Skip to main content

Membrane Channels Formed by Ceramide

  • Chapter
  • First Online:
Sphingolipids: Basic Science and Drug Development

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 215))

Abstract

The sphingolipid, ceramide, forms channels in the mitochondrial outer membrane and in lipid membranes composed of only phospholipid/cholesterol, using lipids typically found in the natural membrane. These channels are large, allowing proteins to cross membranes. Experimental results are consistent with ceramide forming barrel-stave channels that are rigid and highly organized. Bcl-2 family proteins control these channels in a manner expected from their physiological function: anti-apoptotic proteins destabilize the channels whereas pro-apoptotic proteins act synergistically with ceramide to increase membrane permeability. The use of ceramide analogs has allowed one to gain insight into the features of the molecule that are most important for channel formation. These analogs have also been useful in identifying the sites of interaction between ceramide and both Bax and Bcl-xL. The pores formed in phospholipid membranes by ceramide were visualized by electron microscopy. The most common pore size was 10 nm in diameter, consistent with results obtained from electrophysiological recordings. All indications point to a role for ceramide channels in the release of proteins from mitochondria, a key decision-making step in the apoptotic process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anishkin A, Sukharev S, Colombini M (2006) Searching for the molecular arrangement of transmembrane ceramide channels. Biophys J 90:2414–2426

    Article  PubMed  CAS  Google Scholar 

  • Birbes H, El Bawab S, Hannun YA, Obeid LM (2001) Selective hydrolysis of a mitochondrial pool of sphingomyelin induces apoptosis. FASEB J 15:2669–2679

    Article  PubMed  CAS  Google Scholar 

  • Birbes H, Luberto C, Hsu YT, El Bawab S, Hannun YA, Obeid LM (2005) A mitochondrial pool of sphingomyelin is involved in TNFalpha-induced Bax translocation to mitochondria. Biochem J 386:445–451

    Article  PubMed  CAS  Google Scholar 

  • Colombini M (2010) Ceramide channels and their role in mitochondria-mediated apoptosis. Biochim Biophys Acta 1797:1239–1244

    Article  PubMed  CAS  Google Scholar 

  • Dai Q, Liu J, Chen J, Durrant D, McIntyre TM, Lee RM (2004) Mitochondrial ceramide increases in UV-irradiated HeLa cells and is mainly derived from hydrolysis of sphingomyelin. Oncogene 23:3650–3658

    Article  PubMed  CAS  Google Scholar 

  • Deng X, Yin X, Allan R, Lu DD, Maurer CW, Haimovitz-Friedman A, Fuks Z, Shaham S, Kolesnick R (2008) Ceramide biogenesis is required for radiation-induced apoptosis in the germ line of C. elegans. Science 322:110–115

    Article  PubMed  CAS  Google Scholar 

  • Di Paola M, Cocco T, Lorusso M (2000) Ceramide interaction with the respiratory chain of heart mitochondria. Biochemistry 39:6660–6668

    Article  PubMed  Google Scholar 

  • Di Paola M, Zaccagnino P, Montedoro G, Cocco T, Lorusso M (2004) Ceramide induces release of pro-apoptotic proteins from mitochondria by either a Ca2+-dependent or a Ca2+-independent mechanism. J Bioenerg Biomembr 36:165–170

    Article  PubMed  Google Scholar 

  • Elrick MJ, Fluss S, Colombini M (2006) Sphingosine, a product of ceramide hydrolysis by ceramidase, disassembles ceramide channels. Biophys J 91:1749–1756

    Article  PubMed  CAS  Google Scholar 

  • Ganesan V, Perera MN, Colombini D, Datskovskiy D, Chadha K, Colombini M (2010) Ceramide and activated Bax act synergistically to permeabilize the mitochondrial outer membrane. Apoptosis 15:553–562

    Article  PubMed  CAS  Google Scholar 

  • Ganesan V, Samanta S, Colombini M (2011) Effect of ionic strength on Bax:tBID mediated mitochondrial outer membrane permeabilization (MOMP). Biophys J 100:43a

    Article  Google Scholar 

  • Garcia-Ruiz C, Colell A, Mari M, Morales A, Fernandez-Checa JC (1997) Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione. J Biol Chem 272:11369–11377

    Article  PubMed  CAS  Google Scholar 

  • Ghafourifar P, Klein SD, Schucht O, Schenk U, Pruschy M, Rocha S, Richter C (1999) Ceramide induces cytochrome c release from isolated mitochondria. Importance of mitochondrial redox state. J Biol Chem 274:6080–6084

    Article  PubMed  CAS  Google Scholar 

  • Kashkar H, Wiegmann K, Yazdanpanah B, Haubert D, Krönke M (2005) Acid sphingomyelinase is indispensable for UV light-induced Bax conformational change at the mitochondrial membrane. J Biol Chem 280:20804–20813

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Rotolo JA, Mesicek J, Penate-Medina T, Rimner A, Liao WC, Yin X, Ragupathi G, Ehleiter D, Gulbins E, Zhai D, Reed JC, Haimovitz-Friedman A, Fuks Z, Kolesnick R (2011) Mitochondrial ceramide-rich macrodomains functionalize Bax upon irradiation. PLoS One 6(6):e19783

    Article  PubMed  CAS  Google Scholar 

  • Matsko CM, Hunter OC, Rabinowich H, Lotze MT, Amoscato AA (2001) Mitochondrial lipid alterations during Fas- and radiation-induced apoptosis. Biochem Biophys Res Commun 287:1112–1120

    Article  PubMed  CAS  Google Scholar 

  • Montes LR, Ruiz-Arguello MB, Goni FM, Alonso A (2002) Membrane restructuring via ceramide results in enhanced solute efflux. J Biol Chem 277:11788–11794

    Article  PubMed  CAS  Google Scholar 

  • Muñoz-Pinedo C, Guío-Carrión A, Goldstein JC, Fitzgerald P, Newmeyer DD, Green DR (2006) Different mitochondrial intermembrane space proteins are released during apoptosis in a manner that is coordinately initiated but can vary in duration. Proc Natl Acad Sci U S A 103:11573–11578

    Article  PubMed  Google Scholar 

  • Pajewski R, Djedovic N, Harder E, Ferdani R, Schlesinger PH, Gokel GW (2005) Pore formation in and enlargement of phospholipid liposomes by synthetic models of ceramides and sphingomyelin. Bioorg Med Chem 13:29–37

    Article  PubMed  CAS  Google Scholar 

  • Pastorino JG, Tafani M, Rothman RJ, Marcinkeviciute A, Hoek JB, Farber JL (1999) Functional consequences of the sustained or transient activation by Bax of the mitochondrial permeability transition pore. J Biol Chem 274:31734–31739

    Article  PubMed  CAS  Google Scholar 

  • Perera MN, Bielawska A, Szulc ZM, Bittman R, Colombini M (2011) Bax, Bcl-xL exert their regulation on different sites on the ceramide channel. Biophys J 100:43a

    Article  Google Scholar 

  • Perera MN, Ganesan V, Siskind LJ, Szulc ZM, Bielawski J, Bielawska A, Bittman R, Colombini M (2012a) Ceramide channels: influence of molecular structure on channel formation in membranes. Biochim Biophys Acta 1818:1291–1301

    Article  PubMed  CAS  Google Scholar 

  • Perera MN, Lin SH, Peterson YK, Bielawska A, Szulc ZM, Bittman R, Colombini M (2012b) BAX, Bcl-xL exert their regulation on different sites of the ceramide channel. Biochem J 445:81–91

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Lafrasse C, Alphonse G, Aloy MT, Ardail D, Gerard JP, Louisot P, Rousson R (2002) Increasing endogenous ceramide using inhibitors of sphingolipid metabolism maximizes ionizing radiation-induced mitochondrial injury and apoptotic cell killing. Int J Cancer 101:589–598

    Article  PubMed  CAS  Google Scholar 

  • Samanta S, Stiban J, Maugel TK, Colombini M (2011) Visualization of ceramide channels by transmission electron microscopy. Biochim Biophys Acta 1808:1196–1201

    Article  PubMed  CAS  Google Scholar 

  • Siskind LJ, Colombini M (2000) The lipids C2- and C16-ceramide form large stable channels: implications for apoptosis. J Biol Chem 275:38640–38644

    Article  PubMed  CAS  Google Scholar 

  • Siskind LJ, Kolesnick RN, Colombini M (2002) Ceramide channels increase the permeability of the mitochondrial outer membrane to small proteins. J Biol Chem 277:26796–26803

    Article  PubMed  CAS  Google Scholar 

  • Siskind LJ, Davoody A, Lewin N, Marshall S, Colombini M (2003) Enlargement and contracture of C2-ceramide channels. Biophys J 85:1560–1575

    Article  PubMed  CAS  Google Scholar 

  • Siskind LJ, Kolesnick RN, Colombini M (2006) Ceramide forms channels in mitochondrial outer membranes at physiologically relevant concentrations. Mitochondrion 6:118–125

    Article  PubMed  CAS  Google Scholar 

  • Siskind LJ, Feinstein L, Yu T, Davis JS, Jones D, Choi J, Zuckerman JE, Tan W, Hill RB, Hardwick JM, Colombini M (2008) Anti-apoptotic Bcl-2 family proteins disassemble ceramide channels. J Biol Chem 283:6622–6630

    Article  PubMed  CAS  Google Scholar 

  • Siskind LJ, Mullen TD, Rosales KR, Clarke CJ, Hernandez-Corbacho MJ, Edinger AL, Obeid LM (2010) The Bcl-2 protein BAK is required for long-chain ceramide generation during apoptosis. J Biol Chem 285:11818–11826

    Article  PubMed  CAS  Google Scholar 

  • Stiban J, Fistere D Jr, Colombini M (2006) Dihydroceramide hinders ceramide channel formation: implications on apoptosis. Apoptosis 11:773–780

    Article  PubMed  CAS  Google Scholar 

  • Vance JE (1990) Phospholipid synthesis in a membrane fraction associated with mitochondria. J Biol Chem 265:7248–7256

    PubMed  CAS  Google Scholar 

  • Yuan H, Williams SD, Adachi S, Oltersdorf T, Gottlieb RA (2003) Cytochrome c dissociation and release from mitochondria by truncated Bid and ceramide. Mitochondrion 2:237–244

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Ceramide channels were discovered by Leah J. Siskind and the research described was performed by her and the following in temporal order: Johnny Stiban, Matthew J. Elrick, Sharon Fluss, Wenzhi Tan, Vidyaramanan Ganesan, Meenu N. Perera, Soumya Samanta, and Kai-Ti Chang. These were aided by numerous undergraduate volunteers. I am also grateful to others who collaborated and assisted with the research: Andriy Anishkin, Sergei Sukharev, Richard N. Kolesnick, R. Blake Hill, Marie Hardwick, Alicja Bielawska, Zdzislaw M. Szulc, Robert Bittman, and Jacek Bielawski. Support from the National Science Foundation (MCB-1023008) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Colombini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Colombini, M. (2013). Membrane Channels Formed by Ceramide. In: Gulbins, E., Petrache, I. (eds) Sphingolipids: Basic Science and Drug Development. Handbook of Experimental Pharmacology, vol 215. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1368-4_6

Download citation

Publish with us

Policies and ethics