, da Silva ML, Ventura D, Vielliard J, Mello CV (2000) Behaviourally driven gene expression reveals song nuclei in hummingbird brain. Nature 406:628–632

    Article  PubMed  CAS  Google Scholar 

  • Jarvis ED, Scharff C, Grossman MR, Ramos JA, Nottebohm F (1998) For whom the bird sings: context-dependent gene expression. Neuron 21:775–788

    Article  PubMed  CAS  Google Scholar 

  • Jarvis ED, Schwabl H, Ribeiro S, Mello CV (1997) Brain gene regulation by territorial singing behavior in freely ranging songbirds. Neuroreport 8:2073–2077

    Article  PubMed  CAS  Google Scholar 

  • Kiya T, Kunieda T, Kubo T (2007) Increased neural activity of a mushroom body neuron subtype in the brains of forager honeybees. PLoS One 2:e371

    Article  PubMed  Google Scholar 

  • Loebrich S, Nedivi E (2009) The function of activity-regulated genes in the nervous system. Physiol Rev 89:1079–1103

    Article  PubMed  CAS  Google Scholar 

  • Mello CV, Clayton DF (1994) Song-induced ZENK gene expression in auditory pathways of songbird brain and its relation to the song control system. J Neurosci 14:6652–6666

    PubMed  CAS  Google Scholar 

  • Mello CV, Vicario DS, Clayton DF (1992) Song presentation induces gene expression in the songbird forebrain. Proc Natl Acad Sci USA 89:6818–6822

    Article  PubMed  CAS  Google Scholar 

  • Mouritsen H, Feenders G, Liedvogel M, Wada K, Jarvis ED (2005) Night-vision brain area in migratory songbirds. Proc Natl Acad Sci USA 102:8339–8344

    Article  PubMed  CAS  Google Scholar 

  • Saffen DW, Cole AJ, Worley PF, Christy BA, Ryder K, Baraban JM (1988) Convulsant-induced increase in transcription factor messenger RNAs in rat brain. Proc Natl Acad Sci USA 85:7795–7799

    Article  PubMed  CAS  Google Scholar 

  • Steward O, Wallace CS, Lyford GL, Worley PF (1998) Synaptic activation causes the mRNA for the IEG Arc to localize selectively near activated postsynaptic sites on dendrites. Neuron 21:741–751

    Article  PubMed  CAS  Google Scholar 

  • Wada K, Howard JT, McConnell P, Whitney O, Lints T, Rivas MV, Horita H, Patterson MA, White SA, Scharff C et al (2006) A molecular neuroethological approach for identifying and characterizing a cascade of behaviorally regulated genes. Proc Natl Acad Sci USA 103:15212–15217

    Article  PubMed  CAS  Google Scholar 

  • Worley PF, Baraban JM, Snyder SH (1987) Beyond receptors: multiple second-messenger systems in brain. Ann Neurol 21:217–229

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Wada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer

About this chapter

Cite this chapter

Wada, K., Chen, CC., Jarvis, E.D. (2013). Detecting Neural Activity-Dependent Immediate Early Gene Expression in the Brain. In: Ogawa, H., Oka, K. (eds) Methods in Neuroethological Research. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54331-2_9

Download citation

Publish with us

Policies and ethics