Skip to main content

Neurotoxicity but not infectivity of prion proteins can be induced reversibly in vitro

  • Chapter
Prion Diseases

Part of the book series: Archives of Virology. Supplementa ((ARCHIVES SUPPL,volume 16))

Summary

Prion diseases include Creutzfeldt-Jakob disease in humans, scrapie in sheep and bovine spongiform encephalopathy. The hallmark of prion diseases is the accumulation of an abnormal isoform (PrPSc) of the cellular prion protein accompanied by neuronal cell death and astroglial proliferation. To characterize the correlation between PrP secondary and quarternary structure and their biological effects we assayed soluble and aggregated forms of PrP 27–30, the N-terminal truncated form of PrPSc, as well as the corresponding recombinant PrP(90–231) for their neurotoxicity and infectivity. PrP was kept soluble in 0.2% SDS and subsequently reaggregated either by diluting the SDS or by adding acetonitril. The neurotoxicity of the re-aggregated states were comparable to that of prion rods (PrP 27–30) whereas the soluble forms had no neurotoxic effects. The solubilized PrP 27–30 showed no significant infection upon re-aggregation as determined by bioassays in Syrian golden hamsters. The recombinant PrP did not exhibit infectivity in any state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown DR (2000) Neuronal release of vasoactive intestinal peptide is important to astrocytic protection of neurons from glutamate toxicity. Mol Cell Neurosci 15: 465–475

    Article  PubMed  CAS  Google Scholar 

  2. Brown DR, Pitschke M, Riesner D, Kretzschmar H (1998) Cellular effects of a neurotoxic prion protein peptide are related to its ß-sheet content. Neurosci Res Commun 23: 119–128

    Article  CAS  Google Scholar 

  3. Brown DR, Qin K, Herms JW, Madlung A, Manson J, Strome R, Fraser PE, Kruck T, von-Bohlen A, Schulz-Schaeffer W, Giese A, Westaway D, Kretzschmar H (1997) The cellular prion protein binds copper in vivo. Nature 39: 684–687

    Google Scholar 

  4. Brown DR, Schmidt B, Kretzschmar HA (1996) A neurotoxic prion protein fragment enhances proliferation of microglia but not astrocytes in culture. Glia 18: 59–67

    Article  PubMed  CAS  Google Scholar 

  5. Brown DR, Schmidt B, Kretzschmar HA (1996) Role of microglia and host prion protein in neurotoxicity of prion protein fragment. Nature 380: 345–347

    Article  PubMed  CAS  Google Scholar 

  6. Forloni G, Angretti N, Chiesa R, Monzani E, Samona M, Bugiani O, Tagliavini F (1993) Neurotoxicity of a prion protein fragment. Nature 362: 543–546

    Article  PubMed  CAS  Google Scholar 

  7. Forloni G, Tagliavini F, Bugiani O, Salmona M (1996) Amyloid in Alzheimer’s disease and prion-related encephalopathies: studies with synthetic peptides. Progr Neurobiol 49: 287–315

    CAS  Google Scholar 

  8. Giese A, Brown DR, Groschup MH, Feldmann C, Haist I, Kretzschmar HA (1998) Role of microglia in neuronal cell death in prion disease. Brain Pathol 8: 449–457

    Article  PubMed  CAS  Google Scholar 

  9. Hill AF, Antoniou M, Collinge J (1999) Protease-resistant prion protein in vitro lacks detectable infectivity. J Gen Virol 80: 11–14

    PubMed  CAS  Google Scholar 

  10. Kaneko K, Peretz D, Pan K-M, Blochberger TC, Wille H, Gabizon R, Griffith OH, Cohen F, Balwin MA, Prusiner SB (1995) Prion protein (PrP) synthetic peptide induce cellular PrP to acquire properties of the scrapie isoform. Proc Natl Acad Aci USA 92: 11160–11164

    Article  CAS  Google Scholar 

  11. Kaneko K, Wille H, Mehlhorn I, Zhang H, Ball H, Cohen FE, Baldwin MA, Prusiner SB (1997a) Molecular properties of complexes formed between the prion protein and synthetic peptides. J Mol Biol 270: 547–586

    Article  Google Scholar 

  12. Kocisko DA, Come JH, Priola SA, Chesebro B, Raymond GJ, Lansbury PT, Caughey B (1994) Cell-free formation of protease-resistant prion protein. Nature 370: 471–474

    Article  PubMed  CAS  Google Scholar 

  13. Mehlhorn I, Groth D, Stöckel J, Moffat B, Reilly D, Yansuro D, Willet WS, Baldwin M, Fletterick R, Cohen FE, Vandlen R, Henner D, Prusiner SB (1996) High-level expression and characterisation of a purified 142-residue polypeptide of the prion protein. Biochemistry 35: 5528–5537

    Article  PubMed  CAS  Google Scholar 

  14. Post K, Pitschke M, Schäfer O, Wille H, Appel TR, Kirsch D, Mehlhorn I, Serban H, Prusiner SB, Riesner D (1998) Rapid acquisition of ß-sheet structure in the prion protein prior to multimer formation. J Biol Chem 379: 1307–1317

    CAS  Google Scholar 

  15. Prusiner SB (1991) Molecular biology of prion diseases. Science 252: 1515–1522

    Article  PubMed  CAS  Google Scholar 

  16. Prusiner SB, Cochran SP, Groth DF, Downey DE, Bowman KA, Martinez HM (1982) Measurement of the scrapie agent using an incubation time interval assay. Ann Neurol 11: 353–358

    Article  PubMed  CAS  Google Scholar 

  17. Prusiner SB, Mc Kinley MP, Bowman KA, Bolton DC, Bendheim PE, Grothe DF, Glenner GG (1983) Scrapie prions aggregate to form amyloid-like birefringent rods. Cell 35: 349–358

    Article  PubMed  CAS  Google Scholar 

  18. Riesner D, Kellings K, Post K, Wille H, Serban H, Groth D, Baldwin MB, Prusiner SB (1996) Disruption of prion rods generate 10-nm spherical particles having high α-helical content and lacking scrapie infectivity. J Virol 70: 1714–1722

    PubMed  CAS  Google Scholar 

  19. Stege GJJ, Renkawek K, Overkamp PSG, Verschuure P, van Rijk AF, Reijnen-Aalbers A, Boelens WC, Bosman GJGM, DeJong WW (1999) The molecular chaperone α-crystallin enhances amyloid ß neurotoxicity. Biochem Biophys Res Commun 262: 152–156

    Article  PubMed  CAS  Google Scholar 

  20. Walsh DM, Hartley DM, Kusumoto Y, Fezoui Y, Condron MM, Lomakin A, Bendek GB, Selkoe DJ, Teplow DB (1999) Amyloid ß-protein fibrillogenesis. J Biol Chem 274: 25945–25952

    Article  PubMed  CAS  Google Scholar 

  21. Wille H, Zhang G-F, Baldwin MA, Cohen FE, Prusiner SB (1996) Separation of scrapie prion infectivity from PrP amyloid polymers. J Mol Biol 259: 608–621

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Wien

About this chapter

Cite this chapter

Post, K., Brown, D.R., Groschup, M., Kretzschmar, H.A., Riesner, D. (2000). Neurotoxicity but not infectivity of prion proteins can be induced reversibly in vitro. In: Groschup, M.H., Kretzschmar, H.A. (eds) Prion Diseases. Archives of Virology. Supplementa, vol 16. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6308-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6308-5_25

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83529-6

  • Online ISBN: 978-3-7091-6308-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics