Skip to main content

Experimental Models of Head Trauma

  • Conference paper
Research and Publishing in Neurosurgery

Part of the book series: Acta Neurochirurgica Supplements ((NEUROCHIRURGICA,volume 83))

Summary

Traumatic brain injury is one of the most common causes for chronic disability in young people. Despite this there are currently no widely available modes of therapy that would limit the extent of brain damage secondary to trauma. Therefore, new insights into the pathological mechanisms involved in head trauma possibly leading to the identification of new therapeutic targets are urgently needed. In order to attain these goals adequate animal models for traumatic brain injury are needed. In the following paper the authors will review the various animal models for head trauma and emphasize their potential strengths and weaknesses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adelson PD, Dixon CE, Robichaud P, Kochanek PM (1997) Motor and cognitive functional deficits following diffuse traumatic brain injury in the immature rat. J Neurotrauma 14: 99–108.

    Article  PubMed  CAS  Google Scholar 

  2. Adelson PD, Robichaud P, Hamilton RL, Kochanek PM (1996) A model of diffuse traumatic brain injury in the immature rat. J Neurosurg 85: 877–884.

    Article  PubMed  CAS  Google Scholar 

  3. Albensi BC, Knoblach SM, Chew BG, O’Reilly MP, Faden AI, Pekar JJ (2000) Diffusion and high resolution MRI of traumatic brain injury in rats: time course and correlation with histology. Exp Neurol 162: 61–72.

    Article  PubMed  CAS  Google Scholar 

  4. Assaf Y, Holokovsky A, Berman E, Shapira Y, Shohami E, Cohen Y (1999) Diffusion and perfusion magnetic resonance imaging following closed head injury in rats. J Neurotrauma 16: 1165–1176.

    Article  PubMed  CAS  Google Scholar 

  5. Baskaya MK, Dogan A, Temiz C, Dempsey RJ (2000) Application of 2,3,5-triphenyltetrazolium chloride staining to evaluate injury volume after controlled cortical impact brain injury: role of brain edema in evolution of injury volume. J Neurotrauma 17: 93–99.

    Article  PubMed  CAS  Google Scholar 

  6. Belayev L, Alonso OF, Huh PW, Zhao W, Busto R, Ginsberg MD (1999) Posttreatment with high-dose albumin reduces his- topathological damage and improves neurological deficit following fluid percussion brain injury in rats. J Neurotrauma 16: 445–453.

    Article  PubMed  CAS  Google Scholar 

  7. Beni Adani L, Gozes I, Cohen Y, Assaf Y, Steingart RA, Bren- neman DE, Eizenberg O, Trembolver V, Shohami E (2001) A peptide derived from activity-dependent neuroprotective protein (ADNP) ameliorates injury response in closed head injury in mice. J Pharmacol Exp Ther 296: 57–63.

    PubMed  CAS  Google Scholar 

  8. Carbonell WS, Grady MS (1999) Regional and temporal characterization of neuronal, glial, and axonal response after traumatic brain injury in the mouse. Acta Neuropathol (Berl) 98: 396–406.

    Article  CAS  Google Scholar 

  9. Carbonell WS, Maris DO, McCall T, Grady MS (1998) Adaptation of the fluid percussion injury model to the mouse. J Neurotrauma 15: 217–229.

    Article  PubMed  CAS  Google Scholar 

  10. Cecil KM, Lenkinski RE, Meaney DF, Mcintosh TK, Smith DH (1998) High-field proton magnetic resonance spectroscopy of a swine model for axonal injury. J Neurochem 70: 2038–2044.

    Article  PubMed  CAS  Google Scholar 

  11. Chen Y, Constantini S, Trembovler V, Weinstock M, Shohami E (1996) An experimental model of closed head injury in mice: pathophysiology, histopathology, and cognitive deficits. J Neurotrauma 13: 557–568.

    Article  PubMed  CAS  Google Scholar 

  12. Chen Y, Lomnitski L, Michaelson DM, Shohami E (1997) Motor and cognitive deficits in apolipoprotein E-deficient mice after closed head injury. Neuroscience 80: 1255–1262.

    Article  PubMed  CAS  Google Scholar 

  13. Darby JM, Nemoto EM, Yonas H, Yao L, Melick JA, Boston JR (1993) Local cerebral blood flow measured by xenon- enhanced CT during cryogenic brain edema and intracranial hypertension in monkeys. J Cereb Blood Flow Metab 13: 763–772.

    Article  PubMed  CAS  Google Scholar 

  14. Dietrich WD, Alonso O, Busto R, Ginsberg MD (1994) Widespread metabolic depression and reduced somatosensory circuit activation following traumatic brain injury in rats. J Neuro- trauma 11: 629–640.

    CAS  Google Scholar 

  15. Dixon CE, Clifton GL, Lighthall JW, Yaghmai AA, Hayes RL (1991) A controlled cortical impact model of traumatic brain injury in the rat. J Neurosci Method 39: 253–262.

    Article  CAS  Google Scholar 

  16. Dixon CE, Kochanek PM, Yan HQ, Schiding JK, Griffith RG, Baum E, Marion DW, DeKosky ST (1999) One-year study of spatial memory performance, brain morphology, and cholinergic markers after moderate controlled cortical impact in rats. J Neurotrauma 16: 109–122.

    Article  PubMed  CAS  Google Scholar 

  17. Dixon CE, Lighthall JW, Anderson TE (1988) Physiologic, histopathologic, and cineradiographic characterization of a new fluid-percussion model of experimental brain injury in the rat. J Neurotrauma 5: 91–104.

    Article  PubMed  CAS  Google Scholar 

  18. Dixon CE, Lyeth BG, Povlishock JT, Findling RL, Hamm RJ, Marmarou A, Young HF, Hayes RL (1987) A fluid percussion model of experimental brain injury in the rat. J Neurosurg 67: 110–119.

    Article  PubMed  CAS  Google Scholar 

  19. Foda MA, Marmarou A (1994) A new model of diffuse brain injury in rats. Part II: morphological characterization. J Neurosurg 80: 301–313.

    CAS  Google Scholar 

  20. Fox GB, Faden AI (1998) Traumatic brain injury causes delayed motor and cognitive impairment in a mutant mouse strain known to exhibit delayed Wallerian degeneration. J Neurosci Res 53:718–727.

    Article  PubMed  CAS  Google Scholar 

  21. Fox GB, Fan L, LeVasseur RA, Faden AI (1998) Effect of traumatic brain injury on mouse spatial and nonspatial learning in the Barnes circular maze. J Neurotrauma 15: 1037–1046.

    Article  PubMed  CAS  Google Scholar 

  22. Fox GB, Fan L, Levasseur RA, Faden AI (1998) Sustained sensory/motor and cognitive deficits with neuronal apoptosis following controlled cortical impact brain injury in the mouse. J Neurotrauma 15: 599–614.

    Article  PubMed  CAS  Google Scholar 

  23. Genis L, Chen Y, Shohami E, Michaelson DM (2000) Tau hy- perphosphorylation in apolipoprotein E-deficient and control mice after closed head injury. J Neurosci Res 60: 559–564.

    Article  PubMed  CAS  Google Scholar 

  24. Graham DI, Mcintosh TK, Maxwell WL, Nicoll JA (2000) Recent advances in neurotrauma. J Neuropathol Exp Neurol 59: 641–651.

    PubMed  CAS  Google Scholar 

  25. Graham DI, Raghupathi R, Saatman KE, Meaney D, Mcintosh TK (2000) Tissue tears in the white matter after lateral fluid percussion brain injury in the rat: relevance to human brain injury. Acta Neuropathol (Berl) 99: 117–124.

    Article  CAS  Google Scholar 

  26. Hard R, Schurer L, Goetz C, Berger S, Rohrich F, Baethmann A (1995) The effect of hypertonic fluid resuscitation on brain edema in rabbits subjected to brain injury and hemorrhagic shock. Shock 3: 274–279.

    Article  Google Scholar 

  27. Hermann DM, Mies G, Hossmann KA (1998) Effects of a traumatic neocortical lesion on cerebral metabolism and gene expression of rats. Neuroreport 9: 1917–1921.

    Article  PubMed  CAS  Google Scholar 

  28. Husz T, Joo F, Antal A, Toldi J (1992) Late consequences of cryogenic brain lesion in rat; an electrophysiological study. Neuroreport 3: 51–54.

    Article  PubMed  CAS  Google Scholar 

  29. James HE, Schneider S (1990) Cryogenic brain oedema: loss of cerebrovascular autoregulation as a cause of intracranial hypertension. Implications for treatment. Acta Neurochir (Wien) [Suppl]83 5179–5181.

    Google Scholar 

  30. Kochanek PM, Marion DW, Zhang W, Schiding JK, White M, Palmer AM, Clark RS, O’Malley ME, Styren SD, Ho C et al (1995) Severe controlled cortical impact in rats: assessment of cerebral edema, blood flow, and contusion volume. J Neurotrauma 12:1015–1025.

    Article  PubMed  CAS  Google Scholar 

  31. Laurer HL, Mcintosh TK (1999) Experimental models of brain trauma. Curr Opin Neurol 12: 715–721.

    Article  PubMed  CAS  Google Scholar 

  32. Lighthall JW (1988) Controlled cortical impact: a new experimental brain injury model. J Neurotrauma 5: 1–15.

    Article  PubMed  CAS  Google Scholar 

  33. Lindgren S, Rinder L (1969) Production and distribution of intracranial and intraspinal pressure changes at sudden extradural fluid volume input in rabbits. Acta Physiol Scand 76: 340–351.

    Article  PubMed  CAS  Google Scholar 

  34. Maeda M, Akai F, Yanagihara T (1997) Neuronal integrity and astrocytic reaction in cold injury: an immunohistochemical investigation. Acta Neuropathol (Berl) 94: 116–123.

    Article  CAS  Google Scholar 

  35. Marmarou A, Foda MA, van den Brink W, Campbell J, Kita H, Demetriadou K (1994) A new model of diffuse brain injury in rats. Part I: Pathophysiology and biomechanics. J Neurosurg 80: 291–300.

    CAS  Google Scholar 

  36. Mautes AE, Thome D, Steudel WI, Nacimiento AC, Yang Y, Shohami E (2001) Changes in regional energy metabolism after closed head injury in the rat. J Mol Neurosci 16: 33–39.

    Article  PubMed  CAS  Google Scholar 

  37. McGowan JC, McCormack TM, Grossman RI, Mendonca R, Chen XH, Berlin JA, Meaney DF, Xu BN, Cecil KM, Mcintosh TK, Smith DH (1999) Diffuse axonal pathology detected with magnetization transfer imaging following brain injury in the pig. Magn Reson Med 41: 727–733.

    Article  PubMed  CAS  Google Scholar 

  38. Mcintosh TK, Juhler M, Wieloch T (1998) Novel pharmacologic strategies in the treatment of experimental traumatic brain injury. J Neurotrauma 15: 731–769.

    Article  PubMed  CAS  Google Scholar 

  39. Mcintosh TK, Saatman KE, Raghupathi R, Graham DI, Smith DH, Lee VM, Trojanowski JQ (1998) The Dorothy Russell Memorial Lecture. The molecular and cellular sequelae of experimental traumatic brain injury: pathogenetic mechanisms. Neuropathol Appl Neurobiol 24: 251–267.

    CAS  Google Scholar 

  40. Millen JE, Glauser FL, Fairman RP (1985) A comparison of physiological responses to percussive brain trauma in dogs and sheep. J Neurosurg 62: 587–591.

    Article  PubMed  CAS  Google Scholar 

  41. Morehead M, Bartus RT, Dean RL, Miotke JA, Murphy S, Sail J, Goldman H (1994) Histopathologic consequences of moderate concussion in an animal model: correlations with duration of unconsciousness. J Neurotrauma 11: 657–667.

    Article  PubMed  CAS  Google Scholar 

  42. Morita Fujimura Y, Fujimura M, Kawase M, Chan PH (1999) Early decrease in apurinic/apyrimidinic endonuclease is followed by DNA fragmentation after cold injury-induced brain trauma in mice. Neuroscience 93: 1465–1473.

    Article  Google Scholar 

  43. Morrison B 3rd, Saatman KE, Meaney DF, Mcintosh TK (1998) In vitro central nervous system models of mechanically induced trauma: a review. J Neurotrauma 15: 911–928.

    Article  PubMed  Google Scholar 

  44. Murakami K, Kondo T, Yang G, Chen SF, Morita Fujimura Y, Chan PH (1999) Cold injury in mice: a model to study mechanisms of brain edema and neuronal apoptosis. Prog Neurobiol 57: 289–299.

    Article  PubMed  CAS  Google Scholar 

  45. Nag S (1996) Cold-injury of the cerebral cortex: immunolocali- zation of cellular proteins and blood-brain barrier permeability studies. J Neuropathol Exp Neurol 55: 880–888.

    PubMed  CAS  Google Scholar 

  46. Pfenninger EG, Reith A, Breitig D, Grunert A, Ahnefeld FW (1989) Early changes of intracranial pressure, perfusion pressure, and blood flow after acute head injury. Part 1: an experimental study of the underlying pathophysiology. J Neurosurg 70: 774–779.

    Article  PubMed  CAS  Google Scholar 

  47. Povlishock JT, Hayes RL, Michel ME, Mcintosh TK (1994) Workshop on animal models of traumatic brain injury. J Neurotrauma 11: 723–732.

    Article  PubMed  CAS  Google Scholar 

  48. Raghupathi R, Mcintosh TK (1998) Pharmacotherapy for traumatic brain injury: a review. Proc West Pharmacol Soc 41: 241–246.

    PubMed  CAS  Google Scholar 

  49. Sabo T, Lomnitski L, Nyska A, Beni S, Maronpot RR, Shohami E, Roses AD, Michaelson DM (2000) Susceptibility of transgenic mice expressing human apolipoprotein E to closed head injury: the allele E3 is neuroprotective whereas E4 increases fatalities. Neuroscience 101: 879–884.

    Article  PubMed  CAS  Google Scholar 

  50. Schneider GH, Hennig S, Lanksch WR, Unterberg A (1994) Dynamics of posttraumatic brain swelling following a cryogenic injury in rats. Acta Neurochir (Wien) [Suppl] 60437–60439.

    Google Scholar 

  51. Shapira Y, Shohami E, Sidi A, Soffer D, Freeman S, Cotev S (1988) Experimental closed head injury in rats: mechanical, pathophysiologic, and neurologic properties. Crit Care Med 16: 258–265.

    Article  PubMed  CAS  Google Scholar 

  52. Shohami E, Gallily R, Mechoulam R, Bass R, Ben-Hur T (1997) Cytokine production in the brain following closed head injury: dexanabinol (HU-211) is a novel TNF-alpha inhibitor and an effective neuroprotectant. J Neuroimmunol 72: 169–177.

    Article  PubMed  CAS  Google Scholar 

  53. Shohami E, Kaufer D, Chen Y, Seidman S, Cohen O, Ginzberg D, Melamed-Book N, Yirmiya R, Soreq H (2000) Antisense prevention of neuronal damages following head injury in mice. J Mol Med 78: 228–236.

    Article  PubMed  CAS  Google Scholar 

  54. Shohami E, Novikov M, Bass R (1995) Long-term effect of HU- 211, a novel non-competitive NMDA antagonist, on motor and memory functions after closed head injury in the rat. Brain Res 674: 55–62.

    Article  PubMed  CAS  Google Scholar 

  55. Shohami E, Shapira Y, Cotev S (1988) Experimental closed head injury in rats: prostaglandin production in a noninjured zone. Neurosurgery 22: 859–863.

    Article  PubMed  CAS  Google Scholar 

  56. Shreiber DI, Bain AC, Ross DT, Smith DH, Gennarelli TA, Mcintosh TK, Meaney DF (1999) Experimental investigation of cerebral contusion: histopathological and immunohistochemical evaluation of dynamic cortical deformation. J Neuropathol Exp Neurol 58: 153–164.

    Article  PubMed  CAS  Google Scholar 

  57. Sinson G, Perri BR, Trojanowski JQ, Flamm ES, Mcintosh TK (1997) Improvement of cognitive deficits and decreased cholinergic neuronal cell loss and apoptotic cell death following neurotrophin infusion after experimental traumatic brain injury. J Neurosurg 86: 511–518.

    Article  PubMed  CAS  Google Scholar 

  58. Siren AL, Knerlich F, Schilling L, Kamrowski Kruck H, Hahn A, Ehrenreich H (2000) Differential glial and vascular expression of endothelins and their receptors in rat brain after neuro- trauma. Neurochem Res 25: 957–969.

    Article  PubMed  CAS  Google Scholar 

  59. Smith DH, Cecil KM, Meaney DF, Chen XH, Mcintosh TK, Gennarelli TA, Lenkinski RE (1998) Magnetic resonance spectroscopy of diffuse brain trauma in the pig. J Neurotrauma 15: 665–674.

    Article  PubMed  CAS  Google Scholar 

  60. Smith DH, Chen XH, Xu BN, Mcintosh TK, Gennarelli TA, Meaney DF (1997) Characterization of diffuse axonal pathology and selective hippocampal damage following inertial brain trauma in the pig. J Neuropathol Exp Neurol 56: 822–834.

    PubMed  CAS  Google Scholar 

  61. Smith DH, Soares HD, Pierce JS, Perlman KG, Saatman KE, Meaney DF, Dixon CE, Mcintosh TK (1995) A model of parasagittal controlled cortical impact in the mouse: cognitive and histopathologic effects. J Neurotrauma 12: 169–178.

    Article  PubMed  CAS  Google Scholar 

  62. Sosin DM, Sniezek JE, Waxweiler RJ (1995) Trends in death associated with traumatic brain injury, 1979 through 1992. Success and failure. Jama 273: 1778–1180.

    Article  Google Scholar 

  63. Stahel PF, Shohami E, Younis FM, Kariya K, Otto VI, Lenzlinger PM, Grosjean MB, Eugster HP, Trentz O, Kossmann T, Morganti-Kossmann MC (2000) Experimental closed head injury: analysis of neurological outcome, blood-brain barrier dysfunction, intracranial neutrophil infiltration, and neuronal cell death in mice deficient in genes for pro-inflammatory cytokines. J Cereb Blood Flow Metab 20: 369–380.

    Article  PubMed  CAS  Google Scholar 

  64. Sullivan HG, Martinez J, Becker DP, Miller JD, Griffith R, Wist AO (1976) Fluid-percussion model of mechanical brain injury in the cat. J Neurosurg 45: 521–534.

    PubMed  CAS  Google Scholar 

  65. Todd MM, Weeks JB, Warner DS (1993) A focal cryogenic brain lesion does not reduce the minimum alveolar concentration for halothane in rats. Anesthesiology 79: 139–143.

    Article  PubMed  CAS  Google Scholar 

  66. Vinas FC, Dujovny M, Hodgkinson D (1995) Early hemodynamic changes at the microcirculatory level and effects of man- nitol following focal cryogenic injury. Neurol-Res 17: 465–468.

    PubMed  CAS  Google Scholar 

  67. Waxweiler RJ, Thurman D, Sniezek J, Sosin D, O’Neil J (1995) Monitoring the impact of traumatic brain injury: a review and update. J Neurotrauma 12: 509–516.

    Article  PubMed  CAS  Google Scholar 

  68. Wilson JT, Gross CE, Bednar MM, Shackford SR (1995) U83836E reduces secondary brain injury in a rabbit model of cryogenic trauma. J Trauma 39: 473–477.

    Article  PubMed  CAS  Google Scholar 

  69. Yamamura H, Hiraide A, Matsuoka T, Tanaka H, Shimazu T, Sugimoto H (2000) Effect of growth hormone on brain oedema caused by a cryogenic brain injury model in rats. Brain Inj 14: 669–676.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag/Wien

About this paper

Cite this paper

Leker, R.R., Shohami, E., Constantini, S. (2002). Experimental Models of Head Trauma. In: Kanpolat, Y. (eds) Research and Publishing in Neurosurgery. Acta Neurochirurgica Supplements, vol 83. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6743-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6743-4_9

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7399-2

  • Online ISBN: 978-3-7091-6743-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics