Skip to main content

The neuromelanin of human substantia nigra: structure, synthesis and molecular behaviour

  • Conference paper
Advances in Research on Neurodegeneration

Summary

The pigmented neurons of the substantia nigra (SN) are typically lost in Parkinson’s disease: however the possible relationship between neuronal vulnerability and the presence of neuromelanin (NM) has not been elucidated. Early histological studies revealed the presence of increasing amounts of NM in the SN with aging in higher mammals, showed that NM granules are surrounded by membrane, and comparatively evaluated the pigmentation of SN in different animal species. Histochemical studies showed the association of NM with lipofuscins. However, systematic investigations of NM structure, synthesis and molecular interactions have been undertaken only during the last decade. In these latter studies, NM was identified as a genuine melanin with a strong chelating ability for iron and affinity for compounds such as lipids, pesticides, and MPP+. The affinity of NM for a variety of inorganic and organic toxins is consistent with a postulated protective function for NM. Moreover, the neuronal accumulation of NM during aging, and the link between its synthesis and high cytosolic concentration of catechols suggests a protective role. However, its putative neuroprotective effects could be quenched in conditions of toxin overload.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams JD, Odunze IN (1991) Biochemical of 1-methyl-4-phenyl-1,2,3,5-tetrahydropyridine toxicity: could oxidative stress be involved in the brain? Biochem Pharmacol 41: 1099–1105

    Article  PubMed  CAS  Google Scholar 

  • Adler A (1942) Melanin pigment in the central nervous system vertebrates. J Comp Neurol 76: 501

    Article  CAS  Google Scholar 

  • Aime S, Fasano M, Bergamasco B, Lopiano L, Valente G (1994) Evidence for a glicid-lipid matrix in human neuromelanin, potentially responsible for the enhanced iron sequestering ability of substantia nigra. J Neurochem 62: 369–371

    Article  PubMed  CAS  Google Scholar 

  • Barden H (1969) The histochemical relationship of neuromelanin and lipofuscin. J Neuropathol Exp Neurol Baltimore 28: 419–441

    Article  CAS  Google Scholar 

  • Barden H (1975) Histochemical relationship and nature of neuromelanin. Aging 1: 79–117

    Google Scholar 

  • Bazelon M, Fenichel GM (1967) Studies on neuromelanin I. A melanin system in the human adult brainstem. Neurology 17: 512–519

    Article  PubMed  CAS  Google Scholar 

  • Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington: clinical, morphological and neurochemical correlations. J Neurol Sci 20: 415–455

    Article  PubMed  CAS  Google Scholar 

  • Bogerts B (1981) A brainstem atlas of catecolaminergic neurons in man, using melanin as natural marker. J Comp Neurol 197: 63–80

    Article  PubMed  CAS  Google Scholar 

  • Bridelli MG, Tampellini D, Zecca L (1999) The structure of neuromelanin and its iron binding site studied by infrared spectroscopy. Febs Lett 457: 18–22

    Article  PubMed  CAS  Google Scholar 

  • Carstam R, Brink C, Hindemint-Augustsson A, Rorsman H, Rosengren E (1991) The neuromelanin of substantia nigra. Biochim Biophys Acta 1097: 152–160

    Article  PubMed  CAS  Google Scholar 

  • Cheng J, Moss SC and Eisner M (1994) X-Ray characterization of melanins-II. Pigment Cell Res 7: 263–273

    Article  PubMed  CAS  Google Scholar 

  • Cotzias GC, Papavasidou PS, Van Woert MH, Sakamoto A (1964) Melanogenesis and extrapiramidal disorders. Fed Proc 233: 713–718

    Google Scholar 

  • Cowen D (1986) The melanoneurons of the human cerebellum (nucleus pigmentosus cerebellaris) and homologues in the monkey. J Neuropathol Exp Neurol 45: 205–221

    PubMed  CAS  Google Scholar 

  • Cozzi B, Tozzi F (1985) A spectroscopy study of the equine brain melanins. Archo Vet It, Milano 36: 34–40

    CAS  Google Scholar 

  • Cozzi B, Pellegrini M, Droghi A (1988) Neuromelanin in the substantia nigra of adult horses. Anat Anz Jena 166: 53–61

    CAS  Google Scholar 

  • Crippa R, Wang QJ, Eisner M, Moss SC, Zecca L, Zachack P, Gog T (1996) Structure of human neuromelanin by X-Ray diffraction: comparison with synthetics. Pigment Cell Res 5: 72

    Google Scholar 

  • D’Amato RJ, Lipman ZP, Snyder SH (1986) Selectivity of the parkinsonian neurotoxin MPTP: toxic metabolite MPP+ binds to neuromelanin. Science 231: 987–989

    Article  PubMed  Google Scholar 

  • DeMattei M, Levi AC, Fariello RG (1986) Neuromelanic pigment in substantia nigra neurons of rats and dogs. Neurosci Lett 72: 37–42

    Article  PubMed  CAS  Google Scholar 

  • Dexter DT, Wells FR, Lees AJ, Jenner I, Marsden CD (1989) Increased nigral iron content and alteration in other metal ions occurring in brain in Parkinson’s disease. J Neurochem 52:1830–1836

    Article  PubMed  CAS  Google Scholar 

  • Double KL, Zecca L, Costi P, Mauer M, Griesinger C, Ito S, Ben-Shachar D, Bringmann G, Fariello RG, Riederer P, Gerlach M (2000) Structural characteristics of human substantia nigra neuromelanin and synthetic dopamine melanins. J Neurochem 75: 2583–2589

    Article  PubMed  CAS  Google Scholar 

  • Duffy PE, Tennyson VM (1965) Phase and electron microscopic observations of Lewy bodies and melanin granules in the substantia nigra and locus coeruleus in Parkinson’s disease. J Neuropathol Exp Neurol 24: 398–414

    Article  Google Scholar 

  • Enochs WS, Nilges MJ, Swartz HM (1993) Purified human neuromelanin, synthetic dopamine melanin as a potential model pigment, and the normal human substantia nigra: characterization by electron paramagnetic resonance spectroscopy. J Neurochem 61: 68–79

    Article  PubMed  CAS  Google Scholar 

  • Enochs WS, Sarna T, Zecca L, Riley PA, Swartz HM (1994) The roles of neuromelanin binding of metal ions, and oxidative cytotoxicity in the pathogenesis of Parkinson’s disease: a hypothesis. J Neural Transm [PD-Sect] 7: 83–100

    Article  CAS  Google Scholar 

  • Fenichel GM, Bazelon M (1968) Studies on neuromelanin. II. Melanin in the brainstems of infants and children. Neurology 18: 817–820

    Article  PubMed  CAS  Google Scholar 

  • Foley JM, Baxter D (1958) On the nature of pigment granules in the cell of the locus coeruleus and substantia nigra. J Neuropathol Exp Neurol 7: 586–598

    Article  Google Scholar 

  • Fornsted B, Rosengren E, Carlsson A (1986) Occurrence and distribution of 5-S-cysteinyl derivates of dopamine, dopa and dopac in brains of eight mammalian species. Neuropharmacology 25: 451–454

    Article  Google Scholar 

  • Galazka-Friedman J, Bauminger ER, Friedman A, Barcikowska M, Hechel D, Nowik I (1996) Iron in parkinsonian and control substantia nigra, a Mossbauer spectroscopy study. Mov Disord 11: 8–16

    Article  PubMed  CAS  Google Scholar 

  • Gerlach M, Riederer P (1996) Animal models of Parkinson’s disease: an empirical comparison with the phenomenology of the disease in man. J Neural Transm 103: 987–1041

    Article  PubMed  CAS  Google Scholar 

  • Gerlach M, Trautwein AX, Zecca L, Youdim MBH, Riederer P (1995) Mössbauer spectroscopic studies of human neuromelanin isolated from the substantia nigra. J Neurochem 65: 923–926

    Article  PubMed  CAS  Google Scholar 

  • Gibb WRG (1992) Melanin, tyrosine hydroxylase, calbindin and substance P in the human midbrain and substantia nigra in relation to nigrostriatal projections and differential neuronal susceptibility in Parkinson’s disease. Brain Res 581: 283–291

    Article  PubMed  CAS  Google Scholar 

  • Gibb WRG, Fearnley JM, Lees AJ (1990) The anatomy of the human substantia nigra in relation to selective neuronal vulnerability. In: Streifler MB, Korczyn AD, Melamed E and Youdim MBH (eds) Advances in neurology, vol 53. Parkinson’s disease: anatomy, pathology and therapy. Raven Press, New York, pp 31–34

    Google Scholar 

  • Good PF, Olanow CW, Perl DP (1992) Neuromelanin containing neurons of the substantia nigra accumulate iron and aluminium in Parkinson’s disease: a LAMMA study. Brain Res 593: 343–346

    Article  PubMed  CAS  Google Scholar 

  • Graham DG (1979) On the origin and significance of neuromelanin. Arch Pathol Lab Med (July) 103: 359–362

    CAS  Google Scholar 

  • Haavik J, Almas B, Fiatmark T (1997) Generation of reactive oxygen species by tyrosine hydroxilase: a possible contribution to the degeneration of dopaminergic neurons. J Neurochem 68(1): 328–332

    Article  PubMed  CAS  Google Scholar 

  • Hastings TG (1995) Enzymatic oxidation of dopamine: the role of prostaglandin H synthase. J Neurochem 64: 919–924

    Article  PubMed  CAS  Google Scholar 

  • Hirosawa K (1968) Electron microscopic studies on pigment granules in the substantia nigra and locus coeruleus of the Japanese monkey (macaca fuscata yukui). Z Zeilforsch 88: 187–203

    Article  CAS  Google Scholar 

  • Höck A, Demmel U, Schicha H, Kasperek K, Feinendegen LE (1975) Trace element concentration in human brain. Brain 98: 49–64

    Article  PubMed  Google Scholar 

  • Hornykiewicz O (1986) Biochemical pathophysiology of Parkinson’s disease. Adv Neurol 45: 19–22

    Google Scholar 

  • Ikemoto K, Nagatsu I, Ito S, King RA, Nishimura A, Nagatsu T (1998) Does tyrosinase exist in neuromelanin-pigmented neurons in the human substantia nigra? Neurosci Lett 253: 198–200

    Article  PubMed  CAS  Google Scholar 

  • Jellinger K, Kienzl E, Rumpelmaier G, Riederer P, Stachelberger H, Ben-Shachar D, Youdim MBH (1992) Iron-melanin complex in substantia nigra of parkinsonian brains: an X-ray microanalysis. J Neurochem 59: 1168–1171

    Article  PubMed  CAS  Google Scholar 

  • Kastner A, Hirsch EC, Lejeune O, Javoy-Agid F, Rascol O, Agid Y (1992) Is the vulnerability of neurons in the substantia nigra of patients with Parkinson’s disease related to their neuromelanin content? J Neurochem 59: 1080–1089

    Article  PubMed  CAS  Google Scholar 

  • Kropf AJ, Bunker BA, Eisner M, Moss SC, Zecca L, Stroppolo A, Crippa PR (1998) X-ray absorption fine-structure spectroscopy studies of iron sites in synthetic and natural neuromelanin. Biophys J 75: 3135–3142

    Article  PubMed  CAS  Google Scholar 

  • Kubis N, Faucheux BA, Ransmary G, Damier P, Duyckaerts C, Henin D, Forette B, Le Charpentier Y, Hauw J-J, Agid Y, Hirsch EC (2000) Preservation of midbrain catecholaminergic neurons in very old human subjects. Brain 123: 366–373

    Article  PubMed  Google Scholar 

  • Langston JW, Irwin I (1986) MPTP: current concepts and controversies. Clin Neuropharmacol 9: 485–507

    Article  PubMed  CAS  Google Scholar 

  • Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic parkinsonism in humans due to product of meperidine-analog synthesis. Science 219: 979–980

    Article  PubMed  CAS  Google Scholar 

  • Langston JW, Forno LS, Tetrud J, Reeves AG, Kaplan JA, Karluk D (1999) Evidence of active nerve cell degeneration in the substantia nigra of human years after 1-metyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann Neurol 46: 598–605

    Article  PubMed  CAS  Google Scholar 

  • Lindquist NG, Larsson BS, Lydén-Sokolowski A (1988) Autoradiography of [14C]paraquat or [14C]diquat in frogs and mice: accumulation in neuromelanin. Neurosci Lett 93: 1–6

    Article  PubMed  CAS  Google Scholar 

  • Lopiano L, Chiesa M, Digilio G, Giraudo S, Bergamasco B, Torre E, Fasano M (2000) Q-band EPR investigations of neuromelanin in control and Parkinson Disease patients. Biochim Biophys Acta 1500(3): 306–312

    Article  PubMed  CAS  Google Scholar 

  • Mann DMA, Yates PO (1974) Lipoprotein pigments-their relationship to ageing in the human nervous system. II. The melanin content of pigmented nerve cells. Brain 97: 489–498

    Article  PubMed  CAS  Google Scholar 

  • Mann DM, Yates PO (1983) Possible role of neuromelanin in the pathogenesis of Parkinson’s disease. Mech Ageing Dev 21: 193–203

    Article  PubMed  CAS  Google Scholar 

  • Markesbery WR, Ehmann WD, Alauddin M, Hossain TI (1984) Brain trace element in aging. Neurobiol Aging 5: 19–28

    Article  PubMed  CAS  Google Scholar 

  • Marsden CD (1961) Pigmentation in the nuculeus substantiae nigrae of mammals. J Anat 95:1080–1089

    Google Scholar 

  • Matsunaga J, Sinha D, Pannell L, Santis C, Solano F, Wistow GJ, Hearing VJ (1999) Enzyme activity of macrofage migration inhibitory factor toward oxidized catecholamines. J Biol Chem 274: 3268–3271

    Article  PubMed  CAS  Google Scholar 

  • Mattammal MB, Strong R, Lakshmi VM, Chung HD, Stephenson AH (1995) Prostaglandin H synthetase-mediated metabolism of dopamine: implication for Parkinson’s Disease. J Neurochem 64: 1645–1654

    Article  PubMed  CAS  Google Scholar 

  • McGeer PL, McGeer EG, Suzuki JS (1977) Aging and extrapyramidal functions. Arch Neurol 34: 33–35

    Article  PubMed  CAS  Google Scholar 

  • McGeer PL, Itagaki S, Boyes BE, McGeer EG (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer disease brains. Neurology 38(8): 1285–1291

    Article  PubMed  CAS  Google Scholar 

  • Moses HL, Ganote CE, Beaver DL, Shuffman SS (1966) Light and electron microscopic studies of pigment in human and rhesus monkey substantia nigra and locus coeruleus. Anat Rec 155: 167–184

    Article  PubMed  CAS  Google Scholar 

  • Muthane UB, Yasha TC, Shankar SK (1998) Low numbers and no loss of melanized nigral neurons with increasing age in normal human brains from India. Ann Neurol 43: 283–287

    Article  PubMed  CAS  Google Scholar 

  • Odh G, Carstam R, Paulson J, Wittbjer A, Rosengren E, Rosman H (1994) Neuromelanin of the human substantia nigra: a mixed type melanin. J Neurochem 62: 2030–2036

    Article  PubMed  CAS  Google Scholar 

  • Okun MR (1997) The role of peroxidase in neuromelanin synthesis: a review. Physiol Chem Phys and Med NMR 29: 15–22

    CAS  Google Scholar 

  • Pakkenberg B, Moller A, Gundersen HJG, Mouritzen DA, Pakkenberg H (1991) The absolute number of nerve cells in substantia nigra in normal subjects and in patients with Parkinson’s disease estimated with an unbiased stereological method. J Neurol Neurosurg Psychiatry 54: 30–35

    Article  PubMed  CAS  Google Scholar 

  • Rosengren E, Linder-Eliasson E, Carlsson A (1985) Detection of 5-S-cysteinyldopamine in human brain. J Neural Transm 63: 247–253

    Article  PubMed  CAS  Google Scholar 

  • Salazar M, Sokoloski TD, Patil PN (1978) Binding of dopaminergic drugs by the neuromelanin of the substantia nigra, synthetic melanins and melanin granules. Fed Proc 37: 2403–2407

    PubMed  CAS  Google Scholar 

  • Sanchez-Ferrer A, Rodriguez-Lopez JN, Garcia-Canovas F, Garcia-Carmona F (1995) Tyrosinase: a review of its mechanism. Biochim Biophys Acta 1247: 1–11

    Article  PubMed  Google Scholar 

  • Schrerer HJ (1939) Melanin pigmentation of the substantia nigra in primates. J Comp Neurol 71: 91

    Article  Google Scholar 

  • Shima T, Sarna T, Stroppolo A, Gerbasi R, Swartz HM, Zecca L (1997) Binding of iron to neuromelanin of human substantia nigra and synthetic melanin: an electron paramagnetic resonance spectroscopy study. Free Radic Biol Med 23: 110–119

    Article  PubMed  CAS  Google Scholar 

  • Singer TP, Castagnoli N, Ramsay RR, Trevor AJ (1987) Biochemical events in the development of parkinsonism induced by 1-methyl-4-phenyl-1,2,3,5-tetraydropiridine. J Neurochem 49: 1–8

    Article  PubMed  CAS  Google Scholar 

  • Smythies J (1996) On the function of neuromelanin. Proc Roy Soc Lond B 263: 487–489

    Article  CAS  Google Scholar 

  • Sofic E, Paulus W, Jellinger K, Riederer P, Youdim MBH (1991) Selective increase of iron in Substantia nigra zone compacta of parkinsonian brain. J Neurochem 56: 978–982

    Article  PubMed  CAS  Google Scholar 

  • Sulzer D, Bogulavsky J, Larsen KE, Behr G, Karetekin E, Kleinman MH, Turro N, Krantz D, Edwards RH, Greene LA, Zecca L (2000) Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles. Proc Natl Acad Sci 97(22): 11869–11874

    Article  PubMed  CAS  Google Scholar 

  • Swartz HM, Sarna T, Zecca L (1992) Modulation by neuromelanins of the availability and reactivity of metal ions. Ann Neurol 32: S69–S75

    Article  PubMed  CAS  Google Scholar 

  • Tief K, Schmidt A, Beerman F (1998) New evidence for presence of tyrosinase in substantia nigra, forebrain, and midbrain. Mol Brain Res 53: 307–310

    Article  PubMed  CAS  Google Scholar 

  • Van Woert MH, Ambani LM (1974) Biochemistry of neuromelanin. Adv Neurol 5: 215–223

    PubMed  Google Scholar 

  • Wakamatsu K, Ito S and Nagatsu T (1991) Cysteinyldopamine is not incorporated into neuromelanin. Neurosci Lett 131: 57–60

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Stokes AH, Freeman WM, Kumer S, Vogt B, Vrana K (1997) Tyrosinase mRNA is expressed in human substantia nigra. Mol Brain Res 45: 159–162

    Article  PubMed  CAS  Google Scholar 

  • Zareba M, Bober A, Korytowski W, Zecca L, Sarna T (1995) The effect of a synthetic neuromelanin on yield of free hydroxyl radicals generated in model systems. Biochim Biophys Acta 1271: 343–348

    Article  PubMed  Google Scholar 

  • Zecca L, Swartz HM (1993) Total and paramagnetic metals in human substantia nigra and its neuromelanin. J Neural Transm [PD-Sect] 5: 203–213

    Article  CAS  Google Scholar 

  • Zecca L, Mecacci C, Seraglia R, Parati E (1992) The chemical characterization of melanin contained in substantia nigra of human brain. Biochim Biophys Acta 1138: 6–10

    Article  PubMed  CAS  Google Scholar 

  • Zecca L, Pietra R, Goj C, Mecacci C, Radice D, Sabbioni E (1994) Iron and other metals in neuromelanin, substantia nigra, and putamen of human brain. J Neurochem 62: 1097–1101

    Article  PubMed  CAS  Google Scholar 

  • Zecca L, Shima T, Stroppolo A, Goj C, Battiston GA, Gerbasi R, Sarna T, Swartz HM (1996) Interaction of neuromelanin and iron in substantia nigra and other areas of human brain. Neurosci 73: 407–415

    Article  CAS  Google Scholar 

  • Zecca L, Costi P, Mecacci C, Ito S, Terreni T, Sonnino S (2000) The interaction of human substantia nigra neuromelanin with lipids and peptides. J Neurochem 74: 1758–1765

    Article  PubMed  CAS  Google Scholar 

  • Zecca L, Gallorini L, Schünemann V, Trautwein AX, Gerlach M, Riederer P, Vezzoni P, Tampellini D (2001) Iron, neuromelanin and ferritin in substantia nigra of normal subjects at different ages. Consequences for iron storage and neurodegenerative disorders. J Neurochem 76: 1766–1773

    Article  PubMed  CAS  Google Scholar 

  • Zecca L, Fariello R, Riederer P, Sulzer D, Gatti A, Tampellini D (2002) The absolute concentration of nigral neuromelanin, assayed by a new sensitive method, increases throughout the life and is dramatically decreased in Parkinson’s disease. FEBS Lett 510: 216–220

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Wien

About this paper

Cite this paper

Zecca, L. et al. (2003). The neuromelanin of human substantia nigra: structure, synthesis and molecular behaviour. In: Horowski, R., et al. Advances in Research on Neurodegeneration. Journal of Neural Transmission. Supplementa, vol 65. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0643-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0643-3_8

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83907-2

  • Online ISBN: 978-3-7091-0643-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics