Skip to main content

Gustatory and reward brain circuits in the control of food intake

  • Chapter

Part of the book series: Advances and Technical Standards in Neurosurgery ((NEUROSURGERY,volume 36))

Abstract

Gustation is a multisensory process allowing for the selection of nutrients and the rejection of irritating and/or toxic compounds. Since obesity is a highly prevalent condition that is critically dependent on food intake and energy expenditure, a deeper understanding of gustatory processing is an important objective in biomedical research. Recent findings have provided evidence that central gustatory processes are distributed across several cortical and subcortical brain areas. Furthermore, these gustatory sensory circuits are closely related to the circuits that process reward. Here, we present an overview of the activation and connectivity between central gustatory and reward areas. Moreover, and given the limitations in number and effectiveness of treatments currently available for overweight patients, we discuss the possibility of modulating neuronal activity in these circuits as an alternative in the treatment of obesity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott CR, Monteiro M, et al. (2005) The inhibitory effects of peripheral administration of peptide YY(3–36) and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal-brainstem-hypothalamic pathway. Brain Res 1044(1): 127–31

    Article  CAS  PubMed  Google Scholar 

  2. Abizaid A, Liu ZW, et al. (2006) Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J Clin Invest 116(12): 3229–39

    Article  CAS  PubMed  Google Scholar 

  3. Accolla R, Bathellier B, et al. (2007) Differential spatial representation of taste modalities in the rat gustatory cortex. J Neurosci 27(6): 1396–404

    Article  CAS  PubMed  Google Scholar 

  4. Altschuler SM, Bao XM, et al. (1989) Viscerotopic representation of the upper alimentary tract in the rat: sensory ganglia and nuclei of the solitary and spinal trigeminal tracts. J Comp Neurol 283(2): 248–68

    Article  CAS  PubMed  Google Scholar 

  5. Anand BK, Brobeck JR (1951) Localization of a “feeding center in the hypothalamus of the rat. Proc Soc Exp Biol Med 77(2): 323–24

    CAS  PubMed  Google Scholar 

  6. Andrews ZB, Horvath TL (2008) Tasteless food reward. Neuron 57(6): 806–08

    Article  CAS  PubMed  Google Scholar 

  7. Ashrafian H, le Roux CW (2009) Metabolic surgery and gut hormones — a review of bariatric entero-humoral modulation. Physiol Behav 97(5): 620–31

    Article  CAS  PubMed  Google Scholar 

  8. Baldo BA, Daniel RA, et al. (2003) Overlapping distributions of orexin/hypocretin-and dopamine-beta-hydroxylase immunoreactive fibers in rat brain regions mediating arousal, motivation, and stress. J Comp Neurol 464(2): 220–37

    Article  PubMed  Google Scholar 

  9. Banks WA, Kastin AJ, et al. (1995) Regional variation in transport of pancreatic polypeptide across the blood-brain barrier of mice. Pharmacol Biochem Behav 51(1): 139–47

    Article  CAS  PubMed  Google Scholar 

  10. Bartel DL, Sullivan SL, et al. (2006) Nucleoside triphosphate diphosphohydrolase-2 is the ecto-ATPase of type I cells in taste buds. J Comp Neurol 497(1): 1–12

    Article  CAS  PubMed  Google Scholar 

  11. Baskin DG, Breininger JF, et al. (1999) Leptin receptor mRNA identifies a subpopulation of neuropeptide Y neurons activated by fasting in rat hypothalamus. Diabetes 48(4): 828–33

    Article  CAS  PubMed  Google Scholar 

  12. Batterham RL, Cowley MA, et al. (2002) Gut hormone PYY(3–36) physiologically inhibits food intake. Nature 418(6898): 650–04

    Article  CAS  PubMed  Google Scholar 

  13. Batterham RL, ffytche DH, et al. (2007) PYY modulation of cortical and hypothalamic brain areas predicts feeding behaviour in humans. Nature 450(7166): 106–09

    Article  CAS  PubMed  Google Scholar 

  14. Beckman ME, Whitehead MC (1991) Intramedullary connections of the rostral nucleus of the solitary tract in the hamster. Brain Res 557(1–2): 265–79

    Article  Google Scholar 

  15. Beckstead RM, Morse JR, et al. (1980) The nucleus of the solitary tract in the monkey: projections to the thalamus and brain stem nuclei. J Comp Neurol 190(2): 259–82

    Article  CAS  PubMed  Google Scholar 

  16. Benabid AL, Chabardes S, et al. (2009) Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurol 8(1): 67–81

    Article  PubMed  Google Scholar 

  17. Berridge KC (1996) Food reward: brain substrates of wanting and liking. Neurosci Biobehav Rev 20(1): 1–25

    Article  CAS  PubMed  Google Scholar 

  18. Berridge KC (2009) ‘Liking’ and ‘wanting’ food rewards: brain substrates and roles in eating disorders. Physiol Behav 97(5): 537–50

    Article  CAS  PubMed  Google Scholar 

  19. Berthoud HR (2008) Vagal and hormonal gut-brain communication: from satiation to satisfaction. Neurogastroenterol Motil 20(Suppl 1): 64–72

    Article  CAS  PubMed  Google Scholar 

  20. Biebermann H, Castaneda TR, et al. (2006) A role for beta-melanocyte-stimulating hormone in human body-weight regulation. Cell Metab 3(2): 141–46

    Article  CAS  PubMed  Google Scholar 

  21. Blevins JE, Stanley BG, et al. (2000) Brain regions where cholecystokinin suppresses feeding in rats. Brain Res 860(1–2): 1–10

    Article  Google Scholar 

  22. Booth DA (1968) Effects of intrahypothalamic glucose injection on eating and drinking elicited by insulin. J Comp Physiol Psychol 65(1): 13–16

    Article  CAS  PubMed  Google Scholar 

  23. Bray GA, Greenway FL (2007) Pharmacological treatment of the overweight patient. Pharmacol Rev 59(2): 151–84

    Article  CAS  PubMed  Google Scholar 

  24. Bray GA, Wilson JF (2008) In the clinic. Obesity. Ann Intern Med 149(7): ITC4-1-15; quiz ITC4-16

    Google Scholar 

  25. Broadwell RD, Brightman MW (1976) Entry of peroxidase into neurons of the central and peripheral nervous systems from extracerebral and cerebral blood. J Comp Neurol 166(3): 257–83

    Article  CAS  PubMed  Google Scholar 

  26. Brobeck JR, Tepperman J, et al. (1943) Experimental hypothalamic hyperphagia in the albino rat. Yale J Biol Med 15:831–53

    Google Scholar 

  27. Broberger C (2005) Brain regulation of food intake and appetite: molecules and networks. J Intern Med 258(4): 301–27

    Article  CAS  PubMed  Google Scholar 

  28. Brog JS, Salyapongse A, et al. (1993) The patterns of afferent innervation of the core and shell in the “accumbens” part of the rat ventral striatum: immunohistochemical detection of retrogradely transported fluoro-gold. J Comp Neurol 338(2): 255–78

    Article  CAS  PubMed  Google Scholar 

  29. Brubaker PL, Anini Y (2003) Direct and indirect mechanisms regulating secretion of glucagon-like peptide-1 and glucagon-like peptide-2. Can J Physiol Pharmacol 81(11): 1005–12

    Article  CAS  PubMed  Google Scholar 

  30. Buchwald H, Estok R, et al. (2007) Trends in mortality in bariatric surgery: a systematic review and meta-analysis. Surgery 142(4): 621–32; discussion 632-35

    Article  PubMed  Google Scholar 

  31. Bult MJ, van Dalen T, et al. (2008) Surgical treatment of obesity. Eur J Endocrinol 158(2): 135–45

    Article  CAS  PubMed  Google Scholar 

  32. Camilleri M, Toouli J, et al. (2008) Intra-abdominal vagal blocking (VBLOC therapy): clinical results with a new implantable medical device. Surgery 143(6): 723–31

    Article  CAS  PubMed  Google Scholar 

  33. Cechetto DF, Saper CB (1987) Evidence for a viscerotopic sensory representation in the cortex and thalamus in the rat. J Comp Neurol 262(1): 27–45

    Article  CAS  PubMed  Google Scholar 

  34. Chuang HH, Neuhausser WM, et al. (2004) The super-cooling agent icilin reveals a mechanism of coincidence detection by a temperature-sensitive TRP channel. Neuron 43(6): 859–69

    Article  CAS  PubMed  Google Scholar 

  35. Contreras RJ, Gomez MM, et al. (1980) Central origins of cranial nerve parasympathetic neurons in the rat. J Comp Neurol 190(2): 373–94

    Article  CAS  PubMed  Google Scholar 

  36. Cota D, Proulx K, et al. (2006) Hypothalamic mTOR signaling regulates food intake. Science 312(5775): 927–30

    Article  CAS  PubMed  Google Scholar 

  37. Cowley MA, Smart JL, et al. (2001) Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411(6836): 480–84

    Article  CAS  PubMed  Google Scholar 

  38. Cummings DE, Overduin J (2007) Gastrointestinal regulation of food intake. J Clin Invest 117(1): 13–23

    Article  CAS  PubMed  Google Scholar 

  39. Cummings DE, Purnell JQ, et al. (2001) A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 50(8): 1714–19

    Article  CAS  PubMed  Google Scholar 

  40. Dakin CL, Gunn I, et al. (2001) Oxyntomodulin inhibits food intake in the rat. Endocrinology 142(10): 4244–50

    Article  CAS  PubMed  Google Scholar 

  41. de Araujo IE, Oliveira-Maia AJ, et al. (2008) Food reward in the absence of taste receptor signaling. Neuron 57(6): 930–41

    Article  PubMed  CAS  Google Scholar 

  42. DeSimone JA, Lyall V, et al. (2001) A novel pharmacological probe links the amilorideinsensitive NaCl, KCl, and NH(4)Cl chorda tympani taste responses. J Neurophysiol 86(5): 2638–41

    CAS  PubMed  Google Scholar 

  43. Dhillon H, Zigman JM, et al. (2006) Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis. Neuron 49(2): 191–203

    Article  CAS  PubMed  Google Scholar 

  44. Di Lorenzo PM (1990) Corticofugal influence on taste responses in the parabrachial pons of the rat. Brain Res 530(1): 73–84

    Article  PubMed  Google Scholar 

  45. Elias CF, Saper CB, et al. (1998) Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. J Comp Neurol 402(4): 442–59

    Article  CAS  PubMed  Google Scholar 

  46. Faulconbridge LF, Cummings DE, et al. (2003) Hyperphagic effects of brainstem ghrelin administration. Diabetes 52(9): 2260–65

    Article  CAS  PubMed  Google Scholar 

  47. Figlewicz DP (2003) Adiposity signals and food reward: expanding the CNS roles of insulin and leptin. Am J Physiol Regul Integr Comp Physiol 284(4): R882–92

    CAS  PubMed  Google Scholar 

  48. Finger TE, Danilova V, et al. (2005) ATP signaling is crucial for communication from taste buds to gustatory nerves. Science 310(5753): 1495–99

    Article  CAS  PubMed  Google Scholar 

  49. French SJ, Totterdell S (2002) Hippocampal and prefrontal cortical inputs monosynaptically converge with individual projection neurons of the nucleus accumbens. J Comp Neurol 446(2): 151–65

    Article  PubMed  Google Scholar 

  50. French SJ, Totterdell S (2003) Individual nucleus accumbens-projection neurons receive both basolateral amygdala and ventral subicular afferents in rats. Neuroscience 119(1): 19–31

    Article  CAS  PubMed  Google Scholar 

  51. Friedman JM (2009) Obesity: causes and control of excess body fat. Nature 459(7245): 340–42

    Article  CAS  PubMed  Google Scholar 

  52. Fulwiler CE, Saper CB (1984) Subnuclear organization of the efferent connections of the parabrachial nucleus in the rat. Brain Res 319(3): 229–59

    CAS  PubMed  Google Scholar 

  53. Gao Q, Horvath TL (2007) Neurobiology of feeding and energy expenditure. Annu Rev Neurosci 30: 367–98

    Article  CAS  PubMed  Google Scholar 

  54. Glenn JF, Erickson RP (1976) Gastric modulation of gustatory afferent activity. Physiol Behav (16): 561–68

    Article  Google Scholar 

  55. Goto Y, Grace AA (2005) Dopaminergic modulation of limbic and cortical drive of nucleus accumbens in goal-directed behavior. Nat Neurosci 8(6): 805–12

    Article  CAS  PubMed  Google Scholar 

  56. Gottig S, Daskalakis M, et al. (2009) Analysis of safety and efficacy of intragastric balloon in extremely obese patients. Obes Surg 19(6): 677–83

    Article  PubMed  Google Scholar 

  57. Grill HJ, Kaplan JM (2001) Interoceptive and integrative contributions of forebrain and brainstem to energy balance control. Int J Obes Relat Metab Disord 25(Suppl 5): S 73–77

    Article  Google Scholar 

  58. Grill HJ, Norgren R (1978) Chronically decerebrate rats demonstrate satiation but not bait shyness. Science 201(4352): 267–69

    Article  CAS  PubMed  Google Scholar 

  59. Grill HJ, Norgren R (1978) The taste reactivity test. II. Mimetic responses to gustatory stimuli in chronic thalamic and chronic decerebrate rats. Brain Res 143(2): 281–97

    Article  CAS  PubMed  Google Scholar 

  60. Grill HJ, Schwartz MW, et al. (2002) Evidence that the caudal brainstem is a target for the inhibitory effect of leptin on food intake. Endocrinology 143(1): 239–46

    Article  CAS  PubMed  Google Scholar 

  61. Hajnal A, Smith GP, et al. (2004) Oral sucrose stimulation increases accumbens dopamine in the rat. Am J Physiol Regul Integr Comp Physiol 286(1): R31–37

    CAS  PubMed  Google Scholar 

  62. Halata Z, Munger BL (1983) The sensory innervation of primate facial skin. II. Vermilion border and mucosa of lip. Brain Res 286(1): 81–107

    CAS  PubMed  Google Scholar 

  63. Halpern CH, Wolf JA, et al. (2008) Deep brain stimulation in the treatment of obesity. J Neurosurg 109(4): 625–34

    Article  PubMed  Google Scholar 

  64. Hamani C, McAndrews MP, et al. (2008) Memory enhancement induced by hypothalamic= fornix deep brain stimulation. Ann Neurol 63(1): 119–23

    Article  PubMed  Google Scholar 

  65. Hanamori T, Kunitake T, et al. (1998) Responses of neurons in the insular cortex to gustatory, visceral, and nociceptive stimuli in rats. J Neurophysiol 79(5): 2535–45

    CAS  PubMed  Google Scholar 

  66. Hasler WL (2009) Methods of gastric electrical stimulation and pacing: a review of their benefits and mechanisms of action in gastroparesis and obesity. Neurogastroenterol Motil 21(3): 229–43

    Article  CAS  PubMed  Google Scholar 

  67. Hayama T, Ito S, et al. (1987) Receptive field properties of the parabrachiothalamic taste and mechanoreceptive neurons in rats. Exp Brain Res 68(3): 458–65

    Article  CAS  PubMed  Google Scholar 

  68. Heath TP, Melichar JK, et al. (2006) Human taste thresholds are modulated by serotonin and noradrenaline. J Neurosci 26(49): 12664–71

    Article  CAS  PubMed  Google Scholar 

  69. Heck GL, Mierson S, et al. (1984) Salt taste transduction occurs through an amiloridesensitive sodium transport pathway. Science 223(4634): 403–05

    Article  CAS  PubMed  Google Scholar 

  70. Herbert H, Moga MM, et al. (1990) Connections of the parabrachial nucleus with the nucleus of the solitary tract and the medullary reticular formation in the rat. J Comp Neurol 293(4): 540–80

    Article  CAS  PubMed  Google Scholar 

  71. Hermann GE, Kohlerman NJ, et al. (1983) Hepatic-vagal and gustatory afferent interactions in the brainstem of the rat. J Auton Nerv Syst 9(2–3): 477–95

    Article  CAS  PubMed  Google Scholar 

  72. Hetherington AW, Ranson SW (1940) Hypothalamic lesions and adipocity in the rat. Anat Record 78: 149

    Article  Google Scholar 

  73. Hoebel BG, Teitelbaum P (1962) Hypothalamic control of feeding and self-stimulation. Science 135:375–77

    Article  CAS  PubMed  Google Scholar 

  74. Horvath TL, Diano S, et al. (1999) Synaptic interaction between hypocretin (orexin) and neuropeptide Y cells in the rodent and primate hypothalamus: a novel circuit implicated in metabolic and endocrine regulations. J Neurosci 19(3): 1072–87

    CAS  PubMed  Google Scholar 

  75. Huang AL, Chen X, et al. (2006) The cells and logic for mammalian sour taste detection. Nature 442(7105): 934–38

    Article  CAS  PubMed  Google Scholar 

  76. Huang YA, Maruyama Y, et al. (2008) Norepinephrine is coreleased with serotonin in mouse taste buds. J Neurosci 28(49): 13088–93

    Article  CAS  PubMed  Google Scholar 

  77. Huang YJ, Maruyama Y, et al. (2007) The role of pannexin 1 hemichannels in ATP release and cell-cell communication in mouse taste buds. Proc Natl Acad Sci USA 104(15): 6436–41

    Article  CAS  PubMed  Google Scholar 

  78. Huque T, Cowart BJ, et al. (2009) Sour ageusia in two individuals implicates ion channels of the ASIC and PKD families in human sour taste perception at the anterior tongue. PLoS One 4(10): e7347

    Article  PubMed  CAS  Google Scholar 

  79. Ishimaru Y, Inada H, et al. (2006) Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc Natl Acad Sci USA 103(33): 12569–74

    Article  CAS  PubMed  Google Scholar 

  80. Kadohisa M, Verhagen JV, et al. (2005) The primate amygdala: Neuronal representations of the viscosity, fat texture, temperature, grittiness and taste of foods. Neuroscience 132(1): 33–48

    Article  CAS  PubMed  Google Scholar 

  81. Karimnamazi H, Travers JB (1998) Differential projections from gustatory responsive regions of the parabrachial nucleus to the medulla and forebrain. Brain Res 813(2): 283–302

    Article  CAS  PubMed  Google Scholar 

  82. Karimnamazi H, Travers SP, et al. (2002) Oral and gastric input to the parabrachial nucleus of the rat. Brain Res 957(2): 193–206

    Article  CAS  PubMed  Google Scholar 

  83. Katsuura G, Asakawa A, et al. (2002) Roles of pancreatic polypeptide in regulation of food intake. Peptides 23(2): 323–29

    Article  CAS  PubMed  Google Scholar 

  84. Kawamura Y, Okamoto J, et al. (1968) A role of oral afferents in aversion to taste solutions. Physiol Behav 3: 537–42

    Article  CAS  Google Scholar 

  85. Keesey RE, Powley TL (2008) Body energy homeostasis. Appetite 51(3): 442–45

    Article  PubMed  Google Scholar 

  86. Keith SW, Redden DT, et al. (2006) Putative contributors to the secular increase in obesity: exploring the roads less traveled. Int J Obes (Lond) 30(11): 1585–94

    Article  CAS  Google Scholar 

  87. Kelley AE, Baldo BA, et al. (2005) Corticostriatal-hypothalamic circuitry and food motivation: integration of energy, action and reward. Physiol Behav 86(5): 773–95

    Article  CAS  PubMed  Google Scholar 

  88. Kennedy GC (1953) The role of depot fat in the hypothalamic control of food intake in the rat. Proc R Soc Lond B Biol Sci 140(901): 578–96

    Article  CAS  PubMed  Google Scholar 

  89. Kirouac GJ, Ganguly PK, (1995) Topographical organization in the nucleus accumbens of afferents from the basolateral amygdala and efferents to the lateral hypothalamus. Neuroscience 67(3): 625–30

    Article  CAS  PubMed  Google Scholar 

  90. Kosar E, Grill HJ, et al. (1986) Gustatory cortex in the rat. II. Thalamocortical projections. Brain Res 379(2): 342–52

    Article  CAS  PubMed  Google Scholar 

  91. Krettek JE, Price JL (1977) Projections from the amygdaloid complex to the cerebral cortex and thalamus in the rat and cat. J Comp Neurol 172(4): 687–722

    Article  CAS  PubMed  Google Scholar 

  92. Krettek JE, Price JL (1978) Amygdaloid projections to subcortical structures within the basal forebrain and brainstem in the rat and cat. J Comp Neurol 178(2): 225–54

    Article  CAS  PubMed  Google Scholar 

  93. Lam TK, Pocai A, et al. (2005) Hypothalamic sensing of circulating fatty acids is required for glucose homeostasis. Nat Med 11(3): 320–7

    Article  CAS  PubMed  Google Scholar 

  94. Lam TK, Schwartz GJ, et al. (2005) “Hypothalamic sensing of fatty acids. Nat Neurosci 8(5): 579–84

    Article  CAS  PubMed  Google Scholar 

  95. Langhans W (1996) Role of the liver in the metabolic control of eating: what we know — and what we do not know. Neurosci Biobehav Rev 20(1): 145–53

    Article  CAS  PubMed  Google Scholar 

  96. Larson PS (2008) Deep brain stimulation for psychiatric disorders. Neurotherapeutics 5(1): 50–8

    Article  PubMed  Google Scholar 

  97. Laugerette F, Passilly-Degrace P, et al. (2005) CD36 involvement in orosensory detection of dietary lipids, spontaneous fat preference, and digestive secretions. J Clin Invest 115(11): 3177–84

    Article  CAS  PubMed  Google Scholar 

  98. Li CS, Cho YK, et al. (2005) Modulation of parabrachial taste neurons by electrical and chemical stimulation of the lateral hypothalamus and amygdala. J Neurophysiol 93(3): 1183–96

    Article  PubMed  Google Scholar 

  99. Liu L, Simon SA (1996) Capsaicin-induced currents with distinct desensitization and Ca2+ dependence in rat trigeminal ganglion cells. J Neurophysiol 75(4): 1503–14

    CAS  PubMed  Google Scholar 

  100. Loftus TM, Jaworsky DE, et al. (2000) Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science 288(5475): 2379–81

    Article  CAS  PubMed  Google Scholar 

  101. Lundy RF Jr, Norgren R (2004) Gustatory system. In: Paxinos G (ed) The Rat Nervous System. Academic Press, San Diego, CA and London, Elsevier, pp 891–921

    Google Scholar 

  102. Lutz TA, Del Prete E, et al. (1995) Subdiaphragmatic vagotomy does not influence the anorectic effect of amylin. Peptides 16(3): 457–62

    Article  CAS  PubMed  Google Scholar 

  103. Lutz TA, Geary N, et al. (1995) Amylin decreases meal size in rats. Physiol Behav 58(6): 1197–202

    Article  CAS  PubMed  Google Scholar 

  104. Lyall V, Heck GL, et al. (2004) The mammalian amiloride-insensitive non-specific salt taste receptor is a vanilloid receptor-1 variant. J Physiol 558(Pt 1): 147–59

    Article  CAS  PubMed  Google Scholar 

  105. Margolskee RF (2002) Molecular mechanisms of bitter and sweet taste transduction. J Biol Chem 277(1): 1–4

    Article  CAS  PubMed  Google Scholar 

  106. Margolskee RF, Dyer J, et al. (2007) T1R3 and gustducin in gut sense sugars to regulate expression of Naα-glucose cotransporter 1. Proc Natl Acad Sci U S A 104(38): 15075–80

    Article  CAS  PubMed  Google Scholar 

  107. Matsumoto I, Emori Y, et al. (2001) A comparative study of three cranial sensory ganglia projecting into the oral cavity: in situ hybridization analyses of neurotrophin receptors and thermosensitive cation channels. Brain Res Mol Brain Res 93(2): 105–12

    Article  CAS  PubMed  Google Scholar 

  108. Mayer J (1953) Glucostatic mechanism of regulation of food intake. N Engl J Med 249(1): 13–16

    Article  CAS  PubMed  Google Scholar 

  109. Miller IJ Jr (1995) Anatomy of the peripheral taste system. In: Doty RL (ed) Handbook of Olfaction and Gustation. Marcel Dekker Inc., New York, pp 521–47

    Google Scholar 

  110. Minokoshi Y, Alquier T, et al. (2004) AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 428(6982): 569–74

    Article  CAS  PubMed  Google Scholar 

  111. Mithieux G, Misery P, et al. (2005) Portal sensing of intestinal gluconeogenesis is a mechanistic link in the diminution of food intake induced by diet protein. Cell Metab 2(5): 321–29

    Article  CAS  PubMed  Google Scholar 

  112. Moran TH, Robinson PH, et al. (1986) Two brain cholecystokinin receptors: implications for behavioral actions. Brain Res 362(1): 175–79

    Article  CAS  PubMed  Google Scholar 

  113. Mueller KL, Hoon MA, et al. (2005) The receptors and coding logic for bitter taste. Nature 434(7030): 225–29

    Article  CAS  PubMed  Google Scholar 

  114. Murray RG (1971) Ultrastructure of taste receptors. In: Beidler LM (ed) Handbook of Sensory Physiology. Volume IV. Chemical Senses Part 2: Taste. Springer-Verlag, Berlin, pp 31–50

    Google Scholar 

  115. Nakano Y, Oomura Y, et al. (1986) Feeding-related activity of glucose-and morphinesensitive neurons in the monkey amygdala. Brain Res 399(1): 167–72

    Article  CAS  PubMed  Google Scholar 

  116. Nguyen NT, Wilson SE (2007) Complications of antiobesity surgery. Nat Clin Pract Gastroenterol Hepatol 4(3): 138–47

    Article  PubMed  Google Scholar 

  117. Niijima A (1969) Afferent impulse discharges from glucoreceptors in the liver of the guinea pig. Ann NY Acad Sci 157(2): 690–700

    Article  CAS  PubMed  Google Scholar 

  118. Nomura T, Ogawa H(1985) The taste and mechanical response properties of neurons in the parvicellular part of the thalamic posteromedial ventral nucleus of the rat. Neurosci Res 3(2): 91–105

    Article  CAS  PubMed  Google Scholar 

  119. Norgren R (1978) Projections from the nucleus of the solitary tract in the rat. Neuroscience 3(2): 207–18

    Article  CAS  PubMed  Google Scholar 

  120. Norgren R (1984) Central neural mechanisms of taste. In: Darien-Smith I (ed) Handbook of Physiology-The Nervous System III. Sensory Processes 1. American Physiological Society, Washington, DC, pp 1087–128

    Google Scholar 

  121. Norgren R, Leonard CM (1971) Taste pathways in rat brainstem. Science 173(2): 1136–39

    Article  CAS  PubMed  Google Scholar 

  122. Norgren R, Leonard CM (1973) Ascending central gustatory pathways. J Comp Neurol 150(2): 217–37

    Article  CAS  PubMed  Google Scholar 

  123. O’Rahilly S, Farooqi IS (2006) Genetics of obesity. Philos Trans R Soc Lond B Biol Sci 361(1471): 1095–105

    Article  PubMed  CAS  Google Scholar 

  124. Obici S, Feng Z, et al. (2002) Decreasing hypothalamic insulin receptors causes hyperphagia and insulin resistance in rats. Nat Neurosci 5(6): 566–72

    Article  CAS  PubMed  Google Scholar 

  125. Obici S, Feng Z, et al. (2002) Central administration of oleic acid inhibits glucose production and food intake. Diabetes 51(2): 271–75

    Article  CAS  PubMed  Google Scholar 

  126. Ogawa H, Hayama T, et al. (1984) Location and taste responses of parabrachio-thalamic relay neurons in rats. Exp Neurol 83(3): 507–17

    Article  CAS  PubMed  Google Scholar 

  127. Ogawa H, Ito S, et al. (1990) Taste area in granular and dysgranular insular cortices in the rat identified by stimulation of the entire oral cavity. Neurosci Res 9(3): 196–201

    Article  CAS  PubMed  Google Scholar 

  128. Ollmann MM, Wilson BD, et al. (1997) Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278(5335): 135–38

    Article  CAS  PubMed  Google Scholar 

  129. Orbach J, Andrews WH (1973) Stimulation of afferent nerve terminals in the perfused rabbit liver by sodium salts of some long-chain fatty acids. Q J Exp Physiol Cogn Med Sci 58(3): 267–74

    CAS  PubMed  Google Scholar 

  130. Ottersen OP (1982) Connections of the amygdala of the rat. IV: Corticoamygdaloid and intraamygdaloid connections as studied with axonal transport of horseradish peroxidase. J Comp Neurol 205(1): 30–48

    Article  CAS  PubMed  Google Scholar 

  131. Ottersen OP, Ben-Ari Y (1979) Afferent connections to the amygdaloid complex of the rat and cat. I. Projections from the thalamus. J Comp Neurol 187(2): 401–24

    Article  CAS  PubMed  Google Scholar 

  132. Pardal R, Lopez-Barneo J (2002) Low glucose-sensing cells in the carotid body. Nat Neurosci 5(3): 197–98

    Article  CAS  PubMed  Google Scholar 

  133. Phillipson OT (1979) Afferent projections to the ventral tegmental area of Tsai and interfascicular nucleus: a horseradish peroxidase study in the rat. J Comp Neurol 187(1): 117–43

    Article  CAS  PubMed  Google Scholar 

  134. Powley TL, Phillips RJ (2004) Gastric satiation is volumetric, intestinal satiation is nutritive. Physiol Behav 82(1): 69–74

    Article  CAS  PubMed  Google Scholar 

  135. Pritchard TC, Hamilton RB, et al. (2000) Projections of the parabrachial nucleus in the old world monkey. Exp Neurol 165(1): 101–17

    Article  CAS  PubMed  Google Scholar 

  136. Qu D, Ludwig DS, et al. (1996) A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature 380(6571): 243–47

    Article  CAS  PubMed  Google Scholar 

  137. Quaade F, Vaernet K, et al. (1974) Stereotaxic stimulation and electrocoagulation of the lateral hypothalamus in obese humans. Acta Neurochir (Wien) 30(1–2): 111–17

    Article  CAS  Google Scholar 

  138. Ricardo JA, Koh ET (1978) Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala, and other forebrain structures in the rat. Brain Res 153(1): 1–26

    Article  CAS  PubMed  Google Scholar 

  139. Ritter RC, Slusser PG, et al. (1981) Glucoreceptors controlling feeding and blood glucose: location in the hindbrain. Science 213(4506): 451–52

    Article  CAS  PubMed  Google Scholar 

  140. Rolls ET, Baylis LL (1994) Gustatory, olfactory, and visual convergence within the primate orbitofrontal cortex. J Neurosci 14: 5437–52

    CAS  PubMed  Google Scholar 

  141. Rolls ET, Yaxley S, et al. (1990) Gustatory responses of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. J Neurophysiol 64(4): 1055–66

    CAS  PubMed  Google Scholar 

  142. Rowland NE, Crews EC, et al. (1997) Comparison of Fos induced in rat brain by GLP-1 and amylin. Regul Pept 71(3): 171–74

    Article  CAS  PubMed  Google Scholar 

  143. Sakurai T, Amemiya A, et al. (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92(4): 573–85

    Article  CAS  PubMed  Google Scholar 

  144. Sani S, Jobe K, et al. (2007) Deep brain stimulation for treatment of obesity in rats. J Neurosurg 107(4): 809–13

    Article  PubMed  Google Scholar 

  145. Schwartz MW, Porte D Jr (2005) Diabetes, obesity, and the brain. Science 307(5708): 375–79

    Article  CAS  PubMed  Google Scholar 

  146. Schwartz MW, Woods SC, et al. (2000) Central nervous system control of food intake. Nature 404(6778): 661–71

    CAS  PubMed  Google Scholar 

  147. Sclafani A (2004) Oral and postoral determinants of food reward. Physiol Behav 81(5): 773–79

    Article  CAS  PubMed  Google Scholar 

  148. Scott TR, Plata-Salaman CR (1999) Taste in the monkey cortex. Physiol Behav 67(4): 489–511

    Article  CAS  PubMed  Google Scholar 

  149. Shapiro RE, Miselis RR (1985) The central neural connections of the area postrema of the rat. J Comp Neurol 234(3): 344–64

    Article  CAS  PubMed  Google Scholar 

  150. Shi CJ, Cassell MD (1998) Cortical, thalamic, and amygdaloid connections of the anterior and posterior insular cortices. J Comp Neurol 399(4): 440–68

    Article  CAS  PubMed  Google Scholar 

  151. Simon SA, de Araujo IE, et al. (2006) The neural mechanisms of gustation: a distributed processing code. Nat Rev Neurosci 7(11): 890–901

    Article  CAS  PubMed  Google Scholar 

  152. Simons CT, Boucher Y, et al. (2003) Suppression of central taste transmission by oral capsaicin. J Neurosci 23(3): 978–85

    CAS  PubMed  Google Scholar 

  153. Small DM, Prescott J (2005) Odor=taste integration and the perception of flavor. Exp Brain Res 166(3–4): 345–57

    Article  PubMed  Google Scholar 

  154. Small DM, Zald DH, et al. (1999) Human cortical gustatory areas: a review of functional neuroimaging data. NeuroReport 10(1): 7–14

    Article  CAS  PubMed  Google Scholar 

  155. Smith GP, Jerome C, et al. (1981) Abdominal vagotomy blocks the satiety effect of cholecystokinin in the rat. Science 213(4511): 1036–37

    Article  CAS  PubMed  Google Scholar 

  156. Spanswick D, Smith MA, et al. (2000) Insulin activates ATP-sensitive Kα channels in hypothalamic neurons of lean, but not obese rats. Nat Neurosci 3(8): 757–58

    Article  CAS  PubMed  Google Scholar 

  157. Spector AC, Travers SP (2005) The representation of taste quality in the mammalian nervous system. Behav Cogn Neurosci Rev 4(3): 143–91

    Article  PubMed  Google Scholar 

  158. Stein CJ, Colditz GA (2004) The epidemic of obesity. J Clin Endocrinol Metab 89(6): 2522–25

    Article  CAS  PubMed  Google Scholar 

  159. Stellar E (1954) The physiology of motivation. ychol Rev 61(1): 5–22

    Article  CAS  Google Scholar 

  160. Stratford TR, Kelley AE (1999) Evidence of a functional relationship between the nucleus accumbens shell and lateral hypothalamus subserving the control of feeding behavior. J Neurosci 19(24): 11040–48

    CAS  PubMed  Google Scholar 

  161. Talavera K, Yasumatsu K, et al. (2005) Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature 438(7070): 1022–25

    Article  CAS  PubMed  Google Scholar 

  162. Tanaka K, Inoue S, et al. (1990) Amino acid sensors sensitive to alanine and leucine exist in the hepato-portal system in the rat. J Auton Nerv Syst 31(1): 41–46

    Article  CAS  PubMed  Google Scholar 

  163. Tomchik SM, Berg S, et al. (2007) Breadth of tuning and taste coding in mammalian taste buds. J Neurosci 27(40): 10840–48

    Article  CAS  PubMed  Google Scholar 

  164. Tordoff MG, Friedman MI (1986) Hepatic portal glucose infusions decrease food intake and increase food preference. Am J Physiol 251(1 Pt 2): R192–96

    CAS  PubMed  Google Scholar 

  165. Torvik A (1956) Afferent connections to the sensory trigeminal nuclei, the nucleus of the solitary tract and adjacent structures; an experimental study in the rat. J Comp Neurol 106(1): 51–141

    Article  CAS  PubMed  Google Scholar 

  166. Travers JB, Norgren R (1983) Afferent projections to the oral motor nuclei in the rat. J Comp Neurol 220(3): 280–98

    Article  CAS  PubMed  Google Scholar 

  167. Treesukosol Y, Lyall V, et al. (2007) A psychophysical and electrophysiological analysis of salt taste in Trpv1 null mice. Am J Physiol Regul Integr Comp Physiol 292(5): R1799–809

    CAS  PubMed  Google Scholar 

  168. Tschop M, Smiley DL, et al. (2000) Ghrelin induces adiposity in rodents. Nature 407(6806): 908–13

    Article  CAS  PubMed  Google Scholar 

  169. Turton MD, O’Shea D, et al. (1996) A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379(6560): 69–72

    Article  CAS  PubMed  Google Scholar 

  170. van der Kooy D, Koda LY, et al. (1984) The organization of projections from the cortex, amygdala, and hypothalamus to the nucleus of the solitary tract in rat. J Comp Neurol 224(1): 1–24

    Article  PubMed  Google Scholar 

  171. Vandenbeuch A, Clapp TR, et al. (2008) Amiloride-sensitive channels in type I fungiform taste cells in mouse. BMC Neurosci 9: 1

    Article  PubMed  CAS  Google Scholar 

  172. Volkow ND, O’Brien CP (2007) Issues for DSM-V: should obesity be included as a brain disorder? Am J Psychiatry 164(5): 708–10

    Article  PubMed  Google Scholar 

  173. Wang FB, Powley TL (2000) Topographic inventories of vagal afferents in gastrointestinal muscle. J Comp Neurol 421(3): 302–24

    Article  CAS  PubMed  Google Scholar 

  174. Wang R, Liu X, et al. (2004) The regulation of glucose-excited neurons in the hypothalamic arcuate nucleus by glucose and feeding-relevant peptides. Diabetes 53(8): 1959–65

    Article  CAS  PubMed  Google Scholar 

  175. Wang Y, Erickson RP, et al. (1993) Selectivity of lingual nerve fibers to chemical stimuli. J Gen Physiol 101(6): 843–66

    Article  CAS  PubMed  Google Scholar 

  176. Werther GA, Hogg A, et al. (1987) Localization and characterization of insulin receptors in rat brain and pituitary gland using in vitro autoradiography and computerized densitometry. Endocrinology 121(4): 1562–70

    Article  CAS  PubMed  Google Scholar 

  177. Willesen MG, Kristensen P, et al. (1999) Co-localization of growth hormone secretagogue receptor and NPY mRNA in the arcuate nucleus of the rat. Neuroendocrinology 70(5): 306–16

    Article  CAS  PubMed  Google Scholar 

  178. Wilson CS (2002) Reasons for eating: personal experiences in nutrition and anthropology. Appetite 38(1): 63–7

    Article  PubMed  Google Scholar 

  179. Wise RA (2006) Role of brain dopamine in food reward and reinforcement. Philos Trans R Soc Lond B Biol Sci 361(1471): 1149–58

    Article  CAS  PubMed  Google Scholar 

  180. Wong GT, Gannon KS, et al. (1996) Transduction of bitter and sweet taste by gustducin. Nature 381(6585): 796–800

    Article  CAS  PubMed  Google Scholar 

  181. Woolley JD, Lee BS, et al. (2006) Nucleus accumbens opioids regulate flavor-based preferences in food consumption. Neuroscience 143(1): 309–17

    Article  CAS  PubMed  Google Scholar 

  182. Yang R, Crowley HH, et al. (2000) Taste cells with synapses in rat circumvallate papillae display SNAP-25-like immunoreactivity. J Comp Neurol 424(2) 205–15

    Article  CAS  PubMed  Google Scholar 

  183. Yasui Y, Breder CD, et al. (1991) Autonomic responses and efferent pathways from the insular cortex in the rat. J Comp Neurol 303(3): 355–74

    Article  CAS  PubMed  Google Scholar 

  184. Zaborszky L, Beinfeld MC, et al. (1984) Brainstem projection to the hypothalamic ventromedial nucleus in the rat: a CCK-containing long ascending pathway. Brain Res 303(2): 225–31

    Article  CAS  PubMed  Google Scholar 

  185. Zaborszky L, Makara GB (1979) Intrahypothalamic connections: an electron microscopic study in the rat. Exp Brain Res 34(2): 201–15

    Article  CAS  PubMed  Google Scholar 

  186. Zhang Y, Hoon MA, et al. (2003) Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 112(3): 293–301

    Article  CAS  PubMed  Google Scholar 

  187. Zhang Y, Proenca R, et al. (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372(6505): 425–32

    Article  CAS  PubMed  Google Scholar 

  188. Zhao GQ, Zhang Y, et al. (2003) The receptors for mammalian sweet and umami taste. Cell 115(3): 255–66

    Article  CAS  PubMed  Google Scholar 

  189. Zheng H, Berthoud HR (2008) Neural systems controlling the drive to eat: mind versus metabolism. Physiology (Bethesda) 23: 75–83

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Oliveira-Maia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Oliveira-Maia, A.J., Roberts, C.D., Simon, S.A., Nicolelis, M.A.L. (2011). Gustatory and reward brain circuits in the control of food intake. In: Pickard, J.D., et al. Advances and Technical Standards in Neurosurgery. Advances and Technical Standards in Neurosurgery, vol 36. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0179-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0179-7_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0178-0

  • Online ISBN: 978-3-7091-0179-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics