Skip to main content

Assessment of Cerebral Autoregulation from Respiratory Oscillations in Ventilated Patients After Traumatic Brain Injury

  • Chapter
  • First Online:
Intracranial Pressure and Brain Monitoring XIV

Part of the book series: Acta Neurochirurgica Supplementum ((NEUROCHIRURGICA,volume 114))

Abstract

Phase shift (PS) between oscillations in arterial blood pressure (ABP) and transcranial Doppler (TCD) cerebral blood flow velocity (CBFV) is thought to describe cerebral autoregulation. Ventilated patients show high amplitude and regular respiratory oscillations in ABP and CBFV, allowing reliable PS measurement. We analysed recordings of ABP, CBFV and intracranial pressure (ICP) from 187 TBI patients treated at Addenbrooke’s Hospital, Cambridge, UK, from 1993 to 1998. Monitored data were recorded and PS, TCD autoregulation (Mx) and pressure reactivity (PRx) were calculated using ICM+. PS was computed by peak detection in the ABP/CBFV cross-spectrum. Recordings with low coherence (<0.5), unstable respiratory rate (RR), or PS wraparound were excluded. Median RR was 14 bpm (range 10–20 bpm). Group median PS was 13° (range −37–56°). Average PS (PSa) correlated with RR (Spearman’s R = −0.302, p < 0.01, and cerebral perfusion pressure (R = −0.373, p < 0.01). Correlations of PS with Mx and PRx were weak but significant (p < 0.01). Kruskal–Wallis test for outcome vs. PS was non-significant (PSa: p = 0.14, minimum PS (PSm): p = 0.27). Mann–Whitney test for mortality vs. PS was significant (p < 0.05) for PSm only. Respiratory PS responds to changes in CPP and RR and correlates weakly with CA. Respiratory PS may have some prognostic value for patients with TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown CM, Marthol H, Zikeli U, Ziegler D, Hilz MJ (2008) A simple deep breathing test reveals altered cerebral autoregulation in type 2 diabetic patients. Diabetologia 51:756–761

    Article  PubMed  CAS  Google Scholar 

  2. Carrera E, Lee LK, Giannopoulos S, Marshall RS (2009) Cerebrovascular reactivity and cerebral autoregulation in normal subjects. J Neurol Sci 285:191–194

    Article  PubMed  Google Scholar 

  3. Czosnyka M, Guazzo E, Whitehouse M, Smielewski P, Czosnyka Z, Kirkpatrick P, Piechnik S, Pickard JD (1996) Significance of intracranial pressure waveform analysis after head injury. Acta Neurochir (Wien) 138:531–541; discussion 541–532

    Article  CAS  Google Scholar 

  4. Diehl RR, Linden D, Lucke D, Berlit P (1995) Phase relationship between cerebral blood flow velocity and blood pressure. A clinical test of autoregulation. Stroke 26:1801–1804

    Article  PubMed  CAS  Google Scholar 

  5. Diehl RR, Linden D, Lucke D, Berlit P (1998) Spontaneous blood pressure oscillations and cerebral autoregulation. Clin Auton Res 8:7–12

    Article  PubMed  CAS  Google Scholar 

  6. Hamner JW, Cohen MA, Mukai S, Lipsitz LA, Taylor JA (2004) Spectral indices of human cerebral blood flow control: responses to augmented blood pressure oscillations. J Physiol 559:965–973

    PubMed  CAS  Google Scholar 

  7. Hu HH, Kuo TB, Wong WJ, Luk YO, Chern CM, Hsu LC, Sheng WY (1999) Transfer function analysis of cerebral hemodynamics in patients with carotid stenosis. J Cereb Blood Flow Metab 19:460–465

    Article  PubMed  CAS  Google Scholar 

  8. Kirkham SK, Craine RE, Birch AA (2001) A new mathematical model of dynamic cerebral autoregulation based on a flow dependent feedback mechanism. Physiol Meas 22:461–473

    Article  PubMed  CAS  Google Scholar 

  9. Lang EW, Diehl RR, Timmermann L, Baron R, Deuschl G, Mehdorn HM, Zunker P (1999) Spontaneous oscillations of arterial blood pressure, cerebral and peripheral blood flow in healthy and comatose subjects. Neurol Res 21:665–669

    PubMed  CAS  Google Scholar 

  10. Lang EW, Diehl RR, Mehdorn HM (2001) Cerebral autoregulation testing after aneurysmal subarachnoid hemorrhage: the phase relationship between arterial blood pressure and cerebral blood flow velocity. Crit Care Med 29:158–163

    Article  PubMed  CAS  Google Scholar 

  11. Lewis PM, Rosenfeld JV, Diehl RR, Mehdorn HM, Lang EW (2008) Phase shift and correlation coefficient measurement of cerebral autoregulation during deep breathing in traumatic brain injury (TBI). Acta Neurochir (Wien) 150:139–146; discussion 146–137

    Article  CAS  Google Scholar 

  12. Muller M, Bianchi O, Erulku S, Stock C, Schwerdtfeger K (2003) Brain lesion size and phase shift as an index of cerebral autoregulation in patients with severe head injury. Acta Neurochir (Wien) 145:643–647; discussion 647–648

    Article  CAS  Google Scholar 

  13. Muller M, Bianchi O, Erulku S, Stock C, Schwerdtfeger K (2003) Changes in linear dynamics of cerebrovascular system after severe traumatic brain injury. Stroke 34:1197–1202

    Article  PubMed  CAS  Google Scholar 

  14. Ogoh S, Dalsgaard MK, Yoshiga CC, Dawson EA, Keller DM, Raven PB, Secher NH (2005) Dynamic cerebral autoregulation during exhaustive exercise in humans. Am J Physiol Heart Circ Physiol 288:H1461–H1467

    Article  PubMed  CAS  Google Scholar 

  15. Reinhard M, Muller T, Guschlbauer B, Timmer J, Hetzel A (2003) Transfer function analysis for clinical evaluation of dynamic cerebral autoregulation – a comparison between spontaneous and respiratory-induced oscillations. Physiol Meas 24:27–43

    Article  PubMed  CAS  Google Scholar 

  16. Saul JP, Berger RD, Albrecht P, Stein SP, Chen MH, Cohen RJ (1991) Transfer function analysis of the circulation: unique insights into cardiovascular regulation. Am J Physiol 261:H1231–H1245

    PubMed  CAS  Google Scholar 

  17. Zhang R, Zuckerman JH, Giller CA, Levine BD (1998) Transfer function analysis of dynamic cerebral autoregulation in humans. Am J Physiol 274:H233–H241

    PubMed  CAS  Google Scholar 

  18. Zhang R, Behbehani K, Levine BD (2009) Dynamic pressure-flow relationship of the cerebral circulation during acute increase in arterial pressure. J Physiol 587:2567–2577

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest statement

Peter Smielewski and Marek Czosnyka have a financial interest in a part of the licensing fee for ICM+. All other authors have no conficts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip M. Lewis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Lewis, P.M., Smielewski, P., Rosenfeld, J.V., Pickard, J.D., Czosnyka, M. (2012). Assessment of Cerebral Autoregulation from Respiratory Oscillations in Ventilated Patients After Traumatic Brain Injury. In: Schuhmann, M., Czosnyka, M. (eds) Intracranial Pressure and Brain Monitoring XIV. Acta Neurochirurgica Supplementum, vol 114. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0956-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0956-4_26

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0955-7

  • Online ISBN: 978-3-7091-0956-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics